BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Instruments
2.3. Synthesis of MnO2 NSs and Au NCs
2.4. Preparation of Au NCs-MnO2 NSs Probe
2.5. Detection of ALP
2.6. Detection of ALP in Serum Sample
3. Results and Discussion
3.1. Characterization of the Au NCs-MnO2 NSs
3.2. Feasibility Analysis of Au NCs-MnO2 NSs for ALP Detection
3.3. Optimization of Experimental Conditions
3.4. Analytical Performance for Detection of ALP
3.5. Selectivity Performance of Au NCs-MnO2 NSs
3.6. Determination ALP in Human Serum
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yari, A.; Penhani, S. A new highly sensitive optical sensor based on Congo-Red for the determination of thorium (IV) in aqueous solution. J. Anal. Test. 2023, 7, 416–424. [Google Scholar] [CrossRef]
- Lin, C.X.; Song, X.H.; Ye, W.L.; Liu, T.; Rong, M.C.; Niu, L. Recent progress in optical sensors based on MXenes quantum dots and MXenes nanosheets. J. Anal. Test. 2024, 8, 95–113. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, R.; Yan, B. Development and prospects of covalent organic framework-based ratiometric fluorescent sensors. Coord. Chem. Rev. 2025, 523, 216280–216294. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, W.; Hu, R.; Hu, R.; Wei, Z.; Zhang, M. Dual-emission carbonized polymer dots combined with metal ions as a single-component fluorescence sensor array for pattern recognition of glycosaminoglycans. J. Anal. Test. 2023, 7, 285–294. [Google Scholar] [CrossRef]
- Zhu, R.; Du, Z.; Zhu, M.; Liang, H.; Wang, S.; Zhou, Q.; Li, R.; Li, Y.; Zeng, C.; Liu, W.; et al. Molecularly imprinted polymers embedded with double perovskite quantum dots: A ratiometric fluorescence sensor for visible and fluorescent determination of Rhein. Chem. Eng. J. 2023, 468, 143618–143627. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, W.X.; Guan, L.; Chen, H.; Li, D.; Zhang, L.; Huang, S.P. Preparation of a novel green fluorescent carbon quantum dots and application in Fe3+ specific detection in biological system. J. Anal. Test. 2024, 8, 40–51. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Huang, Y.; Li, L.; Liu, H.J.; Ding, Y.P. Carbon dots as “On–Off–On” fluorescence sensors for selective and consecutive detection of 4-nitrophenol and cerium(IV) in water samples. J. Anal. Test. 2024, 8, 201–209. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, H.; Tao, Y.; Wang, K.; Wang, Y.; Deng, C.; Xu, R.; Zhu, N.; Lu, Y.; Zeng, K.; et al. Dual-emission single sensing element-assembled fluorescent sensor arrays for the rapid discrimination of multiple surfactants in environments. Anal. Chem. 2024, 96, 4987–4996. [Google Scholar] [CrossRef]
- Rong, M.; Huang, Y.; Zhuang, X.; Ma, Y.; Xie, H.; Wu, Y.; Niu, L. And logic-gate-based Au@MnO2 sensing platform for tetracyclines with fluorescent and colorimetric dual-signal readouts. Sens. Actuators B Chem. 2023, 393, 134204–134212. [Google Scholar] [CrossRef]
- Chen, S.; Chen, F.; Li, Y.; Wang, Y.; Wang, X.; Ye, C. A fluorescein derivative chemosensor combined with triplet–triplet annihilation upconversion system for ratiometric sensing of cysteine. J. Anal. Test. 2023, 7, 369–376. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, Y.; Guan, D.; Yang, L.; Zhang, W.; Zhang, Y.; Liu, Q. Investigation of upconversion luminescence attenuation in aqueous solutions under 980 nm and 808 nm irradiation. J. Anal. Test. 2023, 7, 377–383. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Xu, S.; Liu, A.; Da, L.; Lin, D.; Jiang, C. Photoinduced electron transfer-triggered g-C3N4\rhodamine b sensing system for the ratiometric fluorescence quantitation of carbendazim. Anal. Chem. 2023, 95, 4536–4542. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Kou, Q.; Sun, Q.; Tang, J.; Yang, L.; Chen, X.; Xu, W.; Le, T. A novel aptasensor based on Fe3O4/Au/g-C3N4 for sensitive detection of sulfameter in food matrices. Sens. Actuators B Chem. 2022, 353, 131148–131155. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukherjee, S. Effects of protecting groups on luminescent metal nanoclusters: Spectroscopic signatures and applications. Chem. Commun. 2021, 58, 29–47. [Google Scholar] [CrossRef]
- Ni, S.; Liu, Y.; Tong, S.; Li, S.; Song, X. Emerging NIR-II luminescent gold nanoclusters for in vivo bioimaging. J. Anal. Test. 2023, 7, 260–271. [Google Scholar] [CrossRef]
- Kim, S.; Lee, E.S.; Cha, B.S.; Park, K.S. High fructose concentration increases the fluorescence stability of DNA-templated copper nanoclusters by several thousand times. Nano Lett. 2022, 22, 6121–6127. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; He, Y.; Han, Y.; Ge, Y.; Song, G.; Zhou, J. Determination of the activity of alkaline phosphatase based on aggregation-induced quenching of the fluorescence of copper nanoclusters. Microchim. Acta 2019, 186, 5. [Google Scholar] [CrossRef] [PubMed]
- Neema, P.M.; Tomy, A.M.; Cyriac, J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2d materials. TrAC Trend Anal. Chem. 2020, 124, 115797–115806. [Google Scholar] [CrossRef]
- Yang, W.C.; Li, S.Y.; Ni, S.; Liu, G. Advances in FRET-based biosensors from donor-acceptor design to applications. Aggregate 2024, 5, e460–e481. [Google Scholar] [CrossRef]
- Sivakumar, G.; Gupta, A.; Babu, A.; Sasmal, P.K.; Maji, S. Nitrodopamine modified MnO2 NS-MoS2 QDs hybrid nanocomposite for the extracellular and intracellular detection of glutathione. J. Mater. Chem. B 2024, 12, 4724–4735. [Google Scholar] [CrossRef]
- Xie, M.; Gao, R.; Li, K.; Kuang, S.; Wang, X.; Wen, X.; Lin, X.; Wan, Y.; Han, C. O2-generating fluorescent carbon dot-decorated MnO2 nanosheets for “off/on” MR/fluorescence imaging and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2023, 15, 56717–56732. [Google Scholar] [CrossRef]
- Xue, H.; Yu, M.; He, K.; Liu, Y.; Cao, Y.; Shui, Y.; Li, J.; Farooq, M.; Wang, L. A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-Rhodamine b system. Anal. Chim. Acta 2020, 1127, 39–48. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Liang, J.; Zheng, D.; Li, J.; Lan, S.; Wu, M.; Zheng, A.; Liu, X. Protein-assisted formation of gold clusters-MnO2 nanocomposite for fluorescence imaging of intracellular glutathione. Talanta 2020, 209, 120524–120530. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, X.; Wang, X.; Li, X.; Yang, C.; Iqbal, A.; Liu, W.; Li, J.; Qin, W. Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Microchim. Acta 2017, 184, 177–185. [Google Scholar] [CrossRef]
- Cao, Y.; Song, Y.; Wei, T.; Feng, T.; Li, M.; Xue, C.; Xu, J. MnO2 in-situ coated upconversion nanosystem for turn-on fluorescence detection of hypoxanthine in aquatic products. Food Chem. 2024, 431, 137131–137140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Zhang, Z.; Liu, Y.; Chen, J.; Liu, J.; Du, P.; Guo, H.; Lu, X. MnO2 nanospheres assisted by cysteine combined with MnO2 nanosheets as a fluorescence resonance energy transfer system for “switch-on” detection of glutathione. Anal. Chem. 2021, 93, 9621–9627. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Liu, X.; Ye, X.; Zhang, W.; Li, L.; Ma, P.; Song, D. Branched poly(ethylenimine) carbon dots-MnO2 nanosheets based fluorescent sensory system for sensing of malachite green in fish samples. Food Chem. 2022, 394, 133517–133524. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Z.; Kang, G.; Liu, Z.; Zhu, S.; He, R.; Zhang, C.; Chen, C.; Lu, Y. Ratiometric sensing of α-glucosidase and its inhibitor based on MnO2 nanosheets promoted in-situ fluorescent reactions. Microchem. J. 2023, 186, 108352–108360. [Google Scholar] [CrossRef]
- Sheng, J.; Jiang, X.; Wang, L.; Yang, M.; Liu, Y.N. Biomimetic mineralization guided one-pot preparation of gold clusters anchored two-dimensional MnO2 nanosheets for fluorometric/magnetic bimodal sensing. Anal. Chem. 2018, 90, 2926–2932. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.M.; Jin, Z.; Lv, Y.; Yang, C.; Zhang, X.B.; Tan, W.; Yu, R.Q. Activatable two-photon fluorescence nanoprobe for bioimaging of glutathione in living cells and tissues. Anal. Chem. 2014, 86, 12321–12326. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.L.; Yin, B.C.; Wu, X.; Ye, B.C. Copper-mediated DNA-scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Anal. Chem. 2016, 88, 9219–9225. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, L.; Wang, Y.; Li, W.; Zhang, J.; Gu, J.; Fu, Y. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosens. Bioelectron. 2016, 77, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate. Anal. Chem. 2015, 87, 2966–2973. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yu, P.; Wang, Y.; Mao, L. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal. Chem. 2015, 87, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, Z.; Chen, X.; Liu, J.; Tang, F. Sensitive optical detection of alkaline phosphatase activity with quantum dots. J. Lumines. 2014, 145, 330–334. [Google Scholar] [CrossRef]
- Shi, W.; Li, T.; Chu, N.; Liu, X.; He, M.; Bui, B.; Chen, M.; Chen, W. Nano-octahedral bimetallic Fe/Eu-MOF preparation and dual model sensing of serum alkaline phosphatase (ALP) based on its peroxidase-like property and fluorescence. Mater. Sci. Eng. C 2021, 129, 112404. [Google Scholar] [CrossRef]
- Hu, S.; Liu, J.; Wang, Y.; Liang, Z.; Hu, B.; Xie, J.; Wong, W.; Wong, K.; Qiu, B.; Peng, W. A new fluorescent biosensor based on inner filter effect and competitive coordination with the europium ion of non-luminescent eu-mof nanosheets for the determination of alkaline phosphatase activity in human serum. Sens. Actuators B Chem. 2023, 380, 133379. [Google Scholar] [CrossRef]
Sample | Spiked (U/mL) | Found (U/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0.5 | 0.47 | 93.70 | 1.06 |
2 | 1 | 1.05 | 105.26 | 2.93 |
3 | 5 | 5.05 | 101.43 | 4.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Bao, C.; Liu, H.; Ma, F.; Yang, M.; Li, X. BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase. Biosensors 2025, 15, 49. https://doi.org/10.3390/bios15010049
Xue Y, Bao C, Liu H, Ma F, Yang M, Li X. BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase. Biosensors. 2025; 15(1):49. https://doi.org/10.3390/bios15010049
Chicago/Turabian StyleXue, Yijiong, Chengqi Bao, Hui Liu, Fanghui Ma, Minghui Yang, and Xiaoqing Li. 2025. "BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase" Biosensors 15, no. 1: 49. https://doi.org/10.3390/bios15010049
APA StyleXue, Y., Bao, C., Liu, H., Ma, F., Yang, M., & Li, X. (2025). BSA-Assisted Synthesis of Au Nanoclusters/MnO2 Nanosheets for Fluorescence “Switch-On” Detection of Alkaline Phosphatase. Biosensors, 15(1), 49. https://doi.org/10.3390/bios15010049