Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things
Abstract
:1. Introduction
2. System Analysis
2.1. Problem Definition
2.2. Proposed System Features
3. System Design and Implementation
3.1. Hardware Design
3.2. Implementation Setup
4. Output Results
4.1. First Case: Normal Operation
4.2. Second Case: Faulty Operation with Four Modules Shaded
4.3. Third Case: Faulty Operation, Three Modules Shaded
4.4. Fourth Case: Faulty Operation, Two Modules Shaded
4.5. Fifth Case: Faulty Operation, One Module Shaded
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Kumar, S.; Singh, B. Performance of MPPT and Effect of Partial Shading on PV Array Fed LEV with Sensorless Control. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 24–26 September 2021; pp. 1–7. [Google Scholar]
- Sivagami, P.; Jamunarani, D.; Abirami, P.; Pushpavalli, M.; Geetha, V.; Harikrishnan, R. Review on IoT Based Remote Monitoring for Solar Photovoltaic System. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021; pp. 1–5. [Google Scholar]
- Balbin, J.R.; Chua, E.E.; de Leon, J.P.C.; Dolor, J.H.R.D.; Sese, R.L.A. Cloud-Based Remote Monitoring System for Photovoltaic Systems with Electrical Load Prioritization. In Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6. [Google Scholar]
- Khan, W.Z.; Rehman, M.H.; Zangoti, H.M.; Afzal, M.K.; Armi, N.; Salah, K. Industrial internet of things: Recent advances, enabling technologies and open challenges. Comput. Electr. Eng. 2020, 81, 106522. [Google Scholar] [CrossRef]
- Farhan, L.; Kharel, R.; Kaiwartya, O.; Quiroz-Castellanos, M.; Raza, U.; Teay, S.H. LQOR: Link quality-oriented route selection on Internet of Things networks for green computing. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks\& Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–6. [Google Scholar]
- Farhan, L.; Hameed, R.S.; Ahmed, A.S.; Fadel, A.H.; Gheth, W.; Alzubaidi, L.; Fadhel, M.A.; Al-Amidie, M. Energy Efficiency for Green Internet of Things (IoT) Networks: A Survey. Network 2021, 1, 279–314. [Google Scholar] [CrossRef]
- Jihua, Y.; Wang, W. Research and design of solar photovoltaic power generation monitoring system based on TinyOS. In Proceedings of the 2014 9th International Conference on Computer Science\& Education, Vancouver, BC, Canada, 22–24 August 2014; pp. 1020–1023. [Google Scholar]
- Tightiz, L.; Yang, H. A comprehensive review on IoT protocols’ features in smart grid communication. Energies 2020, 13, 2762. [Google Scholar] [CrossRef]
- Suriya, S.; Agusthiyar, R.; Vijayalakshmi, N.V.; Devi, J.S. A Novel IoT Based Power Monitoring System. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1055, 12159. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, D.; Souri, A. Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cogn. Syst. Res. 2021, 67, 33–49. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; al Nabulsi, A.; Mukhopadhyay, S.; Awal, M.S.; Fernandes, S.; Ailabouni, K. IoT-solar energy powered smart farm irrigation system. J. Electron. Sci. Technol. 2019, 17, 100017. [Google Scholar] [CrossRef]
- Abbas, A.K.; Obed, A.A.; Abid, A.J. Design of a Smart Energy Management System for Photovoltaic Stand-Alone Building. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 12158. [Google Scholar] [CrossRef]
- Chen, X.; Sun, L.; Zhu, H.; Zhen, Y.; Chen, H. Application of internet of things in power-line monitoring. In Proceedings of the 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Sanya, China, 10–12 October 2012; pp. 423–426. [Google Scholar]
- Kang, B.; Park, S.; Lee, T.; Park, S. IoT-based monitoring system using tri-level context making model for smart home services. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2015; pp. 198–199. [Google Scholar]
- Woyte, A.; Richter, M.; Moser, D.; Mau, S.; Reich, N.; Jahn, U. Monitoring of photovoltaic systems: Good practices and systematic analysis. In Proceedings of the 28th European Photovoltaic Solar Energy Conference, Paris, France, 30 September–4 October 2013; pp. 3686–3694. [Google Scholar]
- Constantin, S.; Moldoveanu, F.; Campeanu, R.; Baciu, I.; Grigorescu, S.M.; Carstea, B.; Voinea, V. GPRS Based System for Atmospheric Pollution Monitoring and Warning. In Proceedings of the 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 25–28 May 2006; Volume 2, pp. 193–198. [Google Scholar]
- Peijiang, C.; Xuehua, J. Design and Implementation of Remote monitoring system based on GSM. In Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; Volume 1, pp. 678–681. [Google Scholar]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Saad, M.H.M.; Hussain, A. Comparison of the IoT Based Modules for Solar PV Environment: A Review. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 401–405. [Google Scholar]
- Ashley, T.; Carrizosa, E.; Fernández-Cara, E. Heliostat field cleaning scheduling for Solar Power Tower plants: A heuristic approach. Appl. Energy 2019, 235, 653–660. [Google Scholar] [CrossRef]
- Deriche, M.; Raad, M.W.; Suliman, W. An IOT based sensing system for remote monitoring of PV panels. In Proceedings of the 2019 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 21–24 March 2019; pp. 393–397. [Google Scholar]
- Sultanow, E.; Chircu, A. A review of IoT technologies, standards, tools, frameworks and platforms. In The Internet of Things in the Industrial Sector; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–34. [Google Scholar]
- Peña, J.A.G. Cost Effective Technology Applied to Domotics and Smart Home Energy Management Systems. 2022. Available online: https://helvia.uco.es/bitstream/handle/10396/22513/tfm_javier_alberto_gutierrez_pe%C3%B1a.pdf (accessed on 14 July 2022).
- Obermaier, D. IoT-Protokolldschungel—EinWegweiser. 2015. Available online: https://www.informatik-aktuell.de/betrieb/netzwerke/iot-protokolldschungel-ein-wegweiser.html (accessed on 14 July 2022).
- Shrihariprasath, B.; Rathinasabapathy, V. Smart IoT System For Monitoring Solar PV Power Conditioning Unit. In Proceedings of the 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Coimbatore, India, 29 February–1 March 2016; pp. 1–5. [Google Scholar]
- Ansari, S.; Ayob, A.; Lipu, M.S.H.; Saad, M.H.M.; Hussain, A. A review of monitoring technologies for solar PV systems using data processing modules and transmission protocols: Progress, challenges and prospects. Sustainability 2021, 13, 8120. [Google Scholar] [CrossRef]
- Antonino, L.; Valentina, L.; Martina, R.; Francesco, R.F. A real-time MCU-based wireless system for remote monitoring of PV devices. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0\&IoT), Rome, Italy, 7–9 June 2021; pp. 659–664. [Google Scholar]
- Hamied, A.; Mellit, A.; Zoulid, M.A.; Birouk, R. IoT-based experimental prototype for monitoring of photovoltaic arrays. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS), Médéa, Algeria, 24–25 November 2018; pp. 1–5. [Google Scholar]
- Li, Y.; Li, S.; Fan, J.; Zhu, X. A Review on MPPT Control Methods of Photovoltaic Systems with DC bus. E3S Web Conf. 2021, 257, 1047. [Google Scholar] [CrossRef]
- Varjovi, A.E.; Babaie, S. Green Internet of Things (GIoT): Vision, applications and research challenges. Sustain. Comput. Inform. Syst. 2020, 28, 100448. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, J.; He, Y.; Zhang, Y. Software defined machine-to-machine communication for smart energy management. IEEE Commun. Mag. 2017, 55, 52–60. [Google Scholar] [CrossRef]
- Afzal, S.; Faisal, A.; Siddique, I.; Afzal, M. Internet of Things (IoT) Security: Issues, Challenges and Solutions. Int. J. Sci. Eng. Res. 2021, 12, 52–61. [Google Scholar]
- Ranhotigamage, C.; Mukhopadhyay, S.C. Field Trail and Performance Monitoring Of Distributed Solar Panels Using Low Cost Wireless Wireless Sensor Networks. IEEE Sens. J. 2010, 11, 2583–2590. [Google Scholar] [CrossRef]
- Moon, S.; Yoon, S.-G.; Park, J.-H. A new low-cost centralized MPPT controller system for multiply distributed photovoltaic power conditioning modules. IEEE Trans. Smart Grid 2015, 6, 2649–2658. [Google Scholar] [CrossRef]
- Tejwani, R.; Kumar, G.; Solanki, C. Remote monitoring for solar photovoltaic systems in rural application using GSM voice channel. Energy Procedia 2014, 57, 1526–1535. [Google Scholar] [CrossRef] [Green Version]
- Harish, A.; Prasad, M.V.D. Microcontroller based photovoltaic mppt charge controller. Int. J. Eng. Trends Technol. 2013, 4, 1018–1021. [Google Scholar]
- Raghul, M.; Jeevitha, S.; Deveswaran, S. Monitoring maximum power point of photovoltaic systems. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 8. [Google Scholar]
- Hamdani, H.; Pulungan, A.B.; Myori, D.E.; Elmubdi, F.; Hasannuddin, T. Real Time Monitoring System on Solar Panel Orientation Control Using Visual Basic. J. Appl. Eng. Technol. Sci. 2021, 2, 112–124. [Google Scholar] [CrossRef]
- Cáceres, M.; Vera, L.H.; Firman, A.D.; Busso, A. Stand alone photovoltaic management system for ICTs devices. In Proceedings of the 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T\&D-LA), Lima, Peru, 18–21 September 2018; pp. 1–5. [Google Scholar]
Component | Description | Function |
---|---|---|
250 W PV modules (5 × 50 W) | 5 PV modules each of 50 W capacity and 12 V monocrystalline solar panel | PV array |
ESP32 Dev board | Main microcontroller size of 49 mm × 24.5 mm × 13 mm Connectivity type: Bluetooth and Wi-Fi | Performs logic functions and calculations |
BQ24650 | MPPT controller 3.50 mm × 3.50 mm 12 V to 24 V automotive systems | Tracks maximum power |
ACS712 40/30 | Current sensor 4.9 mm × 3.9 mm × 1.5 mm 66 to 185 mV/A output sensitivity | Senses PV current |
Voltage divider circuit | Voltage-sensing board Input 18 V, output 3 V | Senses PV voltage |
Lithium battery | Energy storage 6.4 V to 8.2 V | Backup energy storage |
DHT11 | Temperature and humidity sensor Size 28 mm × 12 mm × 72 mm Works from 3.3 to 5 V | Senses ambient temperature and humidity |
BH1750 | Light sensor 18.6 mm × 14.5 mm Works from 3 to 5 V | Senses irradiance incident on PV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubakr, G.; Gu, F.; Farhan, L.; Ball, A. Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things. Electronics 2022, 11, 2469. https://doi.org/10.3390/electronics11152469
Boubakr G, Gu F, Farhan L, Ball A. Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things. Electronics. 2022; 11(15):2469. https://doi.org/10.3390/electronics11152469
Chicago/Turabian StyleBoubakr, Ghedhan, Fengshou Gu, Laith Farhan, and Andrew Ball. 2022. "Enhancing Virtual Real-Time Monitoring of Photovoltaic Power Systems Based on the Internet of Things" Electronics 11, no. 15: 2469. https://doi.org/10.3390/electronics11152469