MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruited Patients
- T1: the day of the surgical treatment, but before the surgery;
- T2: the day of the patient hospital discharge (with a temporal distance from T1 depending upon the patient clinical course, but no longer than two weeks);
- T3: at least one month after T1 (asking the same patient a return to the hospital);
- T4: 10–12 months after T1 (second return to the hospital);
- T5: about three years after T1 (third return to the hospital).
2.2. The Device and the Sensors
- ST25 + 1% Au (or ST25): a mixture of tin and titanium oxides with the addition of 1% of gold nanoparticles (n-type);
- SmFeO3: samarium and iron oxides (p-type);
- STN: tin, titanium, and niobium oxides (n-type);
- TiTaV: titanium, tantalum, and vanadium oxides (n-type).
2.3. Sample Handling
2.4. Data Analysis
3. Results and Discussion
3.1. Ensemble Statistical Analysis
3.2. Three-Years Follow Up: Gender Analysis
3.3. Global Gender Statistical Analysis
4. Conclusions
- enlarge the patient number in order to make the results more robust and reliable;
- further improve the SCENT B2 device to make it stand alone (currently in development);
- sensor technology improvements in order to better detect the CRC stages and to extend the use of this device for other tumor types;
- test the device in the case of gastrointestinal conditions such as Crohn’s disease, irritable bowel syndrome, and ulcerative colitis. Indeed, besides detecting the VOCs produced by the cancer cells, the sensors could detect also the VOCs produced by the local bowel inflammation triggered by the cancer itself. Therefore, in the case of non-cancerous inflammation, the bowel cells (and the ones that may be recruited in the inflamed region) could dump in the blood stream some VOCs that could be detected by the chemoresistive sensors as well, possibly giving a false positive.
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Cancer Facts & Figures 2022. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 10 January 2025).
- I Numeri del Cancro in Italia 2024. Available online: https://www.aiom.it/i-numeri-del-cancro-in-italia/ (accessed on 28 November 2024).
- Linee Guida Tumori del Colon. Available online: https://www.aiom.it/linee-guida-aiom-2024-tumori-del-colon/ (accessed on 28 November 2024).
- Waddingham, W.; Kamran, U.; Kumar, B.; Trudgill, N.J.; Tsiamoulos, Z.P.; Banks, M. Complications of Colonoscopy: Common and Rare—Recognition, Assessment and Management. BMJ Open Gastroenterol. 2023, 10, e001193. [Google Scholar] [CrossRef]
- I Numeri del Cancro in Italia 2023. Available online: https://www.aiom.it/wp-content/uploads/2023/12/2023_AIOM_NDC-web.pdf (accessed on 23 January 2023).
- Cancer Figures in Italy. Available online: https://www.aiom.it/en/cancer-figures-in-italy/ (accessed on 23 January 2023).
- Caso, R.; Fabrizio, A.; Sosin, M. Prolonged Follow-up of Colorectal Cancer Patients After 5 Years: To Follow or Not to Follow, That Is the Question (and How)! Ann. Transl. Med. 2020, 8, 164. [Google Scholar] [CrossRef]
- Godhi, S.; Godhi, A.; Bhat, R.; Saluja, S. Colorectal Cancer: Postoperative Follow-up and Surveillance. Indian J. Surg. 2017, 79, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Makhoul, R.; Alva, S.; Wilkins, K.B. Surveillance and Survivorship after Treatment for Colon Cancer. Clin. Colon Rectal Surg. 2015, 28, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Carethers, J.M. Fecal DNA Testing for Colorectal Cancer Screening. Annu. Rev. Med. 2020, 71, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.F.; Porter, K.; Zella, J.; Gagrat, Z.D.; Olson, M.C.; Statz, S.; Garces, J.; Lavin, P.T.; Aguilar, H.; Brinberg, D.; et al. Next-Generation Multitarget Stool DNA Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 984–993. [Google Scholar] [CrossRef]
- Hauptman, N.; Glavač, D. Colorectal Cancer Blood-Based Biomarkers. Gastroenterol. Res. Pract. 2017, 2017, 2195361. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Lian, A.; Sun, B.; Wang, X.; Guo, L.; Chi, C.; Liu, S.; Zhao, W.; Luo, S.; et al. Blood Volatile Compounds as Biomarkers for Colorectal Cancer. Cancer Biol. Ther. 2014, 15, 200–206. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, A.; Siddiqui, M.H. Detection of Circulating Tumour Cells in Colorectal Cancer: Emerging Techniques and Clinical Implications. World J. Clin. Oncol. 2021, 12, 1169–1181. [Google Scholar] [CrossRef]
- Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A. Effect of Lipid Peroxidation on Membrane Permeability of Cancer and Normal Cells Subjected to Oxidative Stress. Chem. Sci. 2016, 7, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Szachowicz-Petelska, B.; Dobrzyska, I.; Sulkowski, S.; Figaszewski, Z.A.; Ettarh, R. Characterization of the Cell Membrane During Cancer Transformation. In Colorectal Cancer Biology—From Genes to Tumor; Ettarh, R., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0062-1. [Google Scholar]
- Yu, L.; Chen, X.; Sun, X.; Wang, L.; Chen, S. The Glycolytic Switch in Tumors: How Many Players Are Involved? J. Cancer 2017, 8, 3430–3440. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, D.; Huang, M.; Ji, J.; Xu, X.; Wang, F.; Zhou, L.; Bao, B.; Jiang, F.; Xu, W.; et al. Glycolysis in the Tumor Microenvironment: A Driver of Cancer Progression and a Promising Therapeutic Target. Front. Cell Dev. Biol. 2024, 12, 1416472. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Duan, Z.; Li, Z.; Ge, F.; Wei, R.; Kong, L. The Significance of Glycolysis in Tumor Progression and Its Relationship with the Tumor Microenvironment. Front. Pharmacol. 2022, 13, 1091779. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Artioli, E.; Nevoso, V.; Zonta, G.; Malagù, C. Tin, Titanium, Tantalum, Vanadium and Niobium Oxide Based Sensors to Detect Colorectal Cancer Exhalations in Blood Samples. Molecules 2021, 26, 466. [Google Scholar] [CrossRef]
- Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. [Google Scholar] [CrossRef]
- Amann, A.; Mochalski, P.; Ruzsanyi, V.; Broza, Y.Y.; Haick, H. Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on Their Physicochemical Properties. J. Breath Res. 2014, 8, e016003. [Google Scholar] [CrossRef]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled Volatile Organic Compounds Identify Patients with Colorectal Cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile Organic Compounds as New Biomarkers for Colorectal Cancer: A Review. Color. Dis. 2016, 18, 654–663. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Benedusi, M.; Zonta, G.; Landini, N.; Valacchi, G.; Malagù, C. Chemoresistive Sensors for Cellular Type Discrimination Based on Their Exhalations. Nanomaterials 2022, 12, 1111. [Google Scholar] [CrossRef]
- Lubes, G.; Goodarzi, M. GC-MS Based Metabolomics Used for the Identification of Cancer Volatile Organic Compounds as Biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Chin, S.-T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.; Darzi, A.; Hanna, G.B. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-Tube Mass Spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Probert, C.S.J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases. J. Gastrointest. Liver Dis. 2009, 18, 337–343. [Google Scholar]
- Landini, N.; Anania, G.; Astolfi, M.; Fabbri, B.; Guidi, V.; Rispoli, G.; Valt, M.; Zonta, G.; Malagù, C. Nanostructured Chemoresistive Sensors for Oncological Screening and Tumor Markers Tracking: Single Sensor Approach Applications on Human Blood and Cell Samples. Sensors 2020, 20, 1411. [Google Scholar] [CrossRef] [PubMed]
- Monedeiro, F.; Dos Reis, R.B.; Peria, F.M.; Sares, C.T.G.; De Martinis, B.S. Investigation of Sweat VOC Profiles in Assessment of Cancer Biomarkers Using HS-GC-MS. J. Breath Res. 2020, 14, 026009. [Google Scholar] [CrossRef]
- Filipiak, W.; Sponring, A.; Filipiak, A.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. TD-GC-MS Analysis of Volatile Metabolites of Human Lung Cancer and Normal Cells In Vitro. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 182–195. [Google Scholar] [CrossRef]
- Mangler, M.; Freitag, C.; Lanowska, M.; Staeck, O.; Schneider, A.; Speiser, D. Volatile Organic Compounds (VOCs) in Exhaled Breath of Patients with Breast Cancer in a Clinical Setting. Ginekol. Pol. 2012, 83, 730–736. [Google Scholar]
- Filipiak, W.; Sponring, A.; Mikoviny, T.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. Release of Volatile Organic Compounds (VOCs) from the Lung Cancer Cell Line CALU-1 In Vitro. Cancer Cell Int. 2008, 8, 17. [Google Scholar] [CrossRef]
- Monteiro, M.; Moreira, N.; Pinto, J.; Pires-Luís, A.S.; Henrique, R.; Jerónimo, C.; Bastos, M.d.L.; Gil, A.M.; Carvalho, M.; Guedes de Pinho, P. GC-MS Metabolomics-Based Approach for the Identification of a Potential VOC-Biomarker Panel in the Urine of Renal Cell Carcinoma Patients. J. Cell. Mol. Med. 2017, 21, 2092–2105. [Google Scholar] [CrossRef]
- Lavra, L.; Catini, A.; Ulivieri, A.; Capuano, R.; Baghernajad Salehi, L.; Sciacchitano, S.; Bartolazzi, A.; Nardis, S.; Paolesse, R.; Martinelli, E.; et al. Investigation of VOCs Associated with Different Characteristics of Breast Cancer Cells. Sci. Rep. 2015, 5, 13246. [Google Scholar] [CrossRef]
- da Costa, B.R.B.; De Martinis, B.S. Analysis of Urinary VOCs Using Mass Spectrometric Methods to Diagnose Cancer: A Review. Clin. Mass Spectrom. 2020, 18, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Priefer, R. Detection Technologies of Volatile Organic Compounds in the Breath for Cancer Diagnoses. Talanta 2023, 265, 124767. [Google Scholar] [CrossRef] [PubMed]
- Zonta, G.; Rispoli, G.; Malagù, C.; Astolfi, M. Overview of Gas Sensors Focusing on Chemoresistive Ones for Cancer Detection. Chemosensors 2023, 11, 519. [Google Scholar] [CrossRef]
- Li, G.; Zhu, X.; Liu, J.; Li, S.; Liu, X. Metal Oxide Semiconductor Gas Sensors for Lung Cancer Diagnosis. Chemosensors 2023, 11, 251. [Google Scholar] [CrossRef]
- Gregis, G.; Sanchez, J.-B.; Bezverkhyy, I.; Guy, W.; Berger, F.; Fierro, V.; Bellat, J.-P.; Celzard, A. Detection and Quantification of Lung Cancer Biomarkers by a Micro-Analytical Device Using a Single Metal Oxide-Based Gas Sensor. Sens. Actuators B Chem. 2018, 255, 391–400. [Google Scholar] [CrossRef]
- Astolfi, M.; Rispoli, G.; Anania, G.; Nevoso, V.; Artioli, E.; Landini, N.; Benedusi, M.; Melloni, E.; Secchiero, P.; Tisato, V.; et al. Colorectal Cancer Study with Nanostructured Sensors: Tumor Marker Screening of Patient Biopsies. Nanomaterials 2020, 10, 606. [Google Scholar] [CrossRef]
- Astolfi, M.; Zonta, G.; Landini, N.; Gherardi, S.; Rispoli, G.; Anania, G.; Benedusi, M.; Guidi, V.; Palmonari, C.; Secchiero, P. Chemoresistive Nanostructured Sensors for Tumor Pre-Screening. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 29. [Google Scholar]
- Astolfi, M.; Rispoli, G.; Anania, G.; Zonta, G.; Malagù, C. Chemoresistive Nanosensors Employed to Detect Blood Tumor Markers in Patients Affected by Colorectal Cancer in a One-Year Follow Up. Cancers 2023, 15, 1797. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Abancens, M.; Bustos, V.; Harvey, H.; McBryan, J.; Harvey, B.J. Sexual Dimorphism in Colon Cancer. Front. Oncol. 2020, 10, 607909. [Google Scholar] [CrossRef]
- Fainstein Day, P.; Glerean, M.; Lovazzano, S.; Pietrani, M.; Christiansen, S.; Balzaretti, M.; Kozak, A.; Carrizo, A. Gender Differences in Macroprolactinomas: Study of Clinical Features, Outcome of Patients and Ki-67 Expression in Tumor Tissue. In Pituitary Today II: New Molecular, Physiological and Clinical Aspects; Karger Publishers: Basel, Switzerland, 2010. [Google Scholar] [CrossRef]
- Gasinska, A.; Adamczyk, A.; Niemiec, J.; Biesaga, B.; Darasz, Z.; Skolyszewski, J. Gender-Related Differences in Pathological and Clinical Tumor Response Based on Immunohistochemical Proteins Expression in Rectal Cancer Patients Treated with Short Course of Preoperative Radiotherapy. J. Gastrointest. Surg. 2014, 18, 1306–1318. [Google Scholar] [CrossRef]
- Gasinska, A.; Richter, P.; Darasz, Z.; Niemiec, J.; Bucki, K.; Malecki, K.; Sokolowski, A. Gender-Related Differences in Repopulation and Early Tumor Response to Preoperative Radiotherapy in Rectal Cancer Patients. J. Gastrointest. Surg. 2011, 15, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Mainio, A.; Hakko, H.; Niemelä, A.; Koivukangas, J.; Räsänen, P. Gender Difference in Relation to Depression and Quality of Life Among Patients with a Primary Brain Tumor. Eur. Psychiatry 2006, 21, 194–199. [Google Scholar] [CrossRef] [PubMed]
- McCashland, T.M.; Brand, R.; Lyden, E.; de Garmo, P.; Project, C.R. Gender Differences in Colorectal Polyps and Tumors. Off. J. Am. Coll. Gastroenterol. ACG 2001, 96, 882. [Google Scholar] [CrossRef]
- Scoggins, C.R.; Ross, M.I.; Reintgen, D.S.; Noyes, R.D.; Goydos, J.S.; Beitsch, P.D.; Urist, M.M.; Ariyan, S.; Sussman, J.J.; Edwards, M.J.; et al. Gender-Related Differences in Outcome for Melanoma Patients. Ann. Surg. 2006, 243, 693. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, Y.; Zhang, R.; Zheng, C.; You, F.; Wang, M.; Xiao, C.; Li, X. Sex Differences in Colorectal Cancer: With a Focus on Sex Hormone–Gut Microbiome Axis. Cell Commun. Signal. 2024, 22, 167. [Google Scholar] [CrossRef]
- Cai, Y.; Rattray, N.J.W.; Zhang, Q.; Mironova, V.; Santos-Neto, A.; Hsu, K.-S.; Rattray, Z.; Cross, J.R.; Zhang, Y.; Paty, P.B.; et al. Sex Differences in Colon Cancer Metabolism Reveal A Novel Subphenotype. Sci. Rep. 2020, 10, 4905. [Google Scholar] [CrossRef]
- Bârsan, N.; Hübner, M.; Weimar, U. Conduction Mechanisms in SnO2 Based Polycrystalline Thick Film Gas Sensors Exposed to CO and H2 in Different Oxygen Backgrounds. Sens. Actuators B Chem. 2011, 157, 510–517. [Google Scholar] [CrossRef]
- Gherardi, S.; Astolfi, M.; Gaiardo, A.; Malagù, C.; Rispoli, G.; Vincenzi, D.; Zonta, G. Investigating the Temperature-Dependent Kinetics in Humidity-Resilient Tin–Titanium-Based Metal Oxide Gas Sensors. Chemosensors 2024, 12, 151. [Google Scholar] [CrossRef]
- Astolfi, M.; Zonta, G.; Gherardi, S.; Malagù, C.; Vincenzi, D.; Rispoli, G. A Portable Device for I–V and Arrhenius Plots to Characterize Chemoresistive Gas Sensors: Test on SnO2-Based Sensors. Nanomaterials 2023, 13, 2549. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, e5102014. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.M.; Rao, S.; Yang, X.; Dubey, S.; Mays, J.; Cao, H.; Chiao, J.-C. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices. Sensors 2015, 15, 4212–4228. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, M.; Rispoli, G.; Gherardi, S.; Zonta, G.; Malagù, C. Reproducibility and Repeatability Tests on (SnTiNb)O2 Sensors in Detecting Ppm-Concentrations of CO and Up to 40% of Humidity: A Statistical Approach. Sensors 2023, 23, 1983. [Google Scholar] [CrossRef]
- Ramgir, N.; Datta, N.; Kaur, M.; Kailasaganapathi, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Metal Oxide Nanowires for Chemiresistive Gas Sensors: Issues, Challenges and Prospects. Colloids Surf. Physicochem. Eng. Asp. 2013, 439, 101–116. [Google Scholar] [CrossRef]
- Gherardi, S.; Zonta, G.; Astolfi, M.; Malagù, C. Humidity Effects on SnO2 and (SnTiNb)O2 Sensors Response to CO and Two-Dimensional Calibration Treatment. Mater. Sci. Eng. B 2021, 265, 115013. [Google Scholar] [CrossRef]
- Bârsan, N.; Weimar, U. Understanding the Fundamental Principles of Metal Oxide Based Gas Sensors; the Example of CO Sensing with SnO2 Sensors in the Presence of Humidity. J. Phys. Condens. Matter 2003, 15, R813. [Google Scholar] [CrossRef]
- Hübner, M.; Simion, C.E.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of Humidity on CO Sensing with P-Type CuO Thick Film Gas Sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- Sohn, J.H.; Atzeni, M.; Zeller, L.; Pioggia, G. Characterisation of Humidity Dependence of a Metal Oxide Semiconductor Sensor Array Using Partial Least Squares. Sens. Actuators B Chem. 2008, 131, 230–235. [Google Scholar] [CrossRef]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.E.; Harris, G.T. Comparing Effect Sizes in Follow-Up Studies: ROC Area, Cohen’s d, and r. Law Hum. Behav. 2005, 29, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-Ing Along: Evaluation and Interpretation of Receiver Operating Characteristic Curves. Surgery 2016, 159, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.; Subtil, A.; Oliveira, M.R.; Bermudez, P.d.Z. ROC Curve Estimation: An Overview. REVSTAT Stat. J. 2014, 12, 1–20. [Google Scholar] [CrossRef]
- Hoo, Z.H.; Candlish, J.; Teare, D. What Is an ROC Curve? Emerg. Med. J. 2017, 34, 357–359. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primer 2022, 2, 100. [Google Scholar] [CrossRef]
- Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning; Suthaharan, S., Ed.; Springer: Boston, MA, USA, 2016; pp. 207–235. ISBN 978-1-4899-7641-3. [Google Scholar]
- Amari, S.; Wu, S. Improving Support Vector Machine Classifiers by Modifying Kernel Functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Sharifi Najafabadi, A.A.; Torkamani Azar, F. Removing Redundancy Data with Preserving the Structure and Visuality in a Database. Signal Image Video Process. 2019, 13, 745–752. [Google Scholar] [CrossRef]
- González-Estrada, E.; Cosmes, W. Shapiro–Wilk Test for Skew Normal Distributions Based on Data Transformations. J. Stat. Comput. Simul. 2019, 89, 3258–3272. [Google Scholar] [CrossRef]
- Hanusz, Z.; Tarasinska, J.; Zielinski, W. Shapiro–Wilk Test with Known Mean. REVSTAT Stat. J. 2016, 14, 89–100. [Google Scholar] [CrossRef]
- González-Estrada, E.; Villaseñor, J.A.; Acosta-Pech, R. Shapiro-Wilk Test for Multivariate Skew-Normality. Comput. Stat. 2022, 37, 1985–2001. [Google Scholar] [CrossRef]
- McKnight, P.E.; Najab, J. Mann-Whitney U Test. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; p. 1. ISBN 978-0-470-47921-6. [Google Scholar]
- Ruxton, G.D. The Unequal Variance t-Test Is an Underused Alternative to Student’s t-Test and the Mann–Whitney U Test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- van Erning, F.N.; Greidanus, N.E.M.; Verhoeven, R.H.A.; Buijsen, J.; de Wilt, H.W.; Wagner, D.; Creemers, G.-J. Gender Differences in Tumor Characteristics, Treatment and Survival of Colorectal Cancer: A Population-Based Study. Cancer Epidemiol. 2023, 86, 102441. [Google Scholar] [CrossRef]
- White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston-Smith, N.; Crawford, C.; Seims, A. A Review of Sex-Related Differences in Colorectal Cancer Incidence, Screening Uptake, Routes to Diagnosis, Cancer Stage and Survival in the UK. BMC Cancer 2018, 18, 906. [Google Scholar] [CrossRef]
Italian Region | Population × 106 | Incidence | Death | Inc. % | Death % |
---|---|---|---|---|---|
Lombardy | 10 | 65,000 | 19,000 | 0.65 | 0.19 |
Latium | 5.7 | 34,000 | 10,000 | 0.60 | 0.18 |
Campania | 5.7 | 31,000 | 9000 | 0.54 | 0.16 |
Veneto | 4.9 | 31,000 | 8500 | 0.63 | 0.17 |
Emilia Romagna | 4.4 | 30,000 | 8000 | 0.68 | 0.18 |
Piedmont | 4.3 | 29,000 | 7500 | 0.67 | 0.17 |
Sicily | 5 | 27,000 | 8000 | 0.54 | 0.16 |
Tuscany | 3.7 | 27,000 | 7000 | 0.73 | 0.19 |
Apulia | 4 | 23,000 | 6500 | 0.58 | 0.16 |
Calabria | 1.9 | 10,000 | 3500 | 0.53 | 0.18 |
Liguria | 1.5 | 9000 | 3000 | 0.60 | 0.20 |
Friuli | 1.2 | 8000 | 2500 | 0.67 | 0.21 |
Sardinia | 1.6 | 8000 | 2500 | 0.50 | 0.16 |
Marches | 1.5 | 7000 | 2500 | 0.47 | 0.17 |
Abruzzo | 1.3 | 6000 | 2000 | 0.46 | 0.15 |
Trentino | 1.1 | 5000 | 1500 | 0.45 | 0.14 |
Umbria | 0.88 | 4000 | 1500 | 0.45 | 0.17 |
Basilicata | 0.54 | 2000 | 1000 | 0.37 | 0.19 |
Molise | 0.3 | 1500 | 600 | 0.50 | 0.20 |
Aosta Valley | 0.125 | 700 | 250 | 0.56 | 0.20 |
Patient Feature | Type | N. Patients | Percentage/Range |
---|---|---|---|
SEX | Male | 21 | 64% |
Female | 12 | 36% | |
AVERAGE AGE | Male/Female | 69 | 47–87 |
BMI | >30 | 9 | 29% |
<30 | 22 | 71% | |
Tumor Localization | Ascending Colon | 20 | 61% |
Transverse Colon | 4 | 12% | |
Descending Colon | 3 | 9% | |
Sigma | 3 | 9% | |
Rectum | 3 | 9% | |
Tumor Stage | I | 3 | 10% |
II | 14 | 45% | |
III | 13 | 42% | |
IV | 1 | 3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astolfi, M.; Zonta, G.; Malagù, C.; Anania, G.; Rispoli, G. MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation. Biosensors 2025, 15, 56. https://doi.org/10.3390/bios15010056
Astolfi M, Zonta G, Malagù C, Anania G, Rispoli G. MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation. Biosensors. 2025; 15(1):56. https://doi.org/10.3390/bios15010056
Chicago/Turabian StyleAstolfi, Michele, Giulia Zonta, Cesare Malagù, Gabriele Anania, and Giorgio Rispoli. 2025. "MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation" Biosensors 15, no. 1: 56. https://doi.org/10.3390/bios15010056
APA StyleAstolfi, M., Zonta, G., Malagù, C., Anania, G., & Rispoli, G. (2025). MOX Nanosensors to Detect Colorectal Cancer Relapses from Patient’s Blood at Three Years Follow-Up, and Gender Correlation. Biosensors, 15(1), 56. https://doi.org/10.3390/bios15010056