Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Development
2.2. Molecular Docking
2.3. Experimental Procedures
2.4. Screen-Printed Electrode Modification
2.5. Sample Preparation
2.6. Data Analysis
3. Results
3.1. Molecular Docking Interactions
3.2. Modification of Screen-Printed Electrodes
3.3. Biosensor Performance
3.4. Discrimination Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Coronavirus (COVID-19) Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 12 October 2024).
- Karlinsky, A.; Kobak, D. Tracking excess mortality across countries during the COVID-19 pandemic with the World Mortality Dataset. Elife 2021, 10, e69336. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or Post-COVID-19 Syndrome: Putative Pathophysiology, Risk Factors, and Treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, D.C.; Paranhos, L.R.; Blumenberg, C.; Garcia-Júnior, M.A.; Guevara-Vega, M.; Taveira, E.B.; Nunes, M.A.C.; Cunha, T.M.; Jardim, A.C.G.; Flores-Mir, C.; et al. Salivary SARS-CoV-2 RNA for Diagnosis of COVID-19 Patients: A Systematic Review and Meta-Analysis of Diagnostic Accuracy. Jpn. Dent. Sci. Rev. 2023, 59, 219–238. [Google Scholar] [CrossRef]
- Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection Technologies and Recent Developments in the Diagnosis of COVID-19 Infection. Appl. Microbiol. Biotechnol. 2021, 105, 441–455. [Google Scholar] [CrossRef]
- Dhamad, A.E.; Abdal Rhida, M.A. COVID-19: Molecular and Serological Detection Methods. PeerJ 2020, 8, e10180. [Google Scholar] [CrossRef]
- Castellanos, M.; Somoza, Á. Emerging Clinically Tested Detection Methods for COVID-19. FEBS J. 2023, 290, 3089–3104. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Shetti, N.P.; Jagannath, S.; Aminabhavi, T.M. Electrochemical Sensors for the Detection of SARS-CoV-2 Virus. Chem. Eng. J. 2022, 430, 132966. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yánez-Sedeño, P.; Pingarrón, J.M. Electrochemical Bioaffinity Sensors for Salivary Biomarkers Detection. Trends Anal. Chem. 2017, 86, 14–24. [Google Scholar] [CrossRef]
- Ji, D.; Guo, M.; Wu, Y.; Liu, W.; Luo, S.; Wang, X.; Kang, H.; Chen, Y.; Dai, C.; Kong, D.; et al. Electrochemical Detection of a Few Copies of Unamplified SARS-CoV-2 Nucleic Acids by a Self-Actuated Molecular System. J. Am. Chem. Soc. 2022, 144, 13526–13537. [Google Scholar] [CrossRef] [PubMed]
- Avelino, K.Y.P.S.; dos Santos, G.S.; Frías, I.A.M.; Silva-Junior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.L.; Andrade, C.A.S. Nanostructured Sensor Platform Based on Organic Polymer Conjugated to Metallic Nanoparticle for the Impedimetric Detection of SARS-CoV-2 at Various Stages of Viral Infection. J. Pharm. Biomed. Anal. 2021, 206, 114392. [Google Scholar] [CrossRef] [PubMed]
- Chaibun, T.; Puenpa, J.; Ngamdee, T.; Boonapatcharoen, N.; Athamanolap, P.; O’Mullane, A.P.; Vongpunsawad, S.; Poovorawan, Y.; Lee, S.Y.; Lertanantawong, B. Rapid Electrochemical Detection of Coronavirus SARS-CoV-2. Nat. Commun. 2021, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Zayed, B.A.; Ali, A.N.; Elgebaly, A.A.; Talaia, N.M.; Hamed, M.; Mansour, F.R. Smartphone-Based Point-of-Care Testing of the SARS-CoV-2: A Systematic Review. Sci. Afr. 2023, 21, e01757. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Zawilska, J.B.; Lagodzinski, A.; Berezinska, M. COVID-19: From the Structure and Replication Cycle of SARS-CoV-2 to Its Disease Symptoms and Treatment. J. Physiol. Pharmacol. 2021, 72, 1–23. [Google Scholar]
- Badhe, Y.; Gupta, R.; Rai, B. In Silico Design of Peptides with Binding to the Receptor Binding Domain (RBD) of the SARS-CoV-2 and Their Utility in Bio-Sensor Development for SARS-CoV-2 Detection. RSC Adv. 2021, 11, 3816–3826. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Adeli, K.; Plebani, M. Commercial Immunoassays for Detection of Anti-SARS-CoV-2 Spike and RBD Antibodies: Urgent Call for Validation against New and Highly Mutated Variants. Clin. Chem. Lab. Med. 2022, 60, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Widodo, S.; Tumarta Arif, Y.W. Early Detect of COVID-19 from Clinical Symptoms Based on Artificial Intelligence. Int. J. Adv. Eng. Manag. Res. 2024, 09, 86–98. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, Q.; Xiong, N.N.; Jiang, S.; Chen, L. Surrogate-Assisted Evolutionary Algorithm for Expensive Constrained Multi-Objective Discrete Optimization Problems. Complex Intell. Syst. 2022, 8, 2699–2718. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine Intelligence in Peptide Therapeutics: A Next-generation Tool for Rapid Disease Screening. Med. Res. Rev. 2020, 40, 1276–1314. [Google Scholar] [CrossRef]
- Lee, E.Y.; Wong, G.C.L.; Ferguson, A.L. Machine Learning-Enabled Discovery and Design of Membrane-Active Peptides. Bioorg. Med. Chem. 2018, 26, 2708–2718. [Google Scholar] [CrossRef]
- Dhingra, N.; Bhardwaj, R.; Bhardwaj, U.; Kapoor, K. Design of HACE2-Based Small Peptide Inhibitors against Spike Protein of SARS-CoV-2: A Computational Approach. Struct. Chem. 2023, 34, 1843–1856. [Google Scholar] [CrossRef] [PubMed]
- Kaygisiz, K.; Dutta, A.; Rauch-Wirth, L.; Synatschke, C.V.; Münch, J.; Bereau, T.; Weil, T. Inverse Design of Viral Infectivity-Enhancing Peptide Fibrils from Continuous Protein-Vector Embeddings. Biomater. Sci. 2023, 11, 5251–5261. [Google Scholar] [CrossRef]
- Xu, Y.; Rahman, N.A.B.D.; Othman, R.; Hu, P.; Huang, M. Computational Identification of Self-inhibitory Peptides from Envelope Proteins. Proteins Struct. Funct. Bioinform. 2012, 80, 2154–2168. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.A.; Palmeira, L.S.; Garcia-Júnior, M.A.; Martins, L.G.A.; Jin, Y.; Andrade, B.S.; Sabino-Silva, R.; Carneiro, M.G. A Surrogate-Assisted Genetic Algorithm Framework to Discover Peptides Against COVID-19 Virus. In Proceedings of the 2024 IEEE Congress on Evolutionary Computation, Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Caseiro, A.; Ferreira, R.; Padrão, A.; Quintaneiro, C.; Pereira, A.; Marinheiro, R.; Vitorino, R.; Amado, F. Salivary Proteome and Peptidome Profiling in Type 1 Diabetes Mellitus Using a Quantitative Approach. J. Proteome Res. 2013, 12, 1700–1709. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Jin, B.; Li, H.; Huang, S.-Y. HPEPDOCK: A Web Server for Blind Peptide–Protein Docking Based on a Hierarchical Algorithm. Nucleic Acids Res. 2018, 46, W443–W450. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger, L.L.C. The PyMOL Molecular Graphics System. Version 2015, 1, 8. [Google Scholar]
- Sayyar, M.; Ummul, B.Z.; Aneela, A.; Luqman, A.S.; Akhtar, M. Understanding the Basics of Electron Transfer and Cyclic Voltammetry of Potassium Ferricyanide—An Outer Sphere Heterogeneous Electrode Reaction. J. Chem. Soc. Pak. 2020, 42, 813. [Google Scholar] [CrossRef]
- Rooney, M.B.; Coomber, D.C.; Bond, A.M. Achievement of Near-Reversible Behavior for the [Fe(CN) 6] 3-/4- Redox Couple Using Cyclic Voltammetry at Glassy Carbon, Gold, and Platinum Macrodisk Electrodes in the Absence of Added Supporting Electrolyte. Anal. Chem. 2000, 72, 3486–3491. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, S.; Jv, B.; Zheng, W. Interaction of Rhodamine 6G Molecules with Graphene: A Combined Computational–Experimental Study. Phys. Chem. Chem. Phys. 2016, 18, 28418–28427. [Google Scholar] [CrossRef]
- Melo, F.C.C.; Alves, R.P.; Valle, A.L.; Santos, F.d.A.A.; Dias, A.C.S.; Goulart, I.M.B.; Oliveira, E.G.A.; Oliveira, G.S.; Rodrigues, L.P.; Goulart, L.R. 4-Dimethylaminoantipyrine as a Broad Electrochemical Indicator for Immunosensors Platform. Sensors 2022, 22, 3681. [Google Scholar] [CrossRef]
- Grosche, V.R.; Souza, L.P.F.; Ferreira, G.M.; Guevara-Vega, M.; Carvalho, T.; Silva, R.R.d.S.; Batista, K.L.R.; Abuna, R.P.F.; Silva, J.S.; Calmon, M.d.F.; et al. Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses 2023, 15, 1886. [Google Scholar] [CrossRef]
- Honório-Silva, G.; Guevara-Vega, M.; Silva, N.B.S.; Garcia-Júnior, M.A.; Alves, D.C.T.; Goulart, L.R.; Martins, M.M.; Oliveira, A.L.; Vitorino, R.M.P.; Cunha, T.M.; et al. Development of a Novel Sustainable, Portable, Fast, and Non-Invasive Platform Based on ATR-FTIR Technology Coupled with Machine Learning Algorithms for Helicobacter Pylori Detection in Human Saliva. Talanta Open. 2024, 10, 100383. [Google Scholar] [CrossRef]
- Guevara-Vega, M.; Rosa, R.B.; Caixeta, D.C.; Costa, M.A.; de Souza, R.C.; Ferreira, G.M.; Mundim Filho, A.C.; Carneiro, M.G.; Jardim, A.C.G.; Sabino-Silva, R. Salivary Detection of Chikungunya Virus Infection Using a Portable and Sustainable Biophotonic Platform Coupled with Artificial Intelligence Algorithms. Sci. Rep. 2024, 14, 21546. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jung, H.; You, J.; Park, H.; Yu, Y.; Lee, S.; Jang, K.; Na, S. Enhancement of Electrode Performance through Surface Modification Using Carbon Nanotubes and Porous Gold Nanostructures. Nanotechnology 2021, 32, 505502. [Google Scholar] [CrossRef] [PubMed]
- Gerasimov, J.Y.; Lai, R.Y. An Electrochemical Peptide-Based Biosensing Platform for HIV Detection. Chem. Commun. 2010, 46, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Channon, R.B.; Yang, Y.; Feibelman, K.M.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal. Chem. 2018, 90, 7777–7783. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Ujie, M.; Yamamoto, T.; Einaga, Y.; Daidoji, T.; Nakaya, T.; Sato, T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens. 2020, 5, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Cho, C.H.; Shin, J.H.; Hyun, M.S.; Hwang, E.; Park, T.J.; Park, J.P. Biomimetic Isolation of Affinity Peptides for Electrochemical Detection of Influenza Virus Antigen. Sens. Actuators B Chem. 2021, 343, 130161. [Google Scholar] [CrossRef]
- de la Rica, R.; Mendoza, E.; Lechuga, L.M.; Matsui, H. Label-Free Pathogen Detection with Sensor Chips Assembled from Peptide Nanotubes. Angew. Chem. Int. Ed. 2008, 47, 9752–9755. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Oh, B.-K.; Choi, J.-W. Electrochemical Sensor Based on Direct Electron Transfer of HIV-1 Virus at Au Nanoparticle Modified ITO Electrode. Biosens. Bioelectron. 2013, 49, 531–535. [Google Scholar] [CrossRef]
- Tian, Y.; Dong, L. On-The-Spot Sampling and Detection of Viral Particles on Solid Surfaces Using a Sponge Virus Sensor Incorporated with Finger-Press Fluid Release. ACS Sens. 2024, 9, 1978–1991. [Google Scholar] [CrossRef]
- Soto, D.; Orozco, J. Peptide-Based Simple Detection of SARS-CoV-2 with Electrochemical Readout. Anal. Chim. Acta 2022, 1205, 339739. [Google Scholar] [CrossRef]
- Yan, W.; Zheng, Y.; Zeng, X.; He, B.; Cheng, W. Structural Biology of SARS-CoV-2: Open the Door for Novel Therapies. Signal. Transduct. Target. Ther. 2022, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Al-Hail, H.; Mirza, F.; Al Hashemi, A.; Ahmad, M.N.; Iqbal, M.; Tang, P.; Hasan, M.R. Evaluation of Automated Molecular Tests for the Detection of SARS-CoV-2 in Pooled Nasopharyngeal and Saliva Specimens. J. Clin. Lab. Anal. 2021, 35, e23876. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, K.; Ishii, Y.; Aoki, K.; Yagi, S.; Maeda, T.; Miyazaki, T.; Yoshizawa, S.; Aoyagi, K.; Tateda, K. Immunochromatographic Test for the Detection of SARS-CoV-2 in Saliva. J. Infect. Chemother. 2021, 27, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Isles, N.; Chong, B.; Bond, K.; Yoga, Y.; Druce, J.; Catton, M.; Ballard, S.A.; Howden, B.P.; Williamson, D.A. Detection of SARS-CoV-2 in Saliva: Implications for Specimen Transport and Storage. J. Med. Microbiol. 2021, 70, 001285. [Google Scholar] [CrossRef]
- Horejs, C. Artificially Intelligent Nanopore for Rapid SARS-CoV-2 Testing. Nat. Rev. Mater. 2021, 6, 650. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Lin, C.; Abemayor, E.; Wang, M.B.; Wong, D.T.W. The Emerging Landscape of Salivary Diagnostics. Periodontol 2000 2016, 70, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Rusling, J.F. COVID-19 Antibody Tests and Their Limitations. ACS Sens. 2021, 6, 593–612. [Google Scholar] [CrossRef] [PubMed]
- Huan, T.N.; Ha, V.T.T.; Hung, L.Q.; Yoon, M.-Y.; Han, S.-H.; Chung, H. Square Wave Voltammetric Detection of Anthrax Utilizing a Peptide for Selective Recognition of a Protein Biomarker. Biosens. Bioelectron. 2009, 25, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.H.; Hosseini, A.; Karaosmanoglu, H.; Taredun, K.; Jones, L.; Partridge, A. Microfluidic Separation of Cap-ture from Detection and Its Application for Determination of COVID-19 Antibodies. Sens. Actuators B Chem. 2022, 351, 130918. [Google Scholar] [CrossRef]
- Zhao, S.; Qiao, X.; Chen, M.; Li, Y.; Wang, X.; Xu, Z.; Wu, Y.; Luo, X. D-Amino Acid-Based Antifouling Peptides for the Construction of Electrochemical Biosensors Capable of Assaying Proteins in Serum with Enhanced Stability. ACS Sens. 2022, 7, 1740–1746. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.F.; Ferreira, L.F.; Bezerra, Í.R.S.; Barbosa, J.A.; Costa, J.N.Y.; Pimentel, G.J.C.; Lima, R.S. Machine Learning toward High-Performance Electrochemical Sensors. Anal. Bioanal. Chem. 2023, 415, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yan, Y.; Li, T.; Liu, H.; Li, N.; Wang, X. Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. ACS EST Eng. 2022, 2, 92–100. [Google Scholar] [CrossRef]
- Kokabi, M.; Tahir, M.N.; Singh, D.; Javanmard, M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. Biosensors 2023, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Kukar, M.; Grošelj, C. Machine Learning in Stepwise Diagnostic Process. In Artificial Intelligence in Medicine, 1st ed.; Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1620, pp. 315–325, Lecture Notes in Computer Science. [Google Scholar]
- Kukar, M.; Groselj, C.; Kononenko, I.; Fettich, J.J. An Application of Machine Learning in the Diagnosis of Ischaemic Heart Disease. In Proceedings of the Computer Based Medical Systems, Maribor, Slovenia, 11–13 June 1997. [Google Scholar]
- Pavithra, D. A Study On Machine Learning Algorithm In Medical Diagnosis. Int. J. Adv. Res. Comput. Sci. 2018, 9, 42–46. [Google Scholar] [CrossRef]
- Park, D.J.; Park, M.W.; Lee, H.; Kim, Y.-J.; Kim, Y.; Park, Y.H. Development of Machine Learning Model for Diagnostic Disease Prediction Based on Laboratory Tests. Sci. Rep. 2021, 11, 7567. [Google Scholar] [CrossRef] [PubMed]
- Dabbagh, S.R.; Rabbi, F.; Doğan, Z.; Yetisen, A.K.; Tasoglu, S. Machine Learning-Enabled Multiplexed Microfluidic Sensors. Biomicrofluidics 2020, 14, 061506. [Google Scholar] [CrossRef]
- Kyriakides, A.; Kastanos, E.; Hadjigeorgiou, K.; Pitris, C. Raman Spectra Classification with Support Vector Machines and a Correlation Kernel. In Proceedings of the SPIE-OSA Biomedical Optics, Munich, Germany, 22–26 May 2011. [Google Scholar]
- Han, X.; Zhang, D.; Yang, J. Using Support Vector Machine Optimized with ACO for Analysis of Multi-component of Spectral Data. In Recent Developments in Mechatronics and Intelligent Robotics, ICMIR 2018, Advances in Intelligent Systems and Computing; Deng, K., Yu, Z., Patnaik, S., Wang, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 856. [Google Scholar]
- Curulli, A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023, 28, 3777. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Schuh, D.A.; Castle, L.M.; Furst, A.L. Recent Advances in Signal Amplification to Improve Electrochemical Biosensing for Infectious Diseases. Front. Chem. 2022, 10, 911678. [Google Scholar] [CrossRef]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges. Sensors 2017, 17, 2533. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.C.; Santos, A.; Bueno, P.R. An Outlook on Electrochemical Approaches for Molecular Diagnostics Assays and Discussions on the Limitations of Miniaturized Technologies for Point-of-Care Devices. Sens. Actuators Rep. 2022, 4, 100087. [Google Scholar] [CrossRef]
- Kabay, G.; DeCastro, J.; Altay, A.; Smith, K.; Lu, H.; Capossela, A.M.; Moarefian, M.; Aran, K.; Dincer, C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv. Mater. 2022, 34, 2201085. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cui, S.; Su, D. Spectrum Data Feature Analysis Based on Support Vector Machine Method. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Hsueh, K.-L. A Study of Artificial Neural Networks for Electrochemical Data Analysis. ECS Trans. 2010, 25, 47–58. [Google Scholar] [CrossRef]
- Chen, H.; Kätelhön, E.; Le, H.; Compton, R.G. Use of Artificial Intelligence in Electrode Reaction Mechanism Studies: Predicting Voltammograms and Analyzing the Dissociative CE Reaction at a Hemispherical Electrode. Anal. Chem. 2021, 93, 13360–13372. [Google Scholar] [CrossRef] [PubMed]
- Mabbutt, S.; Picton, P.; Shaw, P.; Black, S. Review of Artificial Neural Networks (ANN) Applied to Corrosion Monitoring. J. Phys. Conf. Ser. 2012, 364, 012114. [Google Scholar] [CrossRef]
- Ccopa Rivera, E.; Swerdlow, J.J.; Summerscales, R.L.; Uppala, P.P.T.; Maciel Filho, R.; Neto, M.R.C.; Kwon, H.J. Data-Driven Modeling of Smartphone-Based Electrochemiluminescence Sensor Data Using Artificial Intelligence. Sensors 2020, 20, 625. [Google Scholar] [CrossRef] [PubMed]
- Coppock, M.B.; Sarkes, D.A.; Hurley, M.M.; Stratis-Cullum, D.N. Peptide-based Antibody Alternatives for Biological Sensing in Austere Environments. In Proceedings of the SPIE 10081, Frontiers in Biological Detection: From Nanosensors to Systems IX, San Diego, CA, USA, 23 February 2017. [Google Scholar]
- Dover, J.E.; Hwang, G.M.; Mullen, E.H.; Prorok, B.C.; Suh, S.-J. Recent Advances in Peptide Probe-Based Biosensors for Detection of Infectious Agents. J. Microbiol. Methods 2009, 78, 10–19. [Google Scholar] [CrossRef]
- Aguilera-Puga, M.D.C.; Cancelarich, N.L.; Marani, M.M.; de la Fuente-Nunez, C.; Plisson, F. Accelerating the Discovery and Design of Antimicrobial Peptides with Artificial Intelligence. In Computational Drug Discovery and Design, Advances in Molecular Techniques and Applications; Gore, M., Jagtap, U.B., Eds.; Springer: Cham, Switzerland, 2024; Volume 2714, pp. 329–352. [Google Scholar]
- Teo, D.K.X.; Maul, T.; Tan, M.T.T. Method—An Investigation Into Post-Hoc Analysis Methods for Electrochemical Biosensor Data. J. Electrochem. Soc. 2024, 171, 027525. [Google Scholar] [CrossRef]
- Deshpande, S.; Datar, R.; Pramanick, B.; Bacher, G. Machine Learning-Assisted Analysis of Electrochemical Biosensors. IEEE Sens. Lett. 2023, 7, 6005904. [Google Scholar] [CrossRef]
Mean | Standard Deviation | Repeatability * | Reproducibility * | |
---|---|---|---|---|
Blank Reading | 46.98979 | 3.224133 | 6.861348 | 4.385376 |
R6G Modification | 46.71211 | 4.19041 | 8.970715 | 4.979766 |
BIAI1 Modification | 52.85969 | 3.613036 | 6.835144 | 4.866002 |
LOD | 1.61 × 104 ffu |
LOQ | 4.89 × 104 ffu |
Mean | Standard Deviation | Repeatability * | Reproducibility * | |
---|---|---|---|---|
Controls | 97.10048056 | 8.140980015 | 8.384077987 | 2.209871449 |
Infected saliva | 119.443717 | 8.893037898 | 7.445379397 | 2.201690182 |
Mean | Standard Deviation | Repeatability * | Reproducibility * | |
---|---|---|---|---|
Negative Patientes | 160.5768 | 9.907850286 | 6.170162991 | 12.08960789 |
Positive Patients | 150.31038 | 12.05649675 | 8.021067309 | 15.10250925 |
Data Used | Algorithm | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
Raw Data (Oxidation and Reduction Curves) | SVM | 0.75 | 0.6 | 0.9 |
Random Forest | 0.75 | 0.7 | 0.8 | |
AdaBoost | 0.7 | 0.6 | 0.8 | |
Neural Network | 0.75 | 0.8 | 0.7 | |
Gradient Boosting | 0.7 | 0.7 | 0.7 | |
Naive Bayes | 0.75 | 0.8 | 0.7 | |
Raw Data (Oxidation Curve) | SVM | 0.5 | 0.5 | 0.5 |
AdaBoost | 0.65 | 0.7 | 0.6 | |
Random Forest | 0.5 | 0.5 | 0.5 | |
Neural Network | 0.5 | 0.6 | 0.4 | |
Gradient Boosting | 0.55 | 0.6 | 0.5 | |
Naive Bayes | 0.35 | 0.4 | 0.3 | |
Raw Data (Reduction Curve) | SVM | 0.6 | 0.2 | 1.0 |
AdaBoost | 0.7 | 0.7 | 0.7 | |
Random Forest | 0.75 | 0.7 | 0.8 | |
Neural Network | 0.9 * | 0.9 * | 0.9 * | |
Gradient Boosting | 0.7 | 0.7 | 0.7 | |
Naive Bayes | 0.75 | 0.8 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Junior, M.A.; Andrade, B.S.; Lima, A.P.; Soares, I.P.; Notário, A.F.O.; Bernardino, S.S.; Guevara-Vega, M.F.; Honório-Silva, G.; Munoz, R.A.A.; Jardim, A.C.G.; et al. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors 2025, 15, 75. https://doi.org/10.3390/bios15020075
Garcia-Junior MA, Andrade BS, Lima AP, Soares IP, Notário AFO, Bernardino SS, Guevara-Vega MF, Honório-Silva G, Munoz RAA, Jardim ACG, et al. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors. 2025; 15(2):75. https://doi.org/10.3390/bios15020075
Chicago/Turabian StyleGarcia-Junior, Marcelo Augusto, Bruno Silva Andrade, Ana Paula Lima, Iara Pereira Soares, Ana Flávia Oliveira Notário, Sttephany Silva Bernardino, Marco Fidel Guevara-Vega, Ghabriel Honório-Silva, Rodrigo Alejandro Abarza Munoz, Ana Carolina Gomes Jardim, and et al. 2025. "Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms" Biosensors 15, no. 2: 75. https://doi.org/10.3390/bios15020075
APA StyleGarcia-Junior, M. A., Andrade, B. S., Lima, A. P., Soares, I. P., Notário, A. F. O., Bernardino, S. S., Guevara-Vega, M. F., Honório-Silva, G., Munoz, R. A. A., Jardim, A. C. G., Martins, M. M., Goulart, L. R., Cunha, T. M., Carneiro, M. G., & Sabino-Silva, R. (2025). Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. Biosensors, 15(2), 75. https://doi.org/10.3390/bios15020075