Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = MPPT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12723 KiB  
Article
A Dynamic Simulation of a Piezoelectric Energy-Harvesting System Integrated with a Closed-Loop Voltage Source Converter for Sustainable Power Generation
by Ahmed K. Ali, Ali Abdulwahhab Abdulrazzaq and Ali H. Mohsin
Processes 2024, 12(10), 2198; https://doi.org/10.3390/pr12102198 - 10 Oct 2024
Abstract
Numerous recent studies address the concept of energy harvesting from natural wind excitation vibration to piezoelectric surfaces, aerodynamic losses, and electromagnetic dampers. All these techniques require a connection to an energy-management circuit. However, the simulation model for energy conversion and management dedicated to [...] Read more.
Numerous recent studies address the concept of energy harvesting from natural wind excitation vibration to piezoelectric surfaces, aerodynamic losses, and electromagnetic dampers. All these techniques require a connection to an energy-management circuit. However, the simulation model for energy conversion and management dedicated to this task has not yet been described. This paper presents a model-based simulation for an energy conversion system using piezoelectric energy-harvester system (PEHS) technology. A controlled pulse width modulation (PWM) rectifier, a closed-loop buck-boost converter, and a piezoelectric transducer comprise a dynamic mathematical model of a PEHS. The control blocks of the closed-loop buck-boost converter use the perturbation and observation (P&O) algorithm based on maximum power point tracking (MPPT), which adapts the operational voltage of the piezoelectric source to deliver the maximum power to load. A simulation program is employed to perform mathematical analysis on various wind vibration scenarios, piezoelectric sources without PWM converters, and piezoelectric vibration sources connected to a closed-loop P&O converter. The crucial results of this paper demonstrated that the proposed dynamic PEHS model effectively fed low-power electronic loads by directly adjusting the output voltage level to the set voltage, even under different vibration severity levels. As a result, the proposed PEHS dynamic model serves as a guideline for researchers in the development of self-powered sensors, which contributes to understanding sustainable energy alternatives. Full article
Show Figures

Figure 1

23 pages, 6135 KiB  
Article
Assessing Stability in Renewable Microgrid Using a Novel-Optimized Controller for PVBattery Based Micro Grid with Opal-RT-Based Real-Time Validation
by Anshuman Satpathy, Rahimi Bin Baharom, Naeem M. S. Hannon, Niranjan Nayak and Snehamoy Dhar
Energies 2024, 17(20), 5024; https://doi.org/10.3390/en17205024 - 10 Oct 2024
Abstract
This paper focuses on the distributed generation (DG) controller of a PV-based microgrid. An independent DG controller (IDGC) is designed for PV applications to improve Maximum-Power Point Tracking (MPPT). The Extreme-Learning Machine (ELM)-based MPPT method exactly estimates the controller’s reference input, such as [...] Read more.
This paper focuses on the distributed generation (DG) controller of a PV-based microgrid. An independent DG controller (IDGC) is designed for PV applications to improve Maximum-Power Point Tracking (MPPT). The Extreme-Learning Machine (ELM)-based MPPT method exactly estimates the controller’s reference input, such as the voltage and current at the MPP. Feedback controls employ linear PI schemes or nonlinear, intricate techniques. Here, the converter controller is an IDGC that is improved by directly measuring the converter duty cycle and PWM index in a single DG PV-based MG. It introduces a fast-learning Extreme-Learning Machine (ELM) using the Moore–Penrose pseudo-inverse technique and online sequential ridge methods for robust control reference (CR) estimation. This approach ensures the stability of the microgrid during PV uncertainties and various operational conditions. The internal DG control approach improves the stability of the microgrid during a three-phase fault at the load bus, partial shading, irradiance changes, islanding operations, and load changes. The model is designed and simulated on the MATLAB/SIMULINK platform, and some of the results are validated on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology)
Show Figures

Graphical abstract

18 pages, 3905 KiB  
Article
Photovoltaic Maximum Power Point Tracking Technology Based on Improved Perturbation Observation Method and Backstepping Algorithm
by Yulin Wang and Liying Sun
Electronics 2024, 13(19), 3960; https://doi.org/10.3390/electronics13193960 - 8 Oct 2024
Abstract
Photovoltaic power generation systems mainly use the maximum power tracking (MPPT) controller to adjust the voltage and current of the solar cells in the photovoltaic array, so that the photovoltaic array runs at the maximum power point (MPP) to achieve the purpose of [...] Read more.
Photovoltaic power generation systems mainly use the maximum power tracking (MPPT) controller to adjust the voltage and current of the solar cells in the photovoltaic array, so that the photovoltaic array runs at the maximum power point (MPP) to achieve the purpose of maximum power output. At present, photovoltaic power stations mainly adopt the traditional method to track the maximum power point, but this fixed step method easily causes output power oscillation of the photovoltaic array when tracking the maximum power point, and it easily falls into the local extreme point under partial shadow conditions. In order to solve these problems, this paper proposes an improved perturbation observation method and backstepping method (IP&O-backstepping) to replace the traditional method applied to the MPPT controller to optimize the operating state of the solar cell, thereby improving the output power point of the photovoltaic array and increasing the output power of the photovoltaic array. The algorithm first uses the improved perturbation and observation (IP&O) method to search the maximum power point of the photovoltaic array and output the reference voltage. Secondly, the reference voltage is input into the backstepping algorithm for voltage tracking. Finally, the algorithm tracks the reference voltage and makes the photovoltaic array operate at the maximum power point. The simulation is carried out by using MATLAB/Simulink. The IP&O-backstepping algorithm is compared with the intelligent algorithm and the traditional method, and the results show that compared to the above algorithm, the IP&O-backstepping algorithm can not only track the maximum power point of the photovoltaic array, but also has a faster tracking speed, and the output power has almost no oscillation when the photovoltaic array runs at the maximum power point. Full article
Show Figures

Figure 1

23 pages, 2337 KiB  
Article
Comparative Evaluation of Traditional and Advanced Algorithms for Photovoltaic Systems in Partial Shading Conditions
by Robert Sørensen and Lucian Mihet-Popa
Solar 2024, 4(4), 572-594; https://doi.org/10.3390/solar4040027 - 8 Oct 2024
Abstract
The optimization of photovoltaic (PV) systems is vital for enhancing efficiency and economic viability, especially under Partial Shading Conditions (PSCs). This study focuses on the development and comparison of traditional and advanced algorithms, including Perturb and Observe (P&O), Incremental Conductance (IC), Fuzzy Logic [...] Read more.
The optimization of photovoltaic (PV) systems is vital for enhancing efficiency and economic viability, especially under Partial Shading Conditions (PSCs). This study focuses on the development and comparison of traditional and advanced algorithms, including Perturb and Observe (P&O), Incremental Conductance (IC), Fuzzy Logic Control (FLC), Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Artificial Neural Networks (ANN), for efficient Maximum Power Point Tracking (MPPT). Simulations conducted in the MATLAB/Simulink software package evaluated these algorithms’ performances under various shading scenarios. The results indicate that, while traditional methods like P&O and IC are effective under uniform conditions, advanced techniques, particularly ANN-based MPPT, exhibit superior efficiency and faster convergence under PSCs. This study concludes that integrating Artificial Intelligence (AI) and Machine Learning (ML) into MPPT algorithms significantly enhances the reliability and efficiency of PV systems, paving the way for a broader adoption of solar energy technologies in diverse environmental conditions. These findings contribute to advancing renewable energy technology and supporting green energy transition. Full article
Show Figures

Figure 1

12 pages, 5252 KiB  
Article
Current-Sensorless Method for Photovoltaic System Using Capacitor Charging Characteristics
by Song-Do Ki, Cheol-Woong Choi, Jae-Sub Ko and Dae-Kyong Kim
Energies 2024, 17(19), 4971; https://doi.org/10.3390/en17194971 - 4 Oct 2024
Abstract
The installed capacity of photovoltaic (PV) systems has increased significantly over the past few decades, and related technologies have advanced significantly. The electrical characteristics of a PV system change nonlinearly based on irradiation and temperature, and the I–V characteristic curve, expressed in terms [...] Read more.
The installed capacity of photovoltaic (PV) systems has increased significantly over the past few decades, and related technologies have advanced significantly. The electrical characteristics of a PV system change nonlinearly based on irradiation and temperature, and the I–V characteristic curve, expressed in terms of the voltage and current, is used to verify these characteristics. The maximum power point tracking (MPPT) control method was applied to maximize the performance of the PV system. Voltage and current sensors are used to control the I–V characteristic curve and MPPT; however, current sensors have various disadvantages in terms of price and system configuration. Therefore, this study presents a method for calculating the current of a PV system using the charging characteristics of a capacitor. The method presented in this paper analyzes the I–V characteristic curve’s qualities through simulations and experiments under normal, shaded, and mismatched conditions of the PV module. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 3165 KiB  
Article
Optimized Nonlinear PID Control for Maximum Power Point Tracking in PV Systems Using Particle Swarm Optimization
by Maeva Cybelle Zoleko Zambou, Alain Soup Tewa Kammogne, Martin Siewe Siewe, Ahmad Taher Azar, Saim Ahmed and Ibrahim A. Hameed
Math. Comput. Appl. 2024, 29(5), 88; https://doi.org/10.3390/mca29050088 - 2 Oct 2024
Abstract
This paper proposes a high-performing, hybrid method for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems. The approach is based on an intelligent Nonlinear Discrete Proportional–Integral–Derivative (N-DPID) controller with the Perturb and Observe (P&O) method. The feedback gains derived are optimized by [...] Read more.
This paper proposes a high-performing, hybrid method for Maximum Power Point Tracking (MPPT) in photovoltaic (PV) systems. The approach is based on an intelligent Nonlinear Discrete Proportional–Integral–Derivative (N-DPID) controller with the Perturb and Observe (P&O) method. The feedback gains derived are optimized by a metaheuristic algorithm called Particle Swarm Optimization (PSO). The proposed methods appear to present adequate solutions to overcome the drawbacks of existing methods despite various weather conditions considered in the analysis, providing a robust solution for dynamic environmental conditions. The results showed better performance and accuracy compared to those encountered in the literature. We also recall that this technique provides a systematic design procedure in the search for the MPPT in photovoltaic (PV) systems that has not yet been documented in the literature to the best of our knowledge. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

13 pages, 1659 KiB  
Article
Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies
by Arun Selvaraj and Ganesh Mayilsamy
Wind 2024, 4(4), 275-287; https://doi.org/10.3390/wind4040014 - 2 Oct 2024
Abstract
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to [...] Read more.
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to capture wind energy by increasing the wind influx through the turbine. In the contemporary wind energy sector, PMSGs are extensively employed due to their superior performance characteristics. This study integrates a 1 kW PMSG system with a wind lens to optimize power extraction from the wind energy conversion system (WECS) under varying wind speeds. A comparative analysis of different control strategies for maximum power point tracking (MPPT) is conducted, including the incremental conductance (INC) method and the perturb and observe (P&O) method. The performance of the MPPT controller integrated with the wind lens-based PMSG system is assessed based on output DC voltage and power delivered to the load. To evaluate the overall effectiveness of these control strategies, both steady-state voltage and dynamic response under diverse wind conditions are examined. The system is modeled and simulated using the MATLAB R2023a/Simulink 9.1 software, and the simulation results are validated to demonstrate the efficacy of the proposed energy management system. Full article
Show Figures

Figure 1

23 pages, 8267 KiB  
Article
Research on Hybrid Approach for Maximum Power Point Tracking of Photovoltaic Systems under Various Operating Conditions
by Tan Liu, Sisi Liu, Hexu Yu, Zhiyi Wu, Jiaqi Tong and Qingyun Yuan
Electronics 2024, 13(19), 3880; https://doi.org/10.3390/electronics13193880 - 30 Sep 2024
Abstract
Based on the characteristics of the whale optimization algorithm (WOA) and perturbation observation (P&O) method, this paper proposes a novel hybrid approach called the improved chaotic whale optimization combined with perturb and observe (ICWOA-P&O) method for maximum power point tracking (MPPT) control to [...] Read more.
Based on the characteristics of the whale optimization algorithm (WOA) and perturbation observation (P&O) method, this paper proposes a novel hybrid approach called the improved chaotic whale optimization combined with perturb and observe (ICWOA-P&O) method for maximum power point tracking (MPPT) control to solve the challenge of low efficiency in photovoltaic (PV) power generation under local shadows. First, the ICWOA is used for a global search to quickly locate the position of the maximum power point (MPP). Then, the P&O method is used for a fine-grained local search to quickly track the position of the global maximum power point (GMPP) with low oscillation. To ensure accuracy, the tracking performance of the ICWOA-P&O method is comprehensively compared with the WOA-P&O, WOA, and PSO models under four conditions: uniform irradiance, static local shading, dynamic shading, and sudden changes in irradiance and temperature. The simulation results verify that under the above four conditions, the ICWOA-P&O method can track the MPP continuously and stably and greatly improves the convergence time and accuracy. Compared with the other three methods, the ICWOA-P&O method can effectively obtain the fastest tracking speed (less than 0.1 s), the highest tracking accuracy (more than 99.97%), the smallest relative error (less than 0.03%), and the smallest oscillation fluctuation. Finally, this study integrated the ICWOA-P&O algorithm into the designed MPPT controller hardware and established a practical PV experimental platform based on the ICWOA-P&O control algorithm for practical tests. Full article
(This article belongs to the Special Issue Energy Technologies in Electronics and Electrical Engineering)
Show Figures

Figure 1

36 pages, 14602 KiB  
Article
Reliability Enhancement of a Double-Switch Single-Ended Primary Inductance–Buck Regulator in a Wind-Driven Permanent Magnet Synchronous Generator Using a Double-Band Hysteresis Current Controller
by Walid Emar, Mais Alzgool and Ibrahim Mansour
Energies 2024, 17(19), 4868; https://doi.org/10.3390/en17194868 - 27 Sep 2024
Abstract
The wind power exchange system (WECS) covered in this paper consists of a voltage source inverter (VSI), a DSSB regulator, and an uncontrolled rectifier. An AC grid or a heavy inductive or resistive load (RL) can be supplied by this system. The DSSB [...] Read more.
The wind power exchange system (WECS) covered in this paper consists of a voltage source inverter (VSI), a DSSB regulator, and an uncontrolled rectifier. An AC grid or a heavy inductive or resistive load (RL) can be supplied by this system. The DSSB is a recently developed DC-DC regulator consisting of an improved single-ended primary inductance regulator (SEPIC) followed by a buck regulator. It has a peak efficiency of 95–98% and a voltage gain of (D (1+D)/(1D). where D is the regulator transistor’s on-to-off switching ratio. The proposed regulator improves the voltage stability and MPPT strategy (optimal or maximum power-point tracking). The combination of the DSSB and the proposed regulator improves the efficiency of the system and increases the power output of the wind turbine by reducing the harmonics of the system voltages and current. This method also reduces the influence of air density as well as wind speed variations on the MPPT strategy. Classical proportional–integral (PI) controllers are used in conjunction with a vector-controlled voltage source inverter, which adheres to the suggested DSSB regulator, to control the PMSM speed and d-q axis currents and to correct for current error. In addition to the vector-controlled voltage source inverter (which follows the recommended DSSB regulator), classical proportional–integral controllers are used to regulate the PMSM speed and d-q axis currents, and to correct current errors. In addition, a model Predictive Controller (PPC) is used with the pitch angle control (PAC) of WECS. This is done to show how well the proposed WECS (WECS with DSSB regulator) enhances voltage stability. A software-based simulation (MATLAB/Simulink) evaluates the results for ideal and unoptimized parameters of the WT and WECS under a variety of conditions. The results of the simulation show an increase in MPPT precision and output power performance. Full article
Show Figures

Figure 1

8 pages, 956 KiB  
Communication
Quality Assessment of Perovskite Solar Cells: An Industrial Point of View
by Nicolò Lago, Francesco Moretti, Noah Tormena, Alessandro Caria, Matteo Buffolo, Carlo De Santi, Nicola Trivellin, Andrea Cester, Gaudenzio Meneghesso, Enrico Zanoni, Matteo Meneghini, Fabio Matteocci, Jessica Barichello, Luigi Vesce, Aldo Di Carlo and Federico Quartiani
Photonics 2024, 11(9), 880; https://doi.org/10.3390/photonics11090880 - 19 Sep 2024
Abstract
The mass production of photovoltaic (PV) devices requires fast and reliable characterization methods and equipment. PV manufacturers produce a complete module roughly every 20 s, and the electrical performance assessment is typically completed in less than 1 s. Times are even more stringent [...] Read more.
The mass production of photovoltaic (PV) devices requires fast and reliable characterization methods and equipment. PV manufacturers produce a complete module roughly every 20 s, and the electrical performance assessment is typically completed in less than 1 s. Times are even more stringent during cell manufacturing. To be competitive in the PV market, perovskite solar cells and modules aim to the same target, i.e., fast and reliable quality assessment. This communication report discusses the limit of characterizing the current perovskite technology. Standard current vs voltage measurements are compared to maximum power point tracking (MPPT), and a fast MPPT procedure is developed to meet the highly demand standard for quality control in the industry of PV production. Full article
(This article belongs to the Special Issue Advances in Perovskite Solar Cells)
Show Figures

Figure 1

31 pages, 21025 KiB  
Article
A Methodology to Optimize PMSM Driven Solar Water Pumps Using a Hybrid MPPT Approach in Partially Shaded Conditions
by Divya Shetty, Jayalakshmi N. Sabhahit and Ganesh Kudva
Clean Technol. 2024, 6(3), 1229-1259; https://doi.org/10.3390/cleantechnol6030060 - 18 Sep 2024
Abstract
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar [...] Read more.
Solar water pumps are crucial for farmers, significantly reducing energy costs and providing independence from conventional fuels. Their adoption is further incentivized by government subsidies, making them a practical choice that aligns with sustainable agricultural practices. However, the cost of the required solar panels for the chosen power makes it essential to optimize solar water pumping systems (SWPS) for economic viability. This study enhances the efficiency and reliability of permanent magnet synchronous motor (PMSM)-driven SWPS in rural areas using hybrid maximum power point tracking (MPPT) algorithms and voltage-to-frequency (V/f) control strategy. It investigates the sensorless scalar control method for PMSM-based water pumps and evaluates various MPPT algorithms, including grey wolf optimization (GWO), particle swarm optimization (PSO), perturb and observe (PO), and incremental conductance (INC), along with hybrid combinations. The study, conducted using MATLAB Simulink, assesses these algorithms on convergence time, MPPT accuracy, torque ripple, and system efficiency under different partial shading conditions. Findings reveal that INC-GWO excels, providing higher accuracy, faster convergence, and reduced steady-state oscillations, thus boosting system efficiency. The V/f control strategy simplifies control mechanisms and enhances performance. Considering system non-idealities and maximum duty cycle limitations, PMSM-based SWPS achieve superior efficiency and stability, making them viable for off-grid water pumping applications. Full article
Show Figures

Figure 1

31 pages, 13160 KiB  
Article
Experimental Assessment of a Novel Irradiance Sensorless Intelligent Control Scheme for a Standalone Photovoltaic System under Real Climatic Conditions
by Jialan Sun and Jinwei Fan
Energies 2024, 17(18), 4627; https://doi.org/10.3390/en17184627 - 15 Sep 2024
Abstract
The efficiency of standalone photovoltaic (PV) systems heavily relies on the effectiveness of their maximum power point tracking (MPPT) controller. This study aims to improve the operational efficiency and reliability of standalone PV systems by introducing a novel control scheme, the Immersion and [...] Read more.
The efficiency of standalone photovoltaic (PV) systems heavily relies on the effectiveness of their maximum power point tracking (MPPT) controller. This study aims to improve the operational efficiency and reliability of standalone PV systems by introducing a novel control scheme, the Immersion and Invariance Neural Network (II-NN). This innovative system integrates a nonlinear estimator of solar irradiance with a neural network (NN) model, eliminating the need for direct irradiance measurements and associated costly sensors. The proposed methodology uses the Immersion and Invariance algorithm to design a nonlinear estimator that leverages the real-time measurements of PV current and voltage to estimate the incident irradiance. The NN then processes this estimated irradiance to determine the MPP voltage accurately. A robust nonlinear controller ensures the PV system operates at the MPP. This approach stands out by managing the nonlinearities, parametric uncertainties, and dynamic variations in PV systems without relying on direct irradiance measurements. The II-NN system was rigorously tested and validated under real climatic conditions, providing a realistic performance assessment. The principal results show that the II-NN system achieves a mean error of 0.0183V and a mean absolute percentage error of 0.3913%, with an overall MPPT efficiency of up to 99.84%. Comparisons with the existing methods, including perturb and observe, incremental conductance, and three other recent algorithms, reveal that the II-NN system outperforms these alternatives. The major conclusion is that the II-NN algorithm significantly enhances the operational efficiency of PV systems while simplifying their implementation, making them more cost-effective and accessible. This study substantially contributes to PV system control by advancing a robust, intelligent, and sensorless MPPT control scheme that maintains high performance even under varying and unpredictable climatic conditions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 13073 KiB  
Article
Research on the Performance of Thermoelectric Self−Powered Systems for Wireless Sensor Based on Industrial Waste Heat
by Yong Jiang, Yupeng Wang, Junhao Yan, Limei Shen and Jiang Qin
Sensors 2024, 24(18), 5983; https://doi.org/10.3390/s24185983 - 15 Sep 2024
Abstract
The issue of energy supply for wireless sensors is becoming increasingly severe with the advancement of the Fourth Industrial Revolution. Thus, this paper proposed a thermoelectric self−powered wireless sensor that can harvest industrial waste heat for self−powered operations. The results show that this [...] Read more.
The issue of energy supply for wireless sensors is becoming increasingly severe with the advancement of the Fourth Industrial Revolution. Thus, this paper proposed a thermoelectric self−powered wireless sensor that can harvest industrial waste heat for self−powered operations. The results show that this self−powered wireless sensor can operate stably under the data transmission cycle of 39.38 s when the heat source temperature is 70 °C. Only 19.57% of electricity generated by a thermoelectric power generation system (TPGS) is available for use. Before this, the power consumption of this wireless sensor had been accurately measured, which is 326 mW in 0.08 s active mode and 5.45 μW in dormant mode. Then, the verified simulation model was established and used to investigate the generation performance of the TPGS under the Dirichlet, Neumann, and Robin boundary conditions. The minimum demand for a heat source is cleared for various data transmission cycles of wireless sensors. Low−temperature industrial waste heat is enough to drive the wireless sensor with a data transmission cycle of 30 s. Subsequently, the economic benefit of the thermoelectric self−powered system was also analyzed. The cost of one thermoelectric self−powered system is EUR 9.1, only 42% of the high−performance battery cost. Finally, the SEPIC converter model was established to conduct MPPT optimization for the TEG module and the output power can increase by up to approximately 47%. This thermoelectric self−powered wireless sensor can accelerate the process of achieving energy independence for wireless sensors and promote the Fourth Industrial Revolution. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

17 pages, 12363 KiB  
Article
Enhanced MPPT in Permanent Magnet Direct-Drive Wind Power Systems via Improved Sliding Mode Control
by Huajun Ran, Linwei Li, Ao Li and Xinquan Wang
Energies 2024, 17(18), 4622; https://doi.org/10.3390/en17184622 - 14 Sep 2024
Abstract
Addressing the challenges of significant speed overshoot, stability issues, and system oscillations associated with the sliding mode control (SMC) strategy in maximum power point tracking (MPPT) for permanent magnet synchronous wind power systems, this paper introduces a fuzzy sliding mode control (FSMC) method [...] Read more.
Addressing the challenges of significant speed overshoot, stability issues, and system oscillations associated with the sliding mode control (SMC) strategy in maximum power point tracking (MPPT) for permanent magnet synchronous wind power systems, this paper introduces a fuzzy sliding mode control (FSMC) method employing an innovative exponential convergence law. By incorporating a velocity adjustment function into the traditional exponential convergence law, a novel convergence law was designed to mitigate oscillations during the sliding phase and expedite the convergence rate. Additionally, a fuzzy controller was developed to implement a fuzzy adaptive SMC strategy, optimizing the MPPT for permanent magnet synchronous wind power generation systems. Simulation results indicated that this approach offered a faster response and superior interference rejection capabilities, compared to conventional and modified SMC strategies. The improved FSMC strategy demonstrated a swift, dynamic response and excellent steady-state performance, improving the efficiency of MPPT, thus confirming the effectiveness of the proposed method. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 9415 KiB  
Article
Integration of Rooftop Solar PV on Trains: Comparative Analysis of MPPT Methods for Auxiliary Power Supply of Locomotives in Milan
by Yasaman Darvishpour, Sayed Mohammad Mousavi Gazafrudi, Hamed Jafari Kaleybar and Morris Brenna
Electronics 2024, 13(17), 3537; https://doi.org/10.3390/electronics13173537 - 6 Sep 2024
Abstract
As electricity demand increases, especially in transportation, renewable sources such as solar energy become more important. The direct integration of solar energy in rail transportation mostly involves utilizing station roofs and track side spaces. This paper proposes a novel approach by proposing the [...] Read more.
As electricity demand increases, especially in transportation, renewable sources such as solar energy become more important. The direct integration of solar energy in rail transportation mostly involves utilizing station roofs and track side spaces. This paper proposes a novel approach by proposing the integration of photovoltaic systems directly on the roofs of trains to generate clean electricity and reduce dependence on the main grid. Installing solar photovoltaic (PV) systems on train rooftops can reduce energy costs and emissions and develop a more sustainable and ecological rail transport system. This research focuses on the Milan Cadorna-Saronno railway line, examining the feasibility of installing PV panels onto train rooftops to generate power for the train’s internal consumption, including lighting and air conditioning. In addition, it is a solution to reduce the power absorbed by the train from the main supply. Simulations conducted using PVSOL software 2023 (R7) indicate that equipping a train roof with PV panels could supply up to almost 10% of the train’s auxiliary power needs, equating to over 600 MWh annually. Implementing the suggested system may also result in a decrease of more than 27 tons of CO2 emissions per year for one train. To optimize the performance of PV systems and maximize power output, the gravitational search algorithm (GSA) as an evolutionary-based method is proposed alongside a DC/DC boost converter and its performance is compared with two other main maximum power point tracking (MPPT) methods of perturb and observe (PO), and incremental conductance (INC). The accuracy of the suggested algorithm was confirmed utilizing MATLAB SIMULINK R2023b, and the results were compared with those of the PO and INC algorithms. The findings indicate that the GSA performs better in terms of accuracy, while the PO and INC algorithms demonstrate greater robustness and dynamic response. Full article
(This article belongs to the Special Issue Railway Traction Power Supply, 2nd Edition)
Show Figures

Figure 1

Back to TopTop