Journal Description
Biosensors
Biosensors
is an international, peer-reviewed, open access journal on the technology and science of biosensors published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Chemistry, Analytical) / CiteScore - Q1 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.9 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.9 (2023);
5-Year Impact Factor:
5.2 (2023)
Latest Articles
Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies
Biosensors 2025, 15(1), 51; https://doi.org/10.3390/bios15010051 (registering DOI) - 15 Jan 2025
Abstract
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously
[...] Read more.
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer’s comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors. Nanomaterials play a pivotal role, offering unique properties, such as high conductivity and surface-to-volume ratios. This article provides a review of recent advancements in wearable potentiometric sensors utilizing various solid contacts, with a particular emphasis on nanomaterials. These sensors are employed for precise ion concentration determinations, notably sodium, potassium, calcium, magnesium, ammonium, and chloride, in human biological fluids. This review highlights two primary applications, that is, (1) the enhancement of athletic performance by continuous monitoring of ion levels in sweat to gauge the athlete’s health status, and (2) the facilitation of clinical diagnosis and preventive healthcare by monitoring the health status of patients, in particular to detect early signs of dehydration, fatigue, and muscle spasms.
Full article
(This article belongs to the Special Issue Advances in Portable and Wearable Sensing Systems for Biochemical Monitoring)
►
Show Figures
Open AccessArticle
Resonant Young’s Slit Interferometer for Sensitive Detection of Low-Molecular-Weight Biomarkers
by
Stefanus Renaldi Wijaya, Augusto Martins, Katie Morris, Steven D. Quinn and Thomas F. Krauss
Biosensors 2025, 15(1), 50; https://doi.org/10.3390/bios15010050 (registering DOI) - 15 Jan 2025
Abstract
The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer’s disease. A biomarker’s low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the
[...] Read more.
The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer’s disease. A biomarker’s low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the mass bound on the sensor’s surface. To address this challenge, we used a resonant Young’s slit interferometer geometry and implemented several innovations, such as phase noise matching and optimisation of the fringe spacing, to maximise the signal-to-noise ratio. As a result, we achieved a limit of detection of 2.9 × 10−6 refractive index units (RIU). We validated our sensor’s low molecular weight capability by demonstrating the detection of Aβ-42, a 4.5 kDa peptide indicative of Alzheimer’s disease, and reached the clinically relevant pg/mL regime. This system builds on the guided mode resonance modality we previously showed to be compatible with handheld operation using low-cost components. We expect this development will have far-reaching applications beyond Aβ-42 and become a workhorse tool for the label-free detection of low-molecular-weight biomarkers across a range of disease types.
Full article
(This article belongs to the Special Issue Lighting Up Single-Molecule Biosensors and Bioimaging: Now and the Decade to Come)
►▼
Show Figures
Figure 1
Open AccessArticle
BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase
by
Yijiong Xue, Chengqi Bao, Hui Liu, Fanghui Ma, Minghui Yang and Xiaoqing Li
Biosensors 2025, 15(1), 49; https://doi.org/10.3390/bios15010049 (registering DOI) - 15 Jan 2025
Abstract
A fluorescence probe for “switch-on” detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO2 nanosheets (Au NCs-MnO2 NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system,
[...] Read more.
A fluorescence probe for “switch-on” detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO2 nanosheets (Au NCs-MnO2 NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO2 NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO2 NSs to Mn2+ and facilitate the fluorescence recovery of Au NCs. The fluorescence assay offers the advantages of facile preparation, cost-effectiveness, good specificity, and high sensitivity. Moreover, the assay exhibits a broad linear range (0.005 U/mL to 8 U/mL) for ALP detection with a remarkable limit of detection of 0.0015 U/mL. Notably, this assay demonstrates promising applicability for detection ALP in human serum samples, thereby providing valuable potential for clinical applications.
Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
A Microfluidic Paper-Based Device for Monitoring Urease Activity in Saliva
by
Francisca T. S. M. Ferreira, António O. S. S. Rangel and Raquel B. R. Mesquita
Biosensors 2025, 15(1), 48; https://doi.org/10.3390/bios15010048 (registering DOI) - 15 Jan 2025
Abstract
Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients’ saliva,
[...] Read more.
Chronic Kidney Disease (CKD) is a disorder that affects over 10% of the global population, and that would benefit from innovative methodologies that would provide early detection. Since it has been reported that there are high levels of urease in CKD patients’ saliva, this sample is a promising non-invasive alternative to blood for CKD detection and monitoring. This work introduces a novel 3D µPAD for quantifying urease activity in saliva in a range of 0.041–0.750 U/mL, with limits of detection and quantification of 0.012 and 0.041 U/mL, respectively. The device uses the urease in the sample to convert urea into ammonia, causing a colorimetric change in the bromothymol blue. The accuracy of the developed device was evaluated by comparing the measurements of several saliva samples (#13) obtained with the μPAD and with a commercially available kit. Stability studies were also performed to assess its functionality as a point-of-care methodology, and the device was stable for 4 months when stored in a vacuum. After the sample placement, it could be scanned within 40 min without providing significantly different results. The developed device quantifies urease activity in saliva within 30 min, providing a simple, portable, lab-free alternative to existing methodologies.
Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
►▼
Show Figures
Graphical abstract
Open AccessArticle
Enhanced Electrochemiluminescence from Ruthenium-Tagged Immune Complex at Flexible Chains for Sensitive Analysis of Glutamate Decarboxylase Antibody
by
Yuyao Zhang, Li Qian, Qian Zhang, Yu Li, Yu Liu and Dechen Jiang
Biosensors 2025, 15(1), 47; https://doi.org/10.3390/bios15010047 (registering DOI) - 15 Jan 2025
Abstract
Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical
[...] Read more.
Herein, a sensitive electrochemiluminescence (ECL) immunosensor is designed by immobilizing ruthenium-tagged immune complexes at flexible poly-ethylene-glycol (PEG) chains on the electrode surface, which offers more freedom for the collision of the ruthenium complex at the electrode during the initial ECL reaction. The electrochemical characterizations confirm the loose structure of the assembled layer with the immune complex, providing an increase in the current and the resultant enhanced ECL emissions. Comparing the sensors with the rigid structure, a 34-fold increase in the maximal ECL emission is recorded when PEG3400 is used as a linker. Using the optimized protocol, the prepared immunosensor exhibits a wide-ranging linear response to the model antibody (glutamate decarboxylase antibody) ranging from 10 pg/mL to 10 ng/mL. The detection limit is almost two orders lower than the value using the classic enzyme-linked immunosorbent assay, which offers a new design to enhance ECL emissions and the resultant analytical performance.
Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
►▼
Show Figures
Figure 1
Open AccessArticle
Mapping Surface Potential in DNA Aptamer–Neurochemical and Membrane–Ion Interactions on the SOS Substrate Using Terahertz Microscopy
by
Kosei Morita, Yuta Mitsuda, Sota Yoshida, Toshihiko Kiwa and Jin Wang
Biosensors 2025, 15(1), 46; https://doi.org/10.3390/bios15010046 - 13 Jan 2025
Abstract
In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer–neurochemical complexes through
[...] Read more.
In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer–neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements. Beyond neurochemicals, we also investigated calcium ions, measuring their concentrations in PDMS-fabricated micro-wells using minimal sample volumes. Our results highlight the capability of TCM as a powerful, label-free, and sensitive platform for the probing and mapping of surface potential arising from molecular interactions, with broad implications for biomedical diagnostics and research.
Full article
(This article belongs to the Special Issue Advancing Biomedical Biosensing with Microelectrode Arrays)
►▼
Show Figures
Figure 1
Open AccessArticle
An Integrated Microfluidic Microwave Array Sensor with Machine Learning for Enrichment and Detection of Mixed Biological Solution
by
Sen Yang, Yanxiong Wang, Yanfeng Jiang and Tian Qiang
Biosensors 2025, 15(1), 45; https://doi.org/10.3390/bios15010045 - 13 Jan 2025
Abstract
In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and Escherichia coli (E. coli
[...] Read more.
In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and Escherichia coli (E. coli) in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and E. coli. The results demonstrate that microfluidics could effectively enrich WBCs with an efficiency of 88.3%. For WBC detection, the resonance frequency of the sensing chip decreases with increasing concentration, while for E. coli detection, the capacitance value of the sensing chip increases with elevated concentration. Furthermore, the measurement data are processed using machine learning. Specifically, the WBC measurement data are subjected to a further linear fitting. In addition, the prediction model for E. coli concentration, employing four different algorithms, achieves a maximum accuracy of 95.24%. Consequently, the proposed integrated chip can be employed for the clinical diagnosis of WBCs and E. coli, providing a novel approach for medical and biological research involving cells and bacteria.
Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
►▼
Show Figures
Figure 1
Open AccessReview
Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques
by
Denise Margarita Rivera-Rivera, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, Araceli Sánchez-Álvarez, José Manuel Rodríguez-Delgado, Erika Iveth Cedillo-González, Garima Kaushik, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Biosensors 2025, 15(1), 44; https://doi.org/10.3390/bios15010044 - 13 Jan 2025
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation
[...] Read more.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography–mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing.
Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
►▼
Show Figures
Figure 1
Open AccessArticle
Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation
by
Yinru Zhu, Yong Guo, Xinwei Gao, Qinglin Chen, Yingying Chen, Ruijie Xiang, Baichang Lin, Luwei Wang, Yuan Lu and Wei Yan
Biosensors 2025, 15(1), 43; https://doi.org/10.3390/bios15010043 - 13 Jan 2025
Abstract
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular
[...] Read more.
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times. Specifically, we decouple the grayscale image and the fluorescence lifetime matrix and perform an individual interpolation on each. Following the interpolation of the intensity image, we apply wavelet transformation and adjust the wavelet coefficients according to the image gradients. After the inverse transformation, the original image is obtained and subjected to noise reduction to complete the image reconstruction process. Subsequently, each pixel is pseudo-color-coded based on its intensity and lifetime, preserving both structural and temporal information. We evaluated the performance of the bicubic interpolation method and our image reconstruction approach on fluorescence microspheres and fixed-cell samples, demonstrating their effectiveness in enhancing the quality of lifetime images. By applying these techniques to live-cell imaging, we can successfully obtain high-pixel FLIM images at shortened intervals, facilitating the capture of rapid cellular events.
Full article
(This article belongs to the Special Issue Fluorescent Materials with Excellent Biocompatibility and Their Application in Bio-Sensing, Bio-Imaging (Volume II))
►▼
Show Figures
Figure 1
Open AccessArticle
Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
by
Angela Gabriela Pãun, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu and George-Octavian Buica
Biosensors 2025, 15(1), 42; https://doi.org/10.3390/bios15010042 - 13 Jan 2025
Abstract
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein
[...] Read more.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode. Initial, quantum dots (QDs) were obtained from Bombyx mori silk fibroin and embedded in polypyrrole film. Using carbodiimide coupling, a polyamidoamine (PAMAM) dendrimer was linked with GQDs-polypyrrole film to improve sensor sensitivity. The tissue transglutaminase (tTG) antigen was cross-linked onto PAMAM using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)-N-hydroxy succinimide (NHS) chemistry to develop a nanoprobe that can detect human serum anti-tTG antibodies. The physicochemical characteristics of the synthesized nanocomposite were examined by FTIR, UV-visible, FE-SEM, EDX, and electrochemical studies. The novel electrode measures anti-tissue antibody levels in real time using human blood serum samples. The modified electrode has great repeatability and an 8.7 U/mL detection limit. Serum samples from healthy people and CD patients were compared to standard ELISA kit assays. SPSS and Excel were used for statistical analysis. The improved electrode and detection system can identify anti-tissue antibodies up to 80 U/mL.
Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
►▼
Show Figures
Figure 1
Open AccessReview
Pioneering Role of Nanopore Single-Molecule Sensing in Environmental and Food Surveillance
by
Wenqiang Tian, Xu Wang, Yan Zhang, Ting Weng, Tlili Chaker, Xiaohan Chen, Qingke Kong and Deqiang Wang
Biosensors 2025, 15(1), 41; https://doi.org/10.3390/bios15010041 - 13 Jan 2025
Abstract
In recent years, environmental and food safety have garnered substantial focus due to their intimate connection with human health. Numerous biosensors have been developed for identifying deleterious compounds; however, these biosensors reveal certain limitations. Nanopore sensors, featuring nano-scaled pore size, have demonstrated outstanding
[...] Read more.
In recent years, environmental and food safety have garnered substantial focus due to their intimate connection with human health. Numerous biosensors have been developed for identifying deleterious compounds; however, these biosensors reveal certain limitations. Nanopore sensors, featuring nano-scaled pore size, have demonstrated outstanding performance in terms of rapidity, sensitivity, and selectivity as a single-molecule technique for environmental and food surveillance. In this review, we present a comprehensive overview of nanopore applications in these two fields. To elucidate the pioneering roles of nanopores, analytes are categorized into three distinct groups, including metal ions, synthetic contaminants, and biotoxins. Moreover, a variety of strategies are involved, such as the coalescence with ligand probes, the implementation of chemical reactions, the functionalization of nanopores, etc. These scientific studies showcase the versatility and diversity of the nanopore technique, paving the way for further developments of nanopore technology in environmental and food safety.
Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
►▼
Show Figures
Figure 1
Open AccessArticle
MicroVi: A Cost-Effective Microscopy Solution for Yeast Cell Detection and Count in Wine Value Chain
by
Ismael Benito-Altamirano, Sergio Moreno, David M. Vaz-Romero, Anna Puig-Pujol, Gemma Roca-Domènech, Joan Canals, Anna Vilà, Joan Daniel Prades and Ángel Diéguez
Biosensors 2025, 15(1), 40; https://doi.org/10.3390/bios15010040 - 12 Jan 2025
Abstract
In recent years, the wine industry has been researching how to improve wine quality along the production value chain. In this scenario, we present here a new tool, MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in wine samples.
[...] Read more.
In recent years, the wine industry has been researching how to improve wine quality along the production value chain. In this scenario, we present here a new tool, MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in wine samples. We demonstrate that this novel microscopy setup is able to measure the same type of samples as an optical microscopy system, but with smaller size equipment and with automated cell count configuration. The technology relies on the top of state-of-the-art computer vision pipelines to post-process the images and count the cells. A typical pipeline consists of normalization, feature extraction (i.e., SIFT), image composition (to increase both resolution and scanning area), holographic reconstruction and particle count (i.e., Hough transform). MicroVi achieved a 2.19 µm resolution by properly resolving the G7.6 features from the USAF Resolving Power Test Target 1951. Additionally, we aimed for a successful calibration of cell counts for Saccharomyces cerevisiae. We compared our direct results with our current optical setup, achieving a linear calibration for measurements ranging from 0.5 to 50 million cells per milliliter. Furthermore, other yeast cells were qualitatively resolved with our MicroVi microscope, such as, Brettanomyces bruxellensis, or bacteria, like, Lactobacillus plantarum, thus confirming the system’s reliability for consistent microbial assessment.
Full article
(This article belongs to the Special Issue Trends in Optical Biosensing and Bioimaging)
►▼
Show Figures
Figure 1
Open AccessArticle
Developing a Label-Free Infrared Spectroscopic Analysis with Chemometrics and Computational Enhancement for Assessing Lupus Nephritis Activity
by
Mei-Ching Yu, Xiang-Di Huang, Chin-Wei Kuo, Kai-Fu Zhang, Ping-Chung Liang, U-Ser Jeng, Pei-Yu Huang, Frederick Wai Keung Tam and Yao-Chang Lee
Biosensors 2025, 15(1), 39; https://doi.org/10.3390/bios15010039 - 11 Jan 2025
Abstract
Patterns of disease and therapeutic responses vary widely among patients with autoimmune glomerulonephritis. This study introduces groundbreaking personalized infrared (IR)-based diagnostics for real-time monitoring of disease status and treatment responses in lupus nephritis (LN). We have established a relative absorption difference (RAD) equation
[...] Read more.
Patterns of disease and therapeutic responses vary widely among patients with autoimmune glomerulonephritis. This study introduces groundbreaking personalized infrared (IR)-based diagnostics for real-time monitoring of disease status and treatment responses in lupus nephritis (LN). We have established a relative absorption difference (RAD) equation to assess characteristic spectral indices based on the temporal peak heights (PHs) of two characteristic serum absorption bands: ν1 as the target signal and ν2 as the PH reference for the ν1 absorption band, measured at each dehydration time (t) during dehydration. The RAD gap (Ψ), defined as the difference in the RAD values between the initial and final stages of serum dehydration, enables the measurement of serum levels of IgG glycosylation (ν1 (1030 cm−1), ν2 (1171 cm−1)), serum lactate (ν1 (1021 cm−1), ν2 (1171 cm−1)), serum hydrophobicity (ν1 (2930 cm−1), ν2 (2960 cm−1)), serum hydrophilicity (ν1 (1550 cm−1), ν2 (1650 cm−1)), and albumin (ν1 (1400 cm−1), ν2 (1450 cm−1)). Furthermore, this IR-based assay incorporates an innovative algorithm and our proprietary iPath software (ver. 1.0), which calculates the prognosis prediction function (PPF, Φ) from the RAD gaps of five spectral markers and correlates these with conventional clinical renal biomarkers. We propose that this algorithm-assisted, IR-based approach can augment the patient-centric care of LN patients, particularly by focusing on changes in serum IgG glycosylation.
Full article
(This article belongs to the Section Optical and Photonic Biosensors)
►▼
Show Figures
Graphical abstract
Open AccessReview
Integration of Functional Materials in Photonic and Optoelectronic Technologies for Advanced Medical Diagnostics
by
Naveen Thanjavur, Laxmi Bugude and Young-Joon Kim
Biosensors 2025, 15(1), 38; https://doi.org/10.3390/bios15010038 - 10 Jan 2025
Abstract
Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental
[...] Read more.
Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental in the development of diagnostic devices characterized by high sensitivity, specificity, and resolution. Their unique optical properties enable real-time monitoring of biological processes, advancing early disease detection and personalized treatment. However, challenges such as material stability, reproducibility, scalability, and environmental sustainability remain critical barriers to their clinical translation. Breakthroughs such as green synthesis, continuous flow production, and advanced surface engineering are addressing these limitations, paving the way for next-generation diagnostic tools. This article highlights the transformative potential of interdisciplinary research in overcoming these challenges and emphasizes the importance of sustainable and scalable strategies for harnessing functional materials in medical diagnostics. The ultimate goal is to inspire further innovation in the field, enabling the creation of practical, cost-effective, and environmentally friendly diagnostic solutions.
Full article
(This article belongs to the Special Issue Advances in Electrochemical, Photonic and Optoelectronic Biosensor Technologies for Rapid Point-of-Care Diagnostics)
►▼
Show Figures
Figure 1
Open AccessReview
Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins
by
Guoliang Li, Zongxia Li, Haojie Hu, Baojin Chen, Yuan Wang, Yanchao Mao, Haidong Li and Baosen Zhang
Biosensors 2025, 15(1), 37; https://doi.org/10.3390/bios15010037 - 10 Jan 2025
Abstract
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in
[...] Read more.
Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance. Innovative structural configurations, such as layered and encapsulated designs, optimize triboelectric efficiency and enhance environmental adaptability. Applications span healthcare, human–machine interfaces, and wearable electronics, demonstrating the immense potential for tactile sensing and energy harvesting. Despite significant progress, challenges remain in scalability, long-term durability, and multifunctional integration. Future research should focus on advanced material development, scalable fabrication, and intelligent system integration to unlock the full potential of self-healing TENGs. This review provides a comprehensive overview of current achievements and future directions, underscoring the pivotal role of self-healing TENGs in artificial skin technology.
Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
►▼
Show Figures
Figure 1
Open AccessArticle
Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR
by
Xiaoqing Dai, Meng Cao and Zunliang Wang
Biosensors 2025, 15(1), 36; https://doi.org/10.3390/bios15010036 - 10 Jan 2025
Abstract
We present a cost-effective and simple multiplex nucleic acid quantification method using droplet digital PCR (ddPCR) with digital melting curve analysis (MCA). This approach eliminates the need for complex fluorescent probe design, reducing both costs and dependence on fluorescence channels. We developed a
[...] Read more.
We present a cost-effective and simple multiplex nucleic acid quantification method using droplet digital PCR (ddPCR) with digital melting curve analysis (MCA). This approach eliminates the need for complex fluorescent probe design, reducing both costs and dependence on fluorescence channels. We developed a convolutional neighborhood search algorithm to correct droplet displacement during heating, ensuring precise tracking and accurate extraction of melting curves. An experimental protocol for digital MCA on the ddPCR platform was established, enabling accurate quantification of six target pathogen genes using a single fluorescence channel, with an average accuracy of 85%. Our method overcomes the multiplexing limitations of ddPCR, facilitating its application in multi-target pathogen detection.
Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Microfluidic Devices for Biosensing)
►▼
Show Figures
Figure 1
Open AccessReview
Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications—A Comprehensive Review
by
Muhammad A. Butt
Biosensors 2025, 15(1), 35; https://doi.org/10.3390/bios15010035 - 9 Jan 2025
Abstract
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and
[...] Read more.
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field.
Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
►▼
Show Figures
Figure 1
Open AccessArticle
Carboxylated Graphene: An Innovative Approach to Enhanced IgA-SARS-CoV-2 Electrochemical Biosensing
by
Luciana de Souza Freire, Ariamna María Dip Gandarilla, Yonny Romaguera Barcelay, Camila Macena Ruzo, Barbara Batista Salgado, Ana P. M. Tavares, Francisco Xavier Nobre, Julio Nino de Souza Neto, Spartaco Astolfi-Filho, Ștefan Țălu, Pritesh Lalwani, Niranjan Patra and Walter Ricardo Brito
Biosensors 2025, 15(1), 34; https://doi.org/10.3390/bios15010034 - 9 Jan 2025
Abstract
Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the
[...] Read more.
Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). We modified screen-printed carbon electrodes (SPCEs) with CG to immobilize the SARS-CoV-2 N-protein, facilitating targeted detection of IgA antibodies (IgA-SARS-CoV-2). The analytical performance was assessed via electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy, confirming CG synthesis effectiveness and biosensor functionality. The developed biosensor efficiently detects IgA-SARS-CoV-2 across a dilution range of 1:1000 to 1:200 v/v in a phosphate-buffered saline (PBS) solution, with a limit of detection calculated at 1:1601 v/v. This device shows considerable potential because of its fast response time, miniaturized design facilitated by SPCEs, reduced sample volume requirements, high sensitivity and specificity, low detection limits, and signal enhancement achieved through nanomaterial integration.
Full article
(This article belongs to the Special Issue Nanomaterial-Enhanced Biosensing for Point-of-Care Diagnostics)
►▼
Show Figures
Figure 1
Open AccessReview
Microfluidic Assays for CD4 T Lymphocyte Counting: A Review
by
Zhuolun Meng, Hassan Raji, Mahtab Kokabi, Deng Zou, James Chan, Qihao Liu, Ruifeng Zhang and Mehdi Javanmard
Biosensors 2025, 15(1), 33; https://doi.org/10.3390/bios15010033 - 9 Jan 2025
Abstract
CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of
[...] Read more.
CD4 T lymphocytes play a key role in initiating the adaptive immune response, releasing cytokines that mediate numerous signal transduction pathways across the immune system. Therefore, CD4 T cell counts are widely used as an indicator of overall immunological health. HIV, one of the leading causes of death in the developing world, specifically targets and gradually depletes CD4 cells, making CD4 counts a critical metric for monitoring disease progression. As a result, accurately counting CD4 cells represents a pressing challenge in global healthcare. Flow cytometry remains the gold standard for enumerating CD4 T cells; however, flow cytometers are expensive, difficult to transport, and require skilled medical staff to prepare samples, operate the equipment, and interpret results. This highlights the critical need for novel, rapid, cost-effective, and portable methods of CD4 enumeration that are suitable for deployment in resource-limited countries. This review will survey and analyze emerging research in CD4 counting, with a focus on microfluidic systems, which represent a promising area of investigation.
Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
►▼
Show Figures
Figure 1
Open AccessArticle
Fluorescence Polarization Immunoassay for Rapid, Sensitive Detection of the Herbicide 2,4-Dichlorophenoxyacetic Acid in Juice and Water Samples
by
Liliya I. Mukhametova, Marya K. Kolokolova, Ivan A. Shevchenko, Boris S. Tupertsev, Anatoly V. Zherdev, Chuanlai Xu and Sergei A. Eremin
Biosensors 2025, 15(1), 32; https://doi.org/10.3390/bios15010032 - 9 Jan 2025
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New
[...] Read more.
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized. Monoclonal antibodies (MAb) obtained against 2,4-D were used as a recognition reagent. The kinetics of the interaction of MAb and tracers were studied, and the kinetic parameters of their binding were calculated. High specificity of binding of tracers and MAb was shown. In this work, an approach was elaborated on to reduce the detection limit of 2,4-D by the FPIA method by changing the volume of the studied sample. The optimized FPIA in a competitive format was characterized by the LODs of 2,4-D 8 and 0.4 ng/mL and the working ranges 30–3000 ng/mL and 3–300 ng/mL for juice and water, respectively. The entire test cycle (from sample receipt to evaluation of the analysis results) took only 20 min. The test for the recovery of 2,4-D in juice and water gave values from 95 to 120%, which demonstrated the reliability of the herbicide determination in real samples.
Full article
(This article belongs to the Special Issue Recent Advances and Perspectives of Fluorescent Biosensors)
►▼
Show Figures
Figure 1
Journal Menu
► ▼ Journal Menu-
- Biosensors Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Biosensors, Chips, Micromachines, Molecules
Advances in Microfluidics and Lab on a Chip Technology, 2nd Edition
Topic Editors: Roman Grzegorz Szafran, Yi YangDeadline: 31 August 2025
Topic in
Applied Sciences, Biosensors, Designs, Electronics, Materials, Micromachines
Wearable Bioelectronics: The Next Generation of Health Insights
Topic Editors: Shuo Gao, Yu Wu, Wenyu WangDeadline: 31 March 2026
Conferences
Special Issues
Special Issue in
Biosensors
Advanced Optical Methods for Biosensing
Guest Editors: Pinkie Jacob Eravuchira, Chih-Tsung Yang, Nathan LindquistDeadline: 20 January 2025
Special Issue in
Biosensors
MEMS Based Biosensors and Its Applications
Guest Editors: Yaxiaer Yalikun, Yang Yang, Kaoru Uesugi, Ming LiDeadline: 20 January 2025
Special Issue in
Biosensors
Surface-Enhanced Raman Scattering Biosensors—2nd Edition
Guest Editor: Nicoleta Elena DinaDeadline: 30 January 2025
Special Issue in
Biosensors
Microelectronics and MEMS-Based Biosensors for Healthcare Application
Guest Editors: Chengjun Huang, Zhen ZhuDeadline: 31 January 2025
Topical Collections
Topical Collection in
Biosensors
Novel Sensing System for Biomedical Applications
Collection Editors: Chia-Ching Chang, Chiun-Jye Yuan, Chih-Chia Huang
Topical Collection in
Biosensors
Microsystems for Cell Cultures
Collection Editors: Iordania Constantinou, Thomas E. Winkler