Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies
Abstract
:1. Introduction
2. Theoretical Formulation and Numerical Schemes
2.1. Governing Equations and Free Surface Modeling Scheme
2.2. Free Surface Modeling Scheme
2.3. Computational Fluid Domain and Mesh Generation
2.4. Generation and Absorption of Waves
2.5. Turbulence Model
2.6. Initial and Boundary Conditions
2.7. Setting of the Solvers
3. Testing Scenarios
4. Grid Independence and Sensitivity Tests
4.1. Grid Independence Test
4.2. Large Eddy Simulation
5. Results
5.1. Outflux across the Outlet Patch and Height of the Free Surface Elevation
5.2. Wave ‘Piling Up’ Effects Due to the Presence of Sloped Beaches
5.3. Wave Breaking
5.4. Convex Seafloor
5.5. Wave Impingement on the Seafloor of a Large Slope
5.6. A ‘Composite Slope’ Approximation
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayo, T.L.; Lin, N. Climate change impacts to the coastal flood hazard in the northeastern United States. Weather Clim. Extrem. 2022, 36, 100453. [Google Scholar] [CrossRef]
- Sebastian, A.; Proft, J.; Dietrich, J.C.; Du, W.; Bedient, P.B.; Dawson, C.N. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN plus ADCIRC model. Coast. Eng. 2014, 88, 171–181. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; Cerqueiroa, D.; Crespoa, C.; Dalrymple, R.A. Green water overtopping analyzed with a SPH model. Ocean Eng. 2005, 32, 223–238. [Google Scholar] [CrossRef]
- Li, L.L.; Yang, J.; Lin, C.Y.; Chua, C.T.; Wang, Y.; Zhao, K.F.; Wu, Y.T.; Liu, P.L.F.; Switzer, A.D.; Mok, K.M.; et al. Field survey of Typhoon Hato (2017) and a comparison with storm surge modeling in Macau. Nat. Hazards Earth Syst. Sci. 2018, 18, 3167–3178. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Han, M.; Wang, C.M. Efficiency and wave run-up of porous breakwater with sloping deck. J. Mar. Sci. Eng. 2022, 10, 1896. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, F.; Ye, J.; Jiang, H.; Chen, W.; Gu, W.; Yu, G.; Li, Q. Physical experimental study on the wave reflection and run-up of a new ecological hollow cube. J. Mar. Sci. Eng. 2024, 12, 664. [Google Scholar] [CrossRef]
- Zhao, E.; Mu, L.; Hu, Z.; Wang, X.; Sun, J.; Zhang, Z. Physical and numerical investigations on wave run-up and dissipation under breakwater with fence revetment. J. Mar. Sci. Eng. 2021, 9, 1355. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Huang, C.-J.; Hsu, T.-W. Viscous flow fields induced by the run-up of periodic waves on vertical and sloping seawalls. J. Mar. Sci. Eng. 2022, 10, 1512. [Google Scholar] [CrossRef]
- Liu, W.; Shao, K.; Ning, Y. A study of the maximum momentum flux in the solitary wave run-up Zone over back-reef slopes based on a Boussinesq model. J. Mar. Sci. Eng. 2019, 7, 109. [Google Scholar] [CrossRef]
- Savage, R.P. Laboratory data on wave run-up on roughened and permeable slope. J. Waterw. Harb. Div. 1959, 84, 1638–1641. [Google Scholar] [CrossRef]
- Saville Jr., T. Wave run-up on composite slopes. Coast. Eng. Proc. 1957, 1, 691–699. [Google Scholar] [CrossRef]
- Hunt, I.A. Design of seawalls and breakwaters. J. Waterw. Harb. Div. 1959, 85, 123–152. [Google Scholar] [CrossRef]
- Mayer, R.H.; Kriebel, D.L. Wave runup on composite-slope and concave beaches. Coast. Eng. 1994, 2325–2339. [Google Scholar] [CrossRef]
- Li, Y.; Raichlen, F. Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 2002, 456, 295–318. [Google Scholar] [CrossRef]
- Saelevik, G.; Jensen, A.; Pedersen, G. Runup of solitary waves on a straight and a composite beach. Coast. Eng. 2013, 77, 40–48. [Google Scholar] [CrossRef]
- Kuai, Y.R.; Qi, M.L.; Li, J.Z. Numerical study on the propagation of solitary waves in the near-shore. Ocean Eng. 2018, 165, 155–163. [Google Scholar] [CrossRef]
- Kim, D.H.; Son, S. Role of shelf geometry and wave breaking in single N-type tsunami runup under geophysical-scale. Ocean Model. 2019, 138, 13–22. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Maximum wave run-up over beaches of convex/concave bottom profiles. Cont. Shelf Res. 2022, 232, 104610. [Google Scholar] [CrossRef]
- Drähne, U.; Goseberg, N.; Vater, S.; Beisiegel, N.; Behrens, J. An experimental and numerical study of long wave run-up on a plane beach. J. Mar. Sci. Eng. 2016, 4, 1. [Google Scholar] [CrossRef]
- Lashley, C.H.; Bertin, X.; Roelvink, D.; Arnaud, G. Contribution of infragravity waves to run-up and overwash in the Pertuis Breton Embayment (France). J. Mar. Sci. Eng. 2019, 7, 205. [Google Scholar] [CrossRef]
- Van Ormondt, M.; Roelvink, D.; van Dongeren, A. A model-derived empirical formulation for wave run-up on naturally sloping beaches. J. Mar. Sci. Eng. 2021, 9, 1185. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Kim, H.; Jang, C.; Kim, K.-H.; Kang, T.-S. Maximum run-up and alongshore mass transport due to edge waves. J. Mar. Sci. Eng. 2022, 10, 894. [Google Scholar] [CrossRef]
- Bahena-Jimenez, S.; Bautista, E.; Mendez, F.; Quesada-Torres, A. Wave reflection by a submerged cycloidal breakwater in presence of a beach with different depth profiles. Wave Motion 2020, 98, 102622. [Google Scholar] [CrossRef]
- Didier, D.; Bernatchez, P.; Marie, G.; Boucher-Brossard, G. Wave runup estimations on platform-beaches for coastal flood hazard assessment. Nat. Hazards 2016, 83, 1443–1467. [Google Scholar] [CrossRef]
- Passarella, M.; Goldstein, E.B.; De Muro, S.; Coco, G. The use of genetic programming to develop a predictor of swash excursion on sandy beaches. Nat. Hazards Earth Syst. Sci. 2018, 18, 599–611. [Google Scholar] [CrossRef]
- Gomes da Silva, P.; Medina, R.; González, M.; Garnier, R. Wave reflection and saturation on natural beaches: The role of the morphodynamic beach state in incident swash. Coast. Eng. 2019, 153, 103540. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.F. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 359, 239–264. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P.L.-F. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. Oceans 1998, 103, 15677–15694. [Google Scholar] [CrossRef]
- Rhee, S.H.; Stern, F. RANS model for spilling breaking waves. J. Fluids Eng.-Transactions ASME 2002, 124, 424–432. [Google Scholar] [CrossRef]
- Lubin, P.; Vincent, S.; Abadie, S.; Caltagirone, J.P. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coast. Eng. 2006, 53, 631–655. [Google Scholar] [CrossRef]
- Buldakov, E.; Higuera, P.; Stagonas, D. Numerical models for evolution of extreme wave groups. Appl. Ocean Res. 2019, 89, 128–140. [Google Scholar] [CrossRef]
- Peng, N.N.; Chow, K.W. A numerical wave tank with large eddy simulation for wave breaking. Ocean Eng. 2022, 266, 112555. [Google Scholar] [CrossRef]
- Barraud, C.; Hernández, R.H. Vortex shedding from a square cylinder interacting with an undular bore wave train. Phys. Fluids 2024, 36, 043620. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modelling surface-tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, P. Numerical modeling and experimentation of the dam-overtopping process of landslide-generated waves in an idealized mountainous reservoir. J. Hydraul. Eng. 2016, 142, 04016059. [Google Scholar] [CrossRef]
- Lin, P.; Cheng, L.; Liu, D. A two-phase flow model for wave–structure interaction using a virtual boundary force method. Comput. fluids 2016, 129, 101–110. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Lin, P.; Li, A.-J. Numerical simulation of wave overtopping above perforated caisson breakwaters. Coast. Eng. 2021, 163, 103795. [Google Scholar] [CrossRef]
- Behzadi, A.; Issa, R.I.; Rusche, H. Modelling of dispersed bubble and droplet flow at high phase fractions. Chem. Eng. Sci. 2004, 59, 759–770. [Google Scholar] [CrossRef]
- Mohseni, M.; Esperanca, P.T.; Sphaier, S.H. Numerical study of wave run-up on a fixed and vertical surface-piercing cylinder subjected to regular, non-breaking waves using OpenFOAM. Appl. Ocean Res. 2018, 79, 228–252. [Google Scholar] [CrossRef]
- Youngs, D.L. Time-dependent multi-material flow with large fluid distortion. In Numerical Methods in Fluid Dynamics; Morton, K.W., Baines, M.J., Eds.; Academic Press: Cambridge, MA, USA, 1982; pp. 273–285. [Google Scholar]
- The OpenFOAM Foundation. Interface Capturing in OpenFOAM. Available online: https://cfd.direct/openfoam/free-software/multiphase-interface-capturing/ (accessed on 13 March 2023).
- Jacobsen, N.G.; Fuhrman, D.R.; Fredsoe, J. A wave generation toolbox for the open-source CFD library: OpenFoam (R). Int. J. Numer. Methods Fluids 2012, 70, 1073–1088. [Google Scholar] [CrossRef]
- Deardorff, J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970, 41, 453–480. [Google Scholar] [CrossRef]
- Schumann, U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 1975, 18, 376–404. [Google Scholar] [CrossRef]
- Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn. 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Huang, S.H.; Li, Q.S. A new dynamic one-equation subgrid-scale model for large eddy simulations. Int. J. Numer. Methods Eng. 2010, 81, 835–865. [Google Scholar] [CrossRef]
- Fenton, J.D. A fifth-order Stokes theory for steady waves. J. Waterw. Port Coast. Ocean. Eng. 1985, 111, 216–234. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Gomes da Silva, P.; Coco, G.; Garnier, R.; Klein, A.H.F. On the prediction of runup, setup and swash on beaches. Earth Sci. Rev. 2020, 204, 103148. [Google Scholar] [CrossRef]
- Iribarren, R.C.; Nogales, M.C. Protection des Port; XVII International Navigation Congrèss: Lisbon, Portugal; 1949, Volume 4, pp. 31–80.
- Galvin, C.J. Breaker type classification on three laboratory beaches. J. Geophys. Res. 1968, 73, 3651–3659. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. Coast. Eng. Proc. 1974, 1, 466–480. [Google Scholar] [CrossRef]
- Ting, F.C.K.; Kirby, J.T. Dynamics of surf-zone turbulence in a strong plunging breaker. Coast. Eng. 1995, 24, 177–204. [Google Scholar] [CrossRef]
- Moragues, M.V.; Clavero, M.; Losada, M.Á. Wave Breaker Types on a Smooth and Impermeable 1:10 Slope. J. Mar. Sci. Eng. 2020, 8, 296. [Google Scholar] [CrossRef]
- Santamaría, M.; Losada, M.A.; Clavero, M. Run-up and run-down regimes on impermeable and steep slopes. Ocean Eng. 2023, 290, 116317. [Google Scholar] [CrossRef]
- Grimshaw, R.H.J.; Annenkov, S.Y. Water wave packets over variable depth. Stud. Appl. Math. 2011, 126, 409–427. [Google Scholar] [CrossRef]
- Bjornestad, M. Run-up of long waves on background shear currents. Wave Motion 2020, 96, 102551. [Google Scholar] [CrossRef]
Type | Depth h0 (m) | Height H0 (m) | Amplitude a0 (m) | Period T0 (s) | Wavelength λ0 (m) | Celerity v0 (m/s) | Turbulence Model | Simulation Time |
---|---|---|---|---|---|---|---|---|
Fifth-order Stokes wave | 16 | 3 | 1.5 | 10 | 111.9 | 11.2 | LES | 150 s (15 periods) |
Testing Scenarios | L (m) | h0 (m) | The Angle of the Slope (θ) | Arc Length (For the Concave and Convex Seafloor Only) | |
---|---|---|---|---|---|
Radius (m) | The Angle of the Sector | ||||
Straight1/ Concave1/ Convex1 | 197 (1.76λ0) | 16 | 4.6° | 974.4 | 11.7° |
Straight2/ Concave2/ Convex2 | 112 (1.0λ0) | 16 | 8.1° | 28.8 | 22.6° |
Straight3/ Concave3/ Convex3 | 56 (0.5λ0) | 16 | 15.9° | 9.8 | 34.7° |
Straight4/ Concave4/ Convex4 | 28 (0.25λ0) | 16 | 29.7° | 3.3 | 59.4° |
Straight5/ Concave5/ Convex5 | 16 (0.14λ0) | 16 | 45.0° | 16 | 90.0° |
Straight6/ Concave6/ Convex6 | 10 (0.09λ0) | 16 | 58.0° | 18 | 63.7° |
Straight7/ Concave7/ Convex7 | 4.29 (0.038λ0) | 16 | 75.0° | 3.2 | 30.0° |
Grid Options | Number of Cells |
---|---|
Grid 1 | 1,606,288 |
Grid 2 | 2,616,102 |
Grid 3 | 3,151,200 |
Angle | Slope | Surf Similarity ξ | Alternative Surf Similarity χ | Seafloor Topographies | Observed Breakers | Breakpoint Location x* | Breaker Index |
---|---|---|---|---|---|---|---|
4.6° | 0.081 | 0.496 | 3.83 × 10−3 | Straight-line | Strong Plunging | 9.69 | 1.63 |
Concave | 10.94 | 1.14 | |||||
Convex | 6.25 | 1.02 | |||||
8.1° | 0.143 | 0.873 | 3.83 × 10−3 | Straight-line | Strong Plunging | 10.54 | 1.06 |
Concave | Strong bore | 11.53 | 0.8 | ||||
Convex | Strong Plunging | 8.1 | 1.15 | ||||
15.9° | 0.286 | 1.75 | 3.83 × 10−3 | Straight-line | Strong bore | 11.61 | 0.93 |
Concave | Weak bore | No obvious jet formation | |||||
Convex | Strong bore | 10.54 | 1.0 | ||||
29.7° | 0.571 | 3.49 | 3.83 × 10−3 | Straight-line | Weak bore | No obvious jet formation | |
Concave | Surging | No obvious jet formation | |||||
Convex | Strong bore | 11.33 | 0.41 | ||||
45.0° | 1.0 | 6.11 | 3.83 × 10−3 | Straight-line | Surging | No obvious jet formation | |
Concave | Surging | ||||||
Convex | Weak bore | ||||||
58.0° | 1.6 | 9.78 | 3.83 × 10−3 | Straight-line | Surging | No obvious jet formation | |
Concave | |||||||
Convex | |||||||
75.0° | 3.73 | 22.79 | 3.83 × 10−3 | Straight-line | Surging | No obvious jet formation | |
Concave | |||||||
Convex |
Variables | RMSE | R2 |
---|---|---|
Setup | 0.0006195 | 0.7948 |
Swash | 0.0004 | 0.9303 |
Geometries | RMSE | R2 |
---|---|---|
Straight-line | 0.09332 | 0.8194 |
Concave | 0.09219 | 0.8886 |
Convex | 0.04043 | 0.9815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, C.-N.; Chow, K.-W. Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies. J. Mar. Sci. Eng. 2024, 12, 1368. https://doi.org/10.3390/jmse12081368
Wong C-N, Chow K-W. Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies. Journal of Marine Science and Engineering. 2024; 12(8):1368. https://doi.org/10.3390/jmse12081368
Chicago/Turabian StyleWong, Chak-Nang, and Kwok-Wing Chow. 2024. "Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies" Journal of Marine Science and Engineering 12, no. 8: 1368. https://doi.org/10.3390/jmse12081368
APA StyleWong, C.-N., & Chow, K.-W. (2024). Modeling Ocean Swell and Overtopping Waves: Understanding Wave Shoaling with Varying Seafloor Topographies. Journal of Marine Science and Engineering, 12(8), 1368. https://doi.org/10.3390/jmse12081368