A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Solutions
2.2. Design of the Developed µPAD
2.3. Determination Procedure
2.4. Saliva Samples
2.5. Comparison Method—Validation Procedure
3. Results and Discussion
3.1. Number of Layers
3.2. Urea Concentration
3.3. Type of Paper
3.4. Enzymatic Reaction Time
3.5. Sodium Hydroxide
3.6. Matrix Influence
3.7. Kinetic Determination
Enzymatic Reaction Kinetics
3.8. Features
3.9. Stability Studies
3.10. Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 6 February 2024).
- Ferreira, F.T.; Mesquita, R.B.; Rangel, A.O. On-hand tool for ammonium and urea determination in saliva to monitor chronic kidney disease—Design of a couple of microfluidic paper-based devices. Microchem. J. 2023, 193, 109102. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0026265X2300721X (accessed on 6 February 2024). [CrossRef]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, 602659. [Google Scholar] [CrossRef] [PubMed]
- Nishat, S.; Jafry, A.T.; Martinez, A.W.; Awan, F.R. Paper-based microfluidics: Simplified fabrication and assay methods. Sens. Actuators B Chem. 2021, 336, 129681. [Google Scholar] [CrossRef]
- Tseng, C.C.; Kung, C.T.; Chen, R.F.; Tsai, M.H.; Chao, H.R.; Wang, Y.N.; Fu, L.M. Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sens. Actuators B Chem. 2021, 342, 130078. [Google Scholar] [CrossRef]
- Ozer, T.; McMahon, C.; Henry, C.S. Advances in Paper-Based Analytical Devices. Annu. Rev. Anal. Chem. 2020, 13, 85–109. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, K.; Xu, H.; Zheng, C.; Cao, B.; Qin, Q.; Jin, Q.; Cui, D. Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Anal. Bioanal. Chem. 2021, 413, 2429–2445. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.F.; Merino-Ribas, A.; Ferreira, C.; Campos, C.; Silva, N.; Pereira, L.; Garcia, A.; Azevedo, Á.; Mesquita, R.B.; Rangel, A.O.; et al. Characterization of Oral Enterobacteriaceae Prevalence and Resistance Profile in Chronic Kidney Disease Patients Undergoing Peritoneal Dialysis. Front. Microbiol. 2021, 12, 736685. [Google Scholar] [CrossRef] [PubMed]
- Thepchuay, Y.; Costa Carolina, F.A.; Mesquita Raquel, B.R.; Sampaio-Maia, B.; Nacapricha, D.; Rangel António, O.S. Flow-based method for the determination of biomarkers urea and ammoniacal nitrogen in saliva. Bioanalysis 2020, 12, 455–465. [Google Scholar] [CrossRef] [PubMed]
- CDC—Center for Disease Control and Prevention. Chronic Kidney Disease Basics. Available online: https://www.cdc.gov/kidney-disease/about/?CDC_AAref_Val=https://www.cdc.gov/kidneydisease/basics.html (accessed on 6 February 2024).
- Sheini, A. A paper-based device for the colorimetric determination of ammonia and carbon dioxide using thiomalic acid and maltol functionalized silver nanoparticles: Application to the enzymatic determination of urea in saliva and blood. Microchim. Acta 2020, 187, 1–11. [Google Scholar] [CrossRef]
- Lasisi, T.J.; Raji, Y.R.; Salako, B.L. Salivary creatinine and urea analysis in patients with chronic kidney disease: A case control study. BMC Nephrol. 2016, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bagalad, B.S.; Mohankumar, K.P.; Madhushankari, G.S.; Donoghue, M.; Kuberappa, P.H. Diagnostic accuracy of salivary creatinine, urea, and potassium levels to assess dialysis need in renal failure patients. Dent. Res. J. 2017, 14, 13–18. [Google Scholar] [CrossRef]
- Fresenius Kidney Care. What is Ammonia Breath and Is It a Symptom of CKD? Available online: https://www.freseniuskidneycare.com/thrive-central/ammonia-breath (accessed on 8 February 2024).
- Wang, K.H.; Hsieh, J.C.; Chen, C.C.; Zan, H.W.; Meng, H.F.; Kuo, S.Y.; Nguyễn, M.T. A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens. Bioelectron. 2019, 132, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Park, T.E.; Lee, S.W.; Lee, E.H. Colorimetric Detection of Urease-Producing Microbes Using an Ammonia-Responsive Flexible Film Sensor. Biosensors 2022, 12, 886. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.C.; Oliveira, K.A.; de Fátima, Â.; Coltro, W.K.T.; Santos, J.C.C. Paper-based analytical device with colorimetric detection for urease activity determination in soils and evaluation of potential inhibitors. Talanta 2021, 230, 122301. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, A.; Batista, G.R.; Torres, C.R.G.; Sener, B.; Attin, T. Artificial Saliva Formulations versus Human Saliva Pretreatment in Dental Erosion Experiments. Caries Res. 2016, 50, 78–86. [Google Scholar]
- Thepchuay, Y.; Mesquita, R.B.; Nacapricha, D.; Rangel, A.O. Micro-PAD card for measuring total ammonia nitrogen in saliva. Anal. Bioanal. Chem. 2020, 412, 3167–3176. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities. Int. Union Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
Dynamic Range (U/mL) | Calibration Curve a ΔA = S × [Urease] + b | LOD a (U/mL) | LOQ a (U/mL) | Repeatability, RSD | |
---|---|---|---|---|---|
Sample (Intraday) a | Slope (Interday) a | ||||
0.041–0.750 | ΔA = 0.0531 (±0.0018) + 0.0142 (±0.0002) R2 = 0.9969 (±0.0023) | 0.012 | 0.041 | 4% | 3% |
Sample ID | [Urease]Kit (U/mL) | [Urease]µPAD (U/mL) | RE (%) |
---|---|---|---|
1 | 0.125 | 0.130 | 4.2 |
2 | 0.140 | 0.145 | 3.8 |
3 | 0.105 | 0.095 | −9.4 |
4 | 0.198 | 0.189 | −4.5 |
5 | 0.110 | 0.116 | 5.1 |
6 | 0.179 | 0.187 | 3.9 |
7 | 0.234 | 0.220 | −5.9 |
8 | 0.114 | 0.122 | 7.0 |
9 | 0.124 | 0.133 | 7.5 |
10 | 0.165 | 0.178 | 7.6 |
11 | 0.363 | 0.372 | 2.7 |
12 | 0.155 | 0.141 | −8.8 |
13 | 0.084 | 0.092 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, F.T.S.M.; Rangel, A.O.S.S.; Mesquita, R.B.R. A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva. Biosensors 2025, 15, 48. https://doi.org/10.3390/bios15010048
Ferreira FTSM, Rangel AOSS, Mesquita RBR. A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva. Biosensors. 2025; 15(1):48. https://doi.org/10.3390/bios15010048
Chicago/Turabian StyleFerreira, Francisca T. S. M., António O. S. S. Rangel, and Raquel B. R. Mesquita. 2025. "A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva" Biosensors 15, no. 1: 48. https://doi.org/10.3390/bios15010048
APA StyleFerreira, F. T. S. M., Rangel, A. O. S. S., & Mesquita, R. B. R. (2025). A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva. Biosensors, 15(1), 48. https://doi.org/10.3390/bios15010048