Ice Forecasting in the Next-Generation Great Lakes Operational Forecast System (GLOFS)
Abstract
:1. Introduction
2. Methods
2.1. Hydrodynamic Modeling
2.2. Ice Modeling
2.3. Simulation Period
2.4. Model Validation
3. Results
3.1. Erie Ice Skill Statistics
3.2. Michigan-Huron Ice Skill Statistics
3.3. Ice Duration and Spatial Maps
3.4. Water Temperatures
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Assel, R.; Cronk, K.; Norton, D. Recent trends in Laurentian Great Lakes ice cover. Clim. Chang. 2003, 57, 185–204. [Google Scholar] [CrossRef]
- Assel, R.A. A Computerized Ice Concentration Data Base for the Great Lakes; NOAA GLERL: Ann Arbor, MI, USA, 1983. [Google Scholar]
- Wang, J.; Kessler, J.; Hang, F.; Hu, H.; Clites, A.; Chu, P. Great Lakes Ice Climatology Update of Winters 2012–2017: Seasonal Cycle, Interannual Variability, Decadal Variability, and Trend for the Period; NOAA GLERL: Ann Arbor, MI, USA, 2017; pp. 1–14. [Google Scholar]
- Wang, J.; Bai, X.; Hu, H.; Clites, A.; Colton, M.; Lofgren, B. Temporal and spatial variability of Great Lakes ice cover, 1973–2010. J. Clim. 2012, 25, 1318–1329. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Schwab, D.; Leshkevich, G.; Beletsky, D.; Hawley, N.; Clites, A. Development of the Great Lakes Ice-circulation Model (GLIM): Application to Lake Erie in 2003–2004. J. Gt. Lakes Res. 2010, 36, 425–436. [Google Scholar] [CrossRef]
- Rondy, D.R. Great Lakes Ice Cover, Great Lakes Basin Framework Study; Appendix 4; Great Lakes Basin Commission: Ann Arbor, MI, USA, 1976. [Google Scholar]
- Bolsenga, S.J. A Review of Great Lakes Ice Research. J. Gt. Lakes Res. 1992, 18, 169–189. [Google Scholar] [CrossRef]
- Hawley, N.; Beletsky, D.; Wang, J. Ice thickness measurements in Lake Erie during the winter of 2010–2011. J. Gt. Lakes Res. 2018, 44, 388–397. [Google Scholar] [CrossRef]
- Wright, D.M.; Posselt, D.J.; Steiner, A.L. Sensitivity of Lake-Effect Snowfall to Lake Ice Cover and Temperature in the Great Lakes Region. Mon. Weather Rev. 2013, 141, 670. [Google Scholar] [CrossRef]
- Assel, R.A.; Quinn, F.H.; Sellinger, C.E. Hydroclimatic Factors of the Recent Record Drop in Laurentian Great Lakes Water Levels. BAMS 2004, 1144–1148. [Google Scholar] [CrossRef]
- Xiao, C.; Lofgren, B.M.; Wang, J. WRF-Based assessment of the Great Lakes’ impact on cold season synoptic cyclones. Atmos. Res. 2018, 214, 189–203. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Bolsenga, S.J.; Fahnenstiel, G.L.; Liebeg, J.R.; Gradner, W. Plankton ecology in an ice covered bay of Lake Michigan: Utilization of a winter phytoplankton bloom by reproduccing copepods. Hydrobiologia 1992, 243–244, 175–183. [Google Scholar] [CrossRef]
- Martin Associates. Lawrence Region Economic Impacts of Maritime Shipping in the Great Lakes-St.Lawrence Region; US Department of Transportation: Washington, DC, USA, 2018 July.
- Kelley, J.G.W.; Chen, Y.; Anderson, E.J.; Lang, G.A.; Xu, J. Upgrade of NOS Lake Erie Operational Forecast System (LEOFS) to FVCOM: Model Development and Hindcast Skill Assessment; NOS CS 40, NOAA; NOAA Technical Memorandum: Silver Spring, MD, USA, 2018. [Google Scholar]
- Kelley, J.G.W.; Chu, P.; Zhang, A.; Lang, G.A.; Schwab, D.J. Skill Assessment of NOS Lake Michigan Operational Forecast System (LMOFS); NOS CS 8, NOAA; NOAA Technical Memorandum: Silver Spring, MD, USA, 2007. [Google Scholar]
- Kelley, J.G.W.; Zhang, A.; Chu, P.; Lang, G.A. Skill Assessment of NOS Lake Huron Operational Forecast System (LHOFS); NOS CS 23, NOAA; NOAA Technical Memorandum: Silver Spring, MD, USA, 2010. [Google Scholar]
- Mellor, G.L. Users Guide for Ocean Model. Ocean Model. 2004, 8544, 0710. [Google Scholar]
- Schwab, D.J.; Bedford, K.W. Initial Implementation of the Great Lakes Forecasting System: A Real-Time System for Predicting Lake Circulation and Thermal Structure. Water Qual. Res. J. 1994, 29, 203–220. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. An unstructured grid, finite volume coastal ocean model (FVCOM) system. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef]
- Hunke, E.C.; Lipscomb, W.H.; Turner, A.K.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual LA-CC-06-012; Los Alamos National Laboratory: Santa Fe, NM, USA, 2015; Volume 115.
- Xue, P.; Pal, J.S.; Ye, X.; Lenters, J.D.; Huang, C.; Chu, P.Y. Improving the simulation of large lakes in regional climate modeling: Two-way lake-atmosphere coupling with a 3D hydrodynamic model of the great lakes. J. Clim. 2017, 30, 1605–1627. [Google Scholar] [CrossRef]
- Anderson, E.J.; Schwab, D.J.; Lang, G.A. Real-Time Hydraulic and Hydrodynamic Model of the St. Clair River, Lake St. Clair, Detroit River System. J. Hydraul. Eng. 2010, 136, 507–518. [Google Scholar] [CrossRef]
- Anderson, E.J.; Bechle, A.J.; Wu, C.H.; Schwab, D.J.; Mann, G.E.; Lombardy, K.A. Reconstruction of a meteotsunami in Lake Erie on 27 May 2012; Roles of atmospheric conditions on hydrodynamic response in enclosed basins. J. Geophys. Res. 2015, 120, 1–16. [Google Scholar] [CrossRef]
- Anderson, E.J.; Schwab, D.J. Meteorological influence on summertime baroclinic exchange in the Straits of Mackinac. J. Geophys. Res. Oceans 2017, 122. [Google Scholar] [CrossRef]
- Anderson, E.J.; Schwab, D.J. Predicting the oscillating bi-directional exchange flow in the Straits of Mackinac. J. Gt. Lakes Res. 2013, 39, 663–671. [Google Scholar] [CrossRef]
- Bai, X.; Wang, J.; Schwab, D.J.; Yang, Y.; Luo, L.; Leshkevich, G.A.; Songzhi, L. Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM. Ocean Mod. 2013, 64, 40–63. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.; Schwab, D.J.; Vanderploeg, H.A.; Leshkevich, G.A.; Bai, X.; Hu, H.; Wang, D. Simulating the 1998 spring bloom in Lake Michigan using a coupled physical-biological model. J. Geophys. Res. 2012, 117, 14. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open Ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosohere Response Experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Liu, P.C.; Schwab, D.J. A comparison of methods for estimating u*, from given uz and air-sea temperature differences. J. Geophys. Res. 1987, 92, 6488–6494. [Google Scholar] [CrossRef]
- Gao, G.; Chen, C.; Qi, J.; Beardsley, R.C. An unstructured-grid, finite-volume sea ice model: Development, validation, and application. J. Geophys. Res. Oceans 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Hunke, E.C.; Dukowicz, J.K. An Elastic–Viscous–Plastic Model for Sea Ice Dynamics. J. Phys. Oceanogr. 1997, 27, 1849–1867. [Google Scholar] [CrossRef] [Green Version]
- Thorndike, A.S.; Rothrock, D.A.; Maykut, G.A.; Colony, R. The Thickness Distribution of Sea Ice. J. Geophys. Res. 1975, 80, 4501. [Google Scholar] [CrossRef]
- Briegleb, B.; Bitz, C.; Hunke, E.; Lipscomb, W.; Schramm, J. Description of the Community Climate System Model Version 2: Sea Ice Model; UCAR: Boulder, CO, USA, 2002. [Google Scholar]
- Proshutinsky, A.; Steele, M.; Zhang, J.; Holloway, G.; Steiner, N.; Häkkinen, S.; Holland, D.M.; Gerdes, R.; Koeberle, C.; Karcher, M.; et al. The Arctic Ocean Model Intercomparison Project (AOMIP). EOS Trans. Am. Geophys. Union 2001, 82, 637–644. [Google Scholar] [CrossRef]
- Maykut, G.A.; McPhee, M.G. Solar Heating of the Arctic Mixed Layer. J. Geophys. Res. Oceans 1995, 100, 24691–24703. [Google Scholar] [CrossRef]
- Schwab, D.J.; Leshkevich, G.A.; Muhr, G.C. Automated mapping of surface water temperature in the Great Lakes. J. Gt. Lakes Res. 1999, 25, 468–481. [Google Scholar] [CrossRef]
- Beletsky, D.; Schwab, D.J.; Roebber, P.J.; McCormick, M.J.; Miller, G.S.; Saylor, J.H. Modeling wind-driven circulation during the March 1998 sediment resuspension event in Lake Michigan. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.; Dowell, D.C.; Grell, G.A.; et al. A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [Google Scholar] [CrossRef]
- U.S. National Ice Center: Naval Ice Center. Available online: www.natice.noaa.gov/products/great_lakes.html (accessed on 1 July 2018).
- Titze, D. Characteristics, Influence, and Sensitivity of Ice Cover in the Great Lakes. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, November 2016. [Google Scholar]
Lake Observations | Superior | Michigan | Huron | Erie | Ontario | Basin |
---|---|---|---|---|---|---|
Average Max. ice cover (%) | 60.91 | 39.64 | 64.60 | 82.19 | 29.77 | 54.28 |
Year | Erie | Michigan | Huron | ||||||
---|---|---|---|---|---|---|---|---|---|
lake wide | spatial | lake wide | spatial | lake wide | spatial | ||||
concentration | binary | concentration | binary | concentration | binary | ||||
2005 | 0.17 1 | 0.21 1 | 0.25 1 | ||||||
2006 | 0.17 | 0.15 | 0.24 | ||||||
2007 | 0.08 | 0.13 | 0.17 | ||||||
2008 | 0.19 | 0.22 | 0.26 | ||||||
2009 | 0.10 | 0.18 | 0.25 | ||||||
2010 | 0.12 | 0.19 | 0.26 | ||||||
2011 | 0.11 | 0.21 | 0.25 | ||||||
2012 | 0.01 | 0.03 | 0.06 | ||||||
2013 | 0.13 | 0.16 | 0.23 | ||||||
2014 | 0.07 | 0.18 | 0.23 | ||||||
2015 | 0.08 | 0.15 | 0.18 | 0.09 1 | 0.20 1 | 0.31 1 | 0.13 1 | 0.26 1 | 0.34 1 |
2016 | 0.09 | 0.10 | 0.17 | 0.01 | 0.07 | 0.11 | 0.03 | 0.12 | 0.18 |
2017 | 0.28 | 0.26 | 0.38 | 0.04 | 0.10 | 0.15 | 0.05 | 0.14 | 0.21 |
mean | 0.12 | 0.17 | 0.23 | 0.05 | 0.12 | 0.19 | 0.07 | 0.17 | 0.24 |
Year | Erie | Michigan | Huron | |||
---|---|---|---|---|---|---|
NIC | Model | NIC | Model | NIC | Model | |
2005 | 91 | 64 | ||||
2006 | 88 | 92 | ||||
2007 | 67 | 66 | ||||
2008 | 77 | 86 | ||||
2009 | 95 | 100 | ||||
2010 | 81 | 76 | ||||
2011 | 108 | 107 | ||||
2012 | 25 | 24 | ||||
2013 | 49 | 77 | ||||
2014 | 131 | 131 | ||||
2015 | 101 | 103 | 98 | 97 | 114 | 115 |
2016 | 48 | 46 | 49 | 50 | 67 | 59 |
2017 | 53 | 98 | 74 | 42 | 84 | 71 |
Satellite-Derived Temperature | FVCOM-CICE | FVCOM (No-Ice) |
---|---|---|
Lake Erie GLSEA | 0.69 | 1.12 |
Lake Michigan GLSEA | 0.66 | 0.87 |
Lake Huron GLSEA | 0.68 | 0.94 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, E.J.; Fujisaki-Manome, A.; Kessler, J.; Lang, G.A.; Chu, P.Y.; Kelley, J.G.W.; Chen, Y.; Wang, J. Ice Forecasting in the Next-Generation Great Lakes Operational Forecast System (GLOFS). J. Mar. Sci. Eng. 2018, 6, 123. https://doi.org/10.3390/jmse6040123
Anderson EJ, Fujisaki-Manome A, Kessler J, Lang GA, Chu PY, Kelley JGW, Chen Y, Wang J. Ice Forecasting in the Next-Generation Great Lakes Operational Forecast System (GLOFS). Journal of Marine Science and Engineering. 2018; 6(4):123. https://doi.org/10.3390/jmse6040123
Chicago/Turabian StyleAnderson, Eric J., Ayumi Fujisaki-Manome, James Kessler, Gregory A. Lang, Philip Y. Chu, John G.W. Kelley, Yi Chen, and Jia Wang. 2018. "Ice Forecasting in the Next-Generation Great Lakes Operational Forecast System (GLOFS)" Journal of Marine Science and Engineering 6, no. 4: 123. https://doi.org/10.3390/jmse6040123