Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives
Abstract
:1. Introduction
2. Telescope Intelligence
2.1. Observatory Site Selection
2.1.1. Assessment of Site Observation Conditions
2.1.2. Site Seeing Estimate and Prediction
2.2. Intelligence of Optical Systems
2.2.1. Optical Path Calibration
2.2.2. Mirror Surface Calibration
2.3. Intelligent Scheduling
2.4. Fault Diagnosis
2.5. Optimization of Imaging Quality
2.5.1. Dome Seeing
2.5.2. Adaptive Optics
2.6. Database Intelligence
2.6.1. Database Data Fusion
2.6.2. Database Data Labeling
Automatic Data Classification
Preselecting Quasar Candidates
Automatic Estimation of Photometric Redshift
Measurement of Stellar Parameters
3. Discussion
3.1. Telescope Intelligence Research Hotspots
3.2. Telescope Intelligence Research Trends
3.3. Future Hotspots of Telescope Intelligence
3.3.1. Large-Aperture Telescopes and Optical Interference Technology
3.3.2. Space Telescope
3.3.3. Small-Aperture Telescope Array
3.3.4. The Challenge of Satellite Megaconstellations
3.3.5. Large Language Models Improve Telescope Intelligence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006, 27, 12. [Google Scholar]
- Tan, C.F.; Wahidin, L.; Khalil, S.; Tamaldin, N.; Hu, J.; Rauterberg, G. The application of expert system: A review of research and applications. ARPN J. Eng. Appl. Sci. 2016, 11, 2448–2453. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Navada, A.; Ansari, A.N.; Patil, S.; Sonkamble, B.A. Overview of use of decision tree algorithms in machine learning. In Proceedings of the 2011 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 27–28 June 2011; pp. 37–42. [Google Scholar]
- Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality reduction: A comparative. J. Mach. Learn. Res. 2009, 10. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.D.; Adorf, H.M. Scheduling with neural networks—The case of the Hubble Space Telescope. Comput. Oper. Res. 1992, 19, 209–240. [Google Scholar] [CrossRef]
- Bykat, A. NICBES-2, a nickel-cadmium battery expert system. Appl. Artif. Intell. Int. J. 1990, 4, 133–141. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhao, Y. k-Nearest Neighbors for automated classification of celestial objects. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 916–922. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Y.X.; Zhao, Y.H. Support vector machines and kd-tree for separating quasars from large survey data bases. Mon. Not. R. Astron. Soc. 2008, 386, 1417–1425. [Google Scholar] [CrossRef]
- Owens, E.; Griffiths, R.; Ratnatunga, K. Using oblique decision trees for the morphological classification of galaxies. Mon. Not. R. Astron. Soc. 1996, 281, 153–157. [Google Scholar] [CrossRef]
- Priyatikanto, R.; Mayangsari, L.; Prihandoko, R.A.; Admiranto, A.G. Classification of continuous sky brightness data using random forest. Adv. Astron. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Jia, P.; Wu, X.; Li, Z.; Li, B.; Wang, W.; Liu, Q.; Popowicz, A.; Cai, D. Point spread function estimation for wide field small aperture telescopes with deep neural networks and calibration data. Mon. Not. R. Astron. Soc. 2021, 505, 4717–4725. [Google Scholar] [CrossRef]
- Gilda, S.; Draper, S.C.; Fabbro, S.; Mahoney, W.; Prunet, S.; Withington, K.; Wilson, M.; Ting, Y.S.; Sheinis, A. Uncertainty-aware learning for improvements in image quality of the Canada–France–Hawaii Telescope. Mon. Not. R. Astron. Soc. 2022, 510, 870–902. [Google Scholar] [CrossRef]
- Ball, N.M.; Brunner, R.J. Data mining and machine learning in astronomy. Int. J. Mod. Phys. D 2010, 19, 1049–1106. [Google Scholar] [CrossRef]
- Fluke, C.J.; Jacobs, C. Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1349. [Google Scholar] [CrossRef]
- Meher, S.K.; Panda, G. Deep learning in astronomy: A tutorial perspective. Eur. Phys. J. Spec. Top. 2021, 230, 2285–2317. [Google Scholar] [CrossRef]
- Sen, S.; Agarwal, S.; Chakraborty, P.; Singh, K.P. Astronomical big data processing using machine learning: A comprehensive review. Exp. Astron. 2022, 53, 1–43. [Google Scholar] [CrossRef]
- Bely, P. The Design and Construction of Large Optical Telescopes; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Morrison, D.; Murphy, R.; Cruikshank, D.; Sinton, W.; Martin, T. Evaluation of Mauna Kea, Hawaii, as an observatory site. Publ. Astron. Soc. Pac. 1973, 85, 255. [Google Scholar] [CrossRef]
- Vernin, J.; Muñoz-Tuñón, C. Optical seeing at La Palma Observatory. I-General guidelines and preliminary results at the Nordic Optical Telescope. Astron. Astrophys. 1992, 257, 811–816. [Google Scholar]
- Vernin, J.; Munoz-Tunon, C. Optical seeing at La Palma Observatory. 2: Intensive site testing campaign at the Nordic optical telescope. Astron. Astrophys. 1994, 284, 311–318. [Google Scholar]
- Ma, B.; Shang, Z.; Hu, Y.; Hu, K.; Wang, Y.; Yang, X.; Ashley, M.C.; Hickson, P.; Jiang, P. Night-time measurements of astronomical seeing at Dome A in Antarctica. Nature 2020, 583, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Yang, F.; Chen, X.; He, F.; Liu, Q.; Zhang, B.; Zhang, C.; Wang, K.; Liu, N.; Ren, A.; et al. Lenghu on the Tibetan Plateau as an astronomical observing site. Nature 2021, 596, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Aksaker, N.; Yerli, S.K.; Erdoğan, M.A.; Erdi, E.; Kaba, K.; Ak, T.; Aslan, Z.; Bakış, V.; Demircan, O.; Evren, S.; et al. Astronomical site selection for Turkey using GIS techniques. Exp. Astron. 2015, 39, 547–566. [Google Scholar] [CrossRef]
- Aksaker, N.; Yerli, S.K.; Erdoğan, M.; Kurt, Z.; Kaba, K.; Bayazit, M.; Yesilyaprak, C. Global site selection for astronomy. Mon. Not. R. Astron. Soc. 2020, 493, 1204–1216. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wu, Z.Y.; Liu, J.; Hidayat, T. New analysis of the fraction of observable nights at astronomical sites based on FengYun-2 satellite data. Mon. Not. R. Astron. Soc. 2022, 511, 5363–5371. [Google Scholar] [CrossRef]
- Francis, A.; Sidiropoulos, P.; Muller, J.P. CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning. Remote Sens. 2019, 11, 2312. [Google Scholar] [CrossRef]
- Mommert, M. Cloud Identification from All-sky Camera Data with Machine Learning. Astron. J. 2020, 159, 178. [Google Scholar] [CrossRef]
- Li, X.; Qiu, B.; Cao, G.; Wu, C.; Zhang, L. A Novel Method for Ground-Based Cloud Image Classification Using Transformer. Remote Sens. 2022, 14, 3978. [Google Scholar] [CrossRef]
- Molano, G.C.; Suárez, O.L.R.; Gaitán, O.A.R.; Mercado, A.M.M. Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes. Publ. Astron. Soc. Pac. 2017, 129, 105002. [Google Scholar] [CrossRef]
- Kruk, S.; García-Martín, P.; Popescu, M.; Aussel, B.; Dillmann, S.; Perks, M.E.; Lund, T.; Merín, B.; Thomson, R.; Karadag, S.; et al. The impact of satellite trails on Hubble Space Telescope observations. Nat. Astron. 2023, 7, 262–268. [Google Scholar] [CrossRef]
- Lombardi, G.; Navarrete, J.; Sarazin, M. Review on atmospheric turbulence monitoring. Adapt. Opt. Syst. IV SPIE 2014, 9148, 678–689. [Google Scholar]
- Bolbasova, L.A.; Lukin, V. Atmospheric research for adaptive optics. Atmos. Ocean. Opt. 2022, 35, 288–302. [Google Scholar] [CrossRef]
- Dewan, E.M. A Model for C2n (optical turbulence) profiles using radiosonde data. In Number 1121, Directorate of Geophysics, Air Force Materiel Command; DTIC: Fort Belvoir, VA, USA, 1993. [Google Scholar]
- Coulman, C.; Vernin, J.; Coqueugniot, Y.; Caccia, J. Outer scale of turbulence appropriate to modeling refractive-index structure profiles. Appl. Opt. 1988, 27, 155–160. [Google Scholar] [CrossRef]
- Trinquet, H.; Vernin, J. A model to forecast seeing and estimate C2N profiles from meteorological data. Publ. Astron. Soc. Pac. 2006, 118, 756. [Google Scholar] [CrossRef]
- Wang, Y.; Basu, S. Using an artificial neural network approach to estimate surface-layer optical turbulence at Mauna Loa, Hawaii. Opt. Lett. 2016, 41, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Jellen, C.; Burkhardt, J.; Brownell, C.; Nelson, C. Machine learning informed predictor importance measures of environmental parameters in maritime optical turbulence. Appl. Opt. 2020, 59, 6379–6389. [Google Scholar] [CrossRef]
- Su, C.; Wu, X.; Luo, T.; Wu, S.; Qing, C. Adaptive niche-genetic algorithm based on backpropagation neural network for atmospheric turbulence forecasting. Appl. Opt. 2020, 59, 3699–3705. [Google Scholar] [CrossRef]
- Vorontsov, A.M.; Vorontsov, M.A.; Filimonov, G.A.; Polnau, E. Atmospheric turbulence study with deep machine learning of intensity scintillation patterns. Appl. Sci. 2020, 10, 8136. [Google Scholar] [CrossRef]
- Bi, C.; Qing, C.; Wu, P.; Jin, X.; Liu, Q.; Qian, X.; Zhu, W.; Weng, N. Optical turbulence profile in marine environment with artificial neural network model. Remote Sens. 2022, 14, 2267. [Google Scholar] [CrossRef]
- Grose, M.G.; Watson, E.A. Forecasting atmospheric turbulence conditions from prior environmental parameters using artificial neural networks. Appl. Opt. 2023, 62, 3370–3379. [Google Scholar] [CrossRef] [PubMed]
- Kornilov, M.V. Forecasting seeing and parameters of long-exposure images by means of ARIMA. Exp. Astron. 2016, 41, 223–242. [Google Scholar] [CrossRef]
- Milli, J.; Rojas, T.; Courtney-Barrer, B.; Bian, F.; Navarrete, J.; Kerber, F.; Otarola, A. Turbulence nowcast for the Cerro Paranal and Cerro Armazones observatory sites. Adapt. Opt. Syst. VII SPIE 2020, 11448, 332–344. [Google Scholar]
- Giordano, C.; Rafalimanana, A.; Ziad, A.; Aristidi, E.; Chabé, J.; Fanteï-Caujolle, Y.; Renaud, C. Statistical learning as a new approach for optical turbulence forecasting. Adapt. Opt. Syst. VII SPIE 2020, 11448, 871–880. [Google Scholar]
- Giordano, C.; Rafalimanana, A.; Ziad, A.; Aristidi, E.; Chabé, J.; Fanteï-Caujole, Y.; Renaud, C. Contribution of statistical site learning to improve optical turbulence forecasting. Mon. Not. R. Astron. Soc. 2021, 504, 1927–1938. [Google Scholar] [CrossRef]
- Cherubini, T.; Lyman, R.; Businger, S. Forecasting seeing for the Maunakea observatories with machine learning. Mon. Not. R. Astron. Soc. 2022, 509, 232–245. [Google Scholar] [CrossRef]
- Lyman, R.; Cherubini, T.; Businger, S. Forecasting seeing for the Maunakea Observatories. Mon. Not. R. Astron. Soc. 2020, 496, 4734–4748. [Google Scholar] [CrossRef]
- Turchi, A.; Masciadri, E.; Fini, L. Optical turbulence forecast over short timescales using machine learning techniques. Adapt. Opt. Syst. VIII SPIE 2022, 12185, 1851–1861. [Google Scholar]
- Hou, X.; Hu, Y.; Du, F.; Ashley, M.C.; Pei, C.; Shang, Z.; Ma, B.; Wang, E.; Huang, K. Machine learning-based seeing estimation and prediction using multi-layer meteorological data at Dome A, Antarctica. Astron. Comput. 2023, 43, 100710. [Google Scholar] [CrossRef]
- Masciadri, E.; Turchi, A.; Fini, L. Optical turbulence forecasts at short time-scales using an autoregressive method at the Very Large Telescope. Mon. Not. R. Astron. Soc. 2023, 523, 3487–3502. [Google Scholar] [CrossRef]
- Ni, W.J.; Shen, Q.L.; Zeng, Q.T.; Wang, H.Q.; Cui, X.Q.; Liu, T. Data-driven Seeing Prediction for Optics Telescope: From Statistical Modeling, Machine Learning to Deep Learning Techniques. Res. Astron. Astrophys. 2022, 22, 125003. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Tang, R.; Li, Z.; Yuan, X.; Xia, Y.; Bai, H.; Li, B.; Chen, Z.; Cui, X.; et al. Machine learning for improving stellar image-based alignment in wide-field Telescopes. Res. Astron. Astrophys. 2022, 22, 015008. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, X.; Cui, X. Alignment metrology for the Antarctica Kunlun dark universe survey telescope. Mon. Not. R. Astron. Soc. 2015, 449, 425–430. [Google Scholar] [CrossRef]
- Thompson, K.P.; Schmid, T.; Rolland, J.P. The misalignment induced aberrations of TMA telescopes. Opt. Express 2008, 16, 20345–20353. [Google Scholar] [CrossRef]
- Yin, J.E.; Eisenstein, D.J.; Finkbeiner, D.P.; Stubbs, C.W.; Wang, Y. Active Optical Control with Machine Learning: A Proof of Concept for the Vera C. Rubin Observatory. Astron. J. 2021, 161, 216. [Google Scholar] [CrossRef]
- Zhou, M.; Lv, G.; Li, J.; Zhou, Z.; Liu, Z.; Wang, J.; Bai, Z.; Zhang, Y.; Tian, Y.; Wang, M.; et al. LAMOST Fiber Positioning Unit Detection Based on Deep Learning. Publ. Astron. Soc. Pac. 2021, 133, 115001. [Google Scholar] [CrossRef]
- Su, D.Q.; Cui, X.Q. Active optics in LAMOST. Chin. J. Astron. Astrophys. 2004, 4, 1. [Google Scholar] [CrossRef]
- Li, W.; Kang, C.; Guan, H.; Huang, S.; Zhao, J.; Zhou, X.; Li, J. Deep Learning Correction Algorithm for The Active Optics System. Sensors 2020, 20, 6403. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, F.; Ju, G.; Xu, B.; An, Q.; Zhang, C.; Wang, S.; Xu, S. Deep learning wavefront sensing for fine phasing of segmented mirrors. Opt. Express 2021, 29, 25960–25978. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhang, J.; Yang, F.; An, Q.; Wang, Y. Extending capture range for piston error in segmented primary mirror telescopes based on wavelet support vector machine with improved particle swarm optimization. IEEE Access 2020, 8, 111585–111597. [Google Scholar] [CrossRef]
- Yue, D.; He, Y.; Li, Y. Piston error measurement for segmented telescopes with an artificial neural network. Sensors 2021, 21, 3364. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, S.; Wang, D.; Yan, D. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks. Opt. Lett. 2019, 44, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.F.; Zhao, H.; Xie, X.P.; Zhang, Y.T.; Li, C.; Fan, X.W. Multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network. Opt. Express 2021, 29, 21320–21335. [Google Scholar] [CrossRef] [PubMed]
- Granzer, T. What makes an automated telescope robotic? Astron. Nachrichten Astron. Notes 2004, 325, 513–518. [Google Scholar] [CrossRef]
- Colome, J.; Colomer, P.; Guàrdia, J.; Ribas, I.; Campreciós, J.; Coiffard, T.; Gesa, L.; Martínez, F.; Rodler, F. Research on schedulers for astronomical observatories. In Proceedings of the Observatory Operations: Strategies, Processes, and Systems IV, Amsterdam, The Netherlands, 4–6 July 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8448, pp. 469–486. [Google Scholar]
- Johnston, M.D.; Miller, G. Spike: Intelligent scheduling of hubble space telescope observations. Intell. Sched. 1994, 19, 3–5. [Google Scholar]
- Adorf, H.M.; Johnston, M.D. A discrete stochastic neural network algorithm for constraint satisfaction problems. In Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, IEEE, San Diego, CA, USA, 17–21 June 1990; pp. 917–924. [Google Scholar]
- Garcia-Piquer, A.; Ribas, I.; Colomé, J. Artificial intelligence for the EChO mission planning tool. Exp. Astron. 2015, 40, 671–694. [Google Scholar] [CrossRef]
- Garcia-Piquer, A.; Morales, J.; Ribas, I.; Colomé, J.; Guàrdia, J.; Perger, M.; Caballero, J.A.; Cortés-Contreras, M.; Jeffers, S.; Reiners, A.; et al. Efficient scheduling of astronomical observations-Application to the CARMENES radial-velocity survey. Astron. Astrophys. 2017, 604, A87. [Google Scholar] [CrossRef]
- Adler, D.S.; Kinzel, W.; Jordan, I. Planning and scheduling at STScI: From Hubble to the James Webb Space Telescope. In Proceedings of the Observatory Operations: Strategies, Processes, and Systems V, Montreal, QC, Canada, 25–27 June 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9149, pp. 145–158. [Google Scholar]
- Frank, J. SOFIA’s challenge: Automated scheduling of airborne astronomy observations. In Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT’06), Pasadena, CA, USA, 17–20 July 2006; p. 8. [Google Scholar]
- Astudillo, J.; Protopapas, P.; Pichara, K.; Becker, I. A Reinforcement Learning–Based Follow-up Framework. Astron. J. 2023, 165, 118. [Google Scholar] [CrossRef]
- Naghib, E.; Yoachim, P.; Vanderbei, R.J.; Connolly, A.J.; Jones, R.L. A framework for telescope schedulers: With applications to the Large Synoptic Survey Telescope. Astron. J. 2019, 157, 151. [Google Scholar] [CrossRef]
- Dunham, L.L.; Laffey, T.J.; Kao, S.M.; Schmidt, J.L.; Read, J.Y. Knowledge-based monitoring of the pointing control system on the Hubble space telescope. In Proceedings of the NASA. Marshall Space Flight Center, Third Conference on Artificial Intelligence for Space Applications, Part 1, Huntsville, AL, USA, 2–3 November 1987. [Google Scholar]
- Yun, L.; Shi-hai, Y. Reliability Analysis of Main-axis Control System of the Antarctic Equatorial Astronomical Telescope Based on Fault Tree. Chin. Astron. Astrophys. 2018, 42, 448–461. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Duan, S.; Liang, J.; Cai, Z.; Liu, Z.; Hu, H.; Wang, J.; Chu, J.; Cui, X.; et al. Fault Diagnosis of the LAMOST Fiber Positioner Based on a Long Short-term Memory (LSTM) Deep Neural Network. Res. Astron. Astrophys. 2023, 23, 125006. [Google Scholar] [CrossRef]
- Teimoorinia, H.; Kavelaars, J.; Gwyn, S.; Durand, D.; Rolston, K.; Ouellette, A. Assessment of Astronomical Images Using Combined Machine-Learning Models. Astron. J. 2020, 159, 170. [Google Scholar] [CrossRef]
- Hu, T.Z.; Zhang, Y.; Cui, X.Q.; Zhang, Q.Y.; Li, Y.P.; Cao, Z.H.; Pan, X.S.; Fu, Y. Telescope performance real-time monitoring based on machine learning. Mon. Not. R. Astron. Soc. 2021, 500, 388–396. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, Y.; Yan, J.; Liu, O.; Wang, H.; Cui, X. Intelligent monitoring and diagnosis of telescope image quality. Mon. Not. R. Astron. Soc. 2023, 525, 3541–3550. [Google Scholar] [CrossRef]
- Woolf, N. High resolution imaging from the ground. Annu. Rev. Astron. Astrophys. 1982, 20, 367–398. [Google Scholar] [CrossRef]
- Racine, R.; Salmon, D.; Cowley, D.; Sovka, J. Mirror, dome, and natural seeing at CFHT. Publ. Astron. Soc. Pac. 1991, 103, 1020. [Google Scholar] [CrossRef]
- Murtagh, F.; Sarazin, M. Nowcasting astronomical seeing: A study of ESO La Silla and Paranal. Publ. Astron. Soc. Pac. 1993, 105, 932. [Google Scholar] [CrossRef]
- Aussem, A.; Murtagh, F.; Sarazin, M. Dynamical recurrent neural networks—towards environmental time series prediction. Int. J. Neural Syst. 1995, 6, 145–170. [Google Scholar] [CrossRef]
- Buffa, F.; Porceddu, I. Temperature forecast and dome seeing minimization-I. A case study using a neural network model. Astron. Astrophys. Suppl. Ser. 1997, 126, 547–553. [Google Scholar] [CrossRef]
- Guo, Y.; Zhong, L.; Min, L.; Wang, J.; Wu, Y.; Chen, K.; Wei, K.; Rao, C. Adaptive optics based on machine learning: A review. Opto-Electron. Adv. 2022, 5, 200082. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks. Opt. Express 2018, 26, 31675–31692. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Korablinova, N.; Ren, Q.; Bille, J. Wavefront reconstruction with artificial neural networks. Opt. Express 2006, 14, 6456–6462. [Google Scholar] [CrossRef] [PubMed]
- Suárez Gómez, S.L.; González-Gutiérrez, C.; Díez Alonso, E.; Santos Rodríguez, J.D.; Sánchez Rodríguez, M.L.; Carballido Landeira, J.; Basden, A.; Osborn, J. Improving adaptive optics reconstructions with a deep learning approach. In Proceedings of the Hybrid Artificial Intelligent Systems: 13th International Conference, HAIS 2018, Oviedo, Spain, 20–22 June 2018; Proceedings 13. Springer: Berlin/Heidelberg, Germany, 2018; pp. 74–83. [Google Scholar]
- DuBose, T.B.; Gardner, D.F.; Watnik, A.T. Intensity-enhanced deep network wavefront reconstruction in Shack–Hartmann sensors. Opt. Lett. 2020, 45, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- Osborn, J.; Guzmán, D.; de Cos Juez, F.; Basden, A.G.; Morris, T.J.; Gendron, É.; Butterley, T.; Myers, R.M.; Guesalaga, A.; Lasheras, F.S.; et al. First on-sky results of a neural network based tomographic reconstructor: Carmen on Canary. Adapt. Opt. Syst. IV SPIE 2014, 9148, 1541–1546. [Google Scholar]
- Kendrick, R.L.; Acton, D.S.; Duncan, A. Phase-diversity wave-front sensor for imaging systems. Appl. Opt. 1994, 33, 6533–6546. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.P.; Norris, B.R.; Deo, V.; Tuthill, P.G.; Scalzo, R.; Sweeney, D.; Ahn, K.; Lozi, J.; Vievard, S.; Guyon, O. Nonlinear Wave Front Reconstruction from a Pyramid Sensor using Neural Networks. Publ. Astron. Soc. Pac. 2023, 135, 114501. [Google Scholar] [CrossRef]
- Swanson, R.; Lamb, M.; Correia, C.; Sivanandam, S.; Kutulakos, K. Wavefront reconstruction and prediction with convolutional neural networks. Adapt. Opt. Syst. VI SPIE 2018, 10703, 481–490. [Google Scholar]
- Guo, H.; Xu, Y.; Li, Q.; Du, S.; He, D.; Wang, Q.; Huang, Y. Improved machine learning approach for wavefront sensing. Sensors 2019, 19, 3533. [Google Scholar] [CrossRef]
- Ma, H.; Liu, H.; Qiao, Y.; Li, X.; Zhang, W. Numerical study of adaptive optics compensation based on convolutional neural networks. Opt. Commun. 2019, 433, 283–289. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, Y.; Bao, H.; Rao, C. Sub-millisecond phase retrieval for phase-diversity wavefront sensor. Sensors 2020, 20, 4877. [Google Scholar] [CrossRef] [PubMed]
- Montera, D.A.; Welsh, B.M.; Roggemann, M.C.; Ruck, D.W. Prediction of wave-front sensor slope measurements with artificial neural networks. Appl. Opt. 1997, 36, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Morris, T.; Saunter, C.; de Cos Juez, F.J.; González-Gutiérrez, C.; Bardou, L. Wavefront prediction using artificial neural networks for open-loop adaptive optics. Mon. Not. R. Astron. Soc. 2020, 496, 456–464. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, Y.; Li, X.; Qin, X.; Wang, H. A Bayesian regularized artificial neural network for adaptive optics forecasting. Opt. Commun. 2017, 382, 519–527. [Google Scholar] [CrossRef]
- Ramos, A.A.; de la Cruz Rodríguez, J.; Yabar, A.P. Real-time, multiframe, blind deconvolution of solar images. Astron. Astrophys. 2018, 620, A73. [Google Scholar] [CrossRef]
- Kim, T.; Park, E.; Lee, H.; Moon, Y.J.; Bae, S.H.; Lim, D.; Jang, S.; Kim, L.; Cho, I.H.; Choi, M.; et al. Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nat. Astron. 2019, 3, 397–400. [Google Scholar] [CrossRef]
- Rahman, S.; Moon, Y.J.; Park, E.; Siddique, A.; Cho, I.H.; Lim, D. Super-resolution of SDO/HMI magnetograms using novel deep learning methods. Astrophys. J. Lett. 2020, 897, L32. [Google Scholar] [CrossRef]
- Ribeiro, V.; Russo, P.; Cárdenas-Avendaño, A. A survey of astronomical research: A baseline for astronomical development. Astron. J. 2013, 146, 138. [Google Scholar] [CrossRef]
- Yu, C.; Li, B.; Xiao, J.; Sun, C.; Tang, S.; Bi, C.; Cui, C.; Fan, D. Astronomical data fusion: Recent progress and future prospects—A survey. Exp. Astron. 2019, 47, 359–380. [Google Scholar] [CrossRef]
- Budavári, T.; Szalay, A.S. Probabilistic cross-identification of astronomical sources. Astrophys. J. 2008, 679, 301. [Google Scholar] [CrossRef]
- Medan, I.; Lépine, S.; Hartman, Z. Bayesian Cross-matching of High Proper-motion Stars in Gaia DR2 and Photometric Metallicities for 1.7 million K and M Dwarfs. Astron. J. 2021, 161, 234. [Google Scholar] [CrossRef]
- Jalobeanu, A.; Gutiérrez, J.; Slezak, E. Multi-source data fusion and super-resolution from astronomical images. Stat. Methodol. 2008, 5, 361–372. [Google Scholar] [CrossRef]
- Petremand, M.; Jalobeanu, A.; Collet, C. Optimal bayesian fusion of large hyperspectral astronomical observations. Stat. Methodol. 2012, 9, 44–54. [Google Scholar] [CrossRef]
- Du, C.; Luo, A.; Yang, H.; Hou, W.; Guo, Y. An efficient method for rare spectra retrieval in astronomical databases. Publ. Astron. Soc. Pac. 2016, 128, 034502. [Google Scholar] [CrossRef]
- Wang, K.; Guo, P.; Luo, A.; Xu, M. Unsupervised pseudoinverse hashing learning model for rare astronomical object retrieval. Sci. China Technol. Sci. 2022, 65, 1338–1348. [Google Scholar] [CrossRef]
- Rebbapragada, U.; Protopapas, P.; Brodley, C.E.; Alcock, C. Finding anomalous periodic time series: An application to catalogs of periodic variable stars. arXiv 2009, arXiv:0905.3428. [Google Scholar] [CrossRef]
- Nun, I.; Pichara, K.; Protopapas, P.; Kim, D.W. Supervised detection of anomalous light curves in massive astronomical catalogs. Astrophys. J. 2014, 793, 23. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, X.; Zhang, C.; Zhang, J.; Qin, X. Outlier detection from multiple data sources. Inf. Sci. 2021, 580, 819–837. [Google Scholar] [CrossRef]
- Banerji, M.; Lahav, O.; Lintott, C.J.; Abdalla, F.B.; Schawinski, K.; Bamford, S.P.; Andreescu, D.; Murray, P.; Raddick, M.J.; Slosar, A.; et al. Galaxy Zoo: Reproducing galaxy morphologies via machine learning. Mon. Not. R. Astron. Soc. 2010, 406, 342–353. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Zheng, H. Automated classification of quasars and stars. Proc. Int. Astron. Union 2009, 5, 147. [Google Scholar] [CrossRef]
- Aguerri, J.; Bernardi, M.; Mei, S.; Almeida, J.S. Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: A publicly available Bayesian automated classification. Astron. Astrophys. 2011, 525, A157. [Google Scholar]
- Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [Google Scholar] [CrossRef]
- Fraix-Burnet, D.; Bouveyron, C.; Moultaka, J. Unsupervised classification of SDSS galaxy spectra. Astron. Astrophys. 2021, 649, A53. [Google Scholar] [CrossRef]
- Khalifa, N.E.M.; Taha, M.H.N.; Hassanien, A.E.; Selim, I. Deep galaxy: Classification of galaxies based on deep convolutional neural networks. arXiv 2017, arXiv:1709.02245. [Google Scholar]
- Becker, I.; Pichara, K.; Catelan, M.; Protopapas, P.; Aguirre, C.; Nikzat, F. Scalable end-to-end recurrent neural network for variable star classification. Mon. Not. R. Astron. Soc. 2020, 493, 2981–2995. [Google Scholar] [CrossRef]
- Hinners, T.A.; Tat, K.; Thorp, R. Machine learning techniques for stellar light curve classification. Astron. J. 2018, 156, 7. [Google Scholar] [CrossRef]
- Awang Iskandar, D.N.; Zijlstra, A.A.; McDonald, I.; Abdullah, R.; Fuller, G.A.; Fauzi, A.H.; Abdullah, J. Classification of Planetary Nebulae through Deep Transfer Learning. Galaxies 2020, 8, 88. [Google Scholar] [CrossRef]
- Barchi, P.H.; de Carvalho, R.; Rosa, R.R.; Sautter, R.; Soares-Santos, M.; Marques, B.A.; Clua, E.; Gonçalves, T.; de Sá-Freitas, C.; Moura, T. Machine and Deep Learning applied to galaxy morphology-A comparative study. Astron. Comput. 2020, 30, 100334. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Qu, M.; Jiang, B.; Wang, W. Automatic Classification of Spectra with IEF-SCNN. Universe 2023, 9, 477. [Google Scholar] [CrossRef]
- Richards, G.T.; Deo, R.P.; Lacy, M.; Myers, A.D.; Nichol, R.C.; ZAkAMSkA, N.L.; Brunner, R.J.; Brandt, W.; Gray, A.G.; PAREJkO, J.K.; et al. Eight-dimensional mid-infrared/optical Bayesian quasar selection. Astron. J. 2009, 137, 3884. [Google Scholar] [CrossRef]
- Abraham, S.; Philip, N.S.; Kembhavi, A.; Wadadekar, Y.G.; Sinha, R. A photometric catalogue of quasars and other point sources in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2012, 419, 80–94. [Google Scholar] [CrossRef]
- Jiang, B.; Luo, A.; Zhao, Y.; Wei, P. Data mining for cataclysmic variables in the large sky area multi-object fibre spectroscopic telescope archive. Mon. Not. R. Astron. Soc. 2013, 430, 986–995. [Google Scholar] [CrossRef]
- Schindler, J.T.; Fan, X.; McGreer, I.D.; Yang, Q.; Wu, J.; Jiang, L.; Green, R. The extremely luminous quasar survey in the SDSS footprint. I. Infrared-based candidate selection. Astrophys. J. 2017, 851, 13. [Google Scholar] [CrossRef]
- Humphrey, A.; Cunha, P.; Paulino-Afonso, A.; Amarantidis, S.; Carvajal, R.; Gomes, J.; Matute, I.; Papaderos, P. Improving machine learning-derived photometric redshifts and physical property estimates using unlabelled observations. Mon. Not. R. Astron. Soc. 2023, 520, 305–313. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Cui, C.; Fan, D.; Zhao, Y.; Wu, X.B.; Zhang, J.Y.; Tao, Y.; Han, J.; Xu, Y.; et al. Photometric redshift estimation of galaxies in the DESI Legacy Imaging Surveys. Mon. Not. R. Astron. Soc. 2023, 518, 513–525. [Google Scholar] [CrossRef]
- Hatfield, P.; Almosallam, I.; Jarvis, M.; Adams, N.; Bowler, R.; Gomes, Z.; Roberts, S.; Schreiber, C. Augmenting machine learning photometric redshifts with Gaussian mixture models. Mon. Not. R. Astron. Soc. 2020, 498, 5498–5510. [Google Scholar] [CrossRef]
- Jones, D.M.; Heavens, A.F. Gaussian mixture models for blended photometric redshifts. Mon. Not. R. Astron. Soc. 2019, 490, 3966–3986. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhang, J.Y.; Jin, X.; Zhao, Y.H. A new strategy for estimating photometric redshifts of quasars. Res. Astron. Astrophys. 2019, 19, 175. [Google Scholar] [CrossRef]
- Han, B.; Qiao, L.N.; Chen, J.L.; Zhang, X.D.; Zhang, Y.X.; Zhao, Y.H. GeneticKNN: A weighted KNN approach supported by genetic algorithm for photometric redshift estimation of quasars. Res. Astron. Astrophys. 2021, 21, 017. [Google Scholar] [CrossRef]
- Wilson, D.; Nayyeri, H.; Cooray, A.; Häußler, B. Photometric redshift estimation with galaxy morphology using self-organizing maps. Astrophys. J. 2020, 888, 83. [Google Scholar] [CrossRef]
- Bilicki, M.; Dvornik, A.; Hoekstra, H.; Wright, A.; Chisari, N.; Vakili, M.; Asgari, M.; Giblin, B.; Heymans, C.; Hildebrandt, H.; et al. Bright galaxy sample in the Kilo-Degree Survey Data Release 4-Selection, photometric redshifts, and physical properties. Astron. Astrophys. 2021, 653, A82. [Google Scholar] [CrossRef]
- Razim, O.; Cavuoti, S.; Brescia, M.; Riccio, G.; Salvato, M.; Longo, G. Improving the reliability of photometric redshift with machine learning. Mon. Not. R. Astron. Soc. 2021, 507, 5034–5052. [Google Scholar] [CrossRef]
- Henghes, B.; Pettitt, C.; Thiyagalingam, J.; Hey, T.; Lahav, O. Benchmarking and scalability of machine-learning methods for photometric redshift estimation. Mon. Not. R. Astron. Soc. 2021, 505, 4847–4856. [Google Scholar] [CrossRef]
- Hong, S.; Zou, Z.; Luo, A.L.; Kong, X.; Yang, W.; Chen, Y. PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars. Mon. Not. R. Astron. Soc. 2023, 518, 5049–5058. [Google Scholar] [CrossRef]
- Curran, S.; Moss, J.; Perrott, Y. QSO photometric redshifts using machine learning and neural networks. Mon. Not. R. Astron. Soc. 2021, 503, 2639–2650. [Google Scholar] [CrossRef]
- Dey, B.; Andrews, B.H.; Newman, J.A.; Mao, Y.Y.; Rau, M.M.; Zhou, R. Photometric redshifts from SDSS images with an interpretable deep capsule network. Mon. Not. R. Astron. Soc. 2022, 515, 5285–5305. [Google Scholar] [CrossRef]
- Zhou, X.; Gong, Y.; Meng, X.M.; Cao, Y.; Chen, X.; Chen, Z.; Du, W.; Fu, L.; Luo, Z. Extracting photometric redshift from galaxy flux and image data using neural networks in the CSST survey. Mon. Not. R. Astron. Soc. 2022, 512, 4593–4603. [Google Scholar] [CrossRef]
- Pasquet, J.; Bertin, E.; Treyer, M.; Arnouts, S.; Fouchez, D. Photometric redshifts from SDSS images using a convolutional neural network. Astron. Astrophys. 2019, 621, A26. [Google Scholar] [CrossRef]
- Liang, R.; Liu, Z.; Lei, L.; Zhao, W. Kilonova-Targeting Lightcurve Classification for Wide Field Survey Telescope. Universe 2023, 10, 10. [Google Scholar] [CrossRef]
- Bailer-Jones, C.A.; Irwin, M.; Gilmore, G.; von Hippel, T. Physical parametrization of stellar spectra: The neural network approach. Mon. Not. R. Astron. Soc. 1997, 292, 157–166. [Google Scholar] [CrossRef]
- Fuentes, O.; Gulati, R.K. Prediction of stellar atmospheric parameters from spectra, spectral indices and spectral lines using machine learning. Rev. Mex. De Astron. Y Astrofísica 2001, 10, 209–212. [Google Scholar]
- Bailer-Jones, C.A. Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry. Mon. Not. R. Astron. Soc. 2011, 411, 435–452. [Google Scholar] [CrossRef]
- Maldonado, J.; Micela, G.; Baratella, M.; D’Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A.; Maggio, A.; Hernández, J.G.; Perger, M.; et al. HADES RV programme with HARPS-N at TNG-XII. The abundance signature of M dwarf stars with planets. Astron. Astrophys. 2020, 644, A68. [Google Scholar] [CrossRef]
- Ciucă, I.; Kawata, D.; Miglio, A.; Davies, G.R.; Grand, R.J. Unveiling the distinct formation pathways of the inner and outer discs of the Milky Way with Bayesian Machine Learning. Mon. Not. R. Astron. Soc. 2021, 503, 2814–2824. [Google Scholar] [CrossRef]
- Perger, M.; Anglada-Escudé, G.; Baroch, D.; Lafarga, M.; Ribas, I.; Morales, J.; Herrero, E.; Amado, P.; Barnes, J.; Caballero, J.; et al. A machine learning approach for correcting radial velocities using physical observables. Astron. Astrophys. 2023, 672, A118. [Google Scholar] [CrossRef]
- Remple, B.A.; Angelou, G.C.; Weiss, A. Determining fundamental parameters of detached double-lined eclipsing binary systems via a statistically robust machine learning method. Mon. Not. R. Astron. Soc. 2021, 507, 1795–1813. [Google Scholar] [CrossRef]
- Passegger, V.; Bello-García, A.; Ordieres-Meré, J.; Antoniadis-Karnavas, A.; Marfil, E.; Duque-Arribas, C.; Amado, P.J.; Delgado-Mena, E.; Montes, D.; Rojas-Ayala, B.; et al. Metallicities in M dwarfs: Investigating different determination techniques. Astron. Astrophys. 2022, 658, A194. [Google Scholar] [CrossRef]
- Hughes, A.C.; Spitler, L.R.; Zucker, D.B.; Nordlander, T.; Simpson, J.; Da Costa, G.S.; Ting, Y.S.; Li, C.; Bland-Hawthorn, J.; Buder, S.; et al. The GALAH Survey: A New Sample of Extremely Metal-poor Stars Using a Machine-learning Classification Algorithm. Astrophys. J. 2022, 930, 47. [Google Scholar] [CrossRef]
- Antoniadis-Karnavas, A.; Sousa, S.; Delgado-Mena, E.; Santos, N.; Teixeira, G.; Neves, V. ODUSSEAS: A machine learning tool to derive effective temperature and metallicity for M dwarf stars. Astron. Astrophys. 2020, 636, A9. [Google Scholar] [CrossRef]
- Breton, S.N.; Santos, A.R.; Bugnet, L.; Mathur, S.; García, R.A.; Pallé, P.L. ROOSTER: A machine-learning analysis tool for Kepler stellar rotation periods. Astron. Astrophys. 2021, 647, A125. [Google Scholar] [CrossRef]
- Różański, T.; Niemczura, E.; Lemiesz, J.; Posiłek, N.; Różański, P. SUPPNet: Neural network for stellar spectrum normalisation. Astron. Astrophys. 2022, 659, A199. [Google Scholar] [CrossRef]
- Cargile, P.A.; Conroy, C.; Johnson, B.D.; Ting, Y.S.; Bonaca, A.; Dotter, A.; Speagle, J.S. MINESweeper: Spectrophotometric Modeling of Stars in the Gaia Era. Astrophys. J. 2020, 900, 28. [Google Scholar] [CrossRef]
- Claytor, Z.R.; van Saders, J.L.; Llama, J.; Sadowski, P.; Quach, B.; Avallone, E.A. Recovery of TESS Stellar Rotation Periods Using Deep Learning. Astrophys. J. 2022, 927, 219. [Google Scholar] [CrossRef]
- Johnson, J.E.; Sundaresan, S.; Daylan, T.; Gavilan, L.; Giles, D.K.; Silva, S.I.; Jungbluth, A.; Morris, B.; Muñoz-Jaramillo, A. Rotnet: Fast and scalable estimation of stellar rotation periods using convolutional neural networks. arXiv 2020, arXiv:2012.01985. [Google Scholar]
- Rui, W.; Luo, A.L.; Shuo, Z.; Wen, H.; Bing, D.; Yihan, S.; Kefei, W.; Jianjun, C.; Fang, Z.; Li, Q.; et al. Analysis of Stellar Spectra from LAMOST DR5 with Generative Spectrum Networks. Publ. Astron. Soc. Pac. 2019, 131, 024505. [Google Scholar] [CrossRef]
- Minglei, W.; Jingchang, P.; Zhenping, Y.; Xiaoming, K.; Yude, B. Atmospheric parameter measurement of Low-S/N stellar spectra based on deep learning. Optik 2020, 218, 165004. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, C.; Deng, L.C. Deriving the stellar labels of LAMOST spectra with the Stellar LAbel Machine (SLAM). Astrophys. J. Suppl. Ser. 2020, 246, 9. [Google Scholar] [CrossRef]
- Li, X.; Lin, B. Estimating stellar parameters from LAMOST low-resolution spectra. Mon. Not. R. Astron. Soc. 2023, 521, 6354–6367. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, J.; Bai, Z.; Wang, S.; Fan, D. Machine-learning regression of stellar effective temperatures in the second gaia data release. Astron. J. 2019, 158, 93. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, H.; Xiang, M.; Duan, F.; Huang, Y.; Liu, J.; Beers, T.C.; Galarza, C.A.; Daflon, S.; Fernández-Ontiveros, J.A.; et al. J-PLUS: Stellar parameters, C, N, Mg, Ca, and [α/Fe] abundances for two million stars from DR1. Astron. Astrophys. 2022, 659, A181. [Google Scholar] [CrossRef]
- Wang, R.; Luo, A.L.; Chen, J.J.; Hou, W.; Zhang, S.; Zhao, Y.H.; Li, X.R.; Hou, Y.H.; LAMOST MRS Collaboration. SPCANet: Stellar parameters and chemical abundances network for LAMOST-II medium resolution survey. Astrophys. J. 2020, 891, 23. [Google Scholar] [CrossRef]
- Chen, S.X.; Sun, W.M.; He, Y. Application of Random Forest Regressions on Stellar Parameters of A-type Stars and Feature Extraction. Res. Astron. Astrophys. 2022, 22, 025017. [Google Scholar] [CrossRef]
- Li, Y.B.; Luo, A.L.; Du, C.D.; Zuo, F.; Wang, M.X.; Zhao, G.; Jiang, B.W.; Zhang, H.W.; Liu, C.; Qin, L.; et al. Carbon stars identified from LAMOST DR4 using machine learning. Astrophys. J. Suppl. Ser. 2018, 234, 31. [Google Scholar] [CrossRef]
- Wang, K.; Qiu, B.; Luo, A.l.; Ren, F.; Jiang, X. ESNet: Estimating Stellar Parameters from LAMOST Low-Resolution Stellar Spectra. Universe 2023, 9, 416. [Google Scholar] [CrossRef]
- Hippler, S. Adaptive optics for extremely large telescopes. J. Astron. Instrum. 2019, 8, 1950001. [Google Scholar] [CrossRef]
- Buscher, D.F.; Creech-Eakman, M.; Farris, A.; Haniff, C.A.; Young, J.S. The conceptual design of the Magdalena ridge observatory interferometer. J. Astron. Instrum. 2013, 2, 1340001. [Google Scholar] [CrossRef]
- Eisenhauer, F.; Monnier, J.D.; Pfuhl, O. Advances in Optical/Infrared Interferometry. Annu. Rev. Astron. Astrophys. 2023, 61, 237–285. [Google Scholar] [CrossRef]
- Böker, T.; Arribas, S.; Lützgendorf, N.; de Oliveira, C.A.; Beck, T.; Birkmann, S.; Bunker, A.; Charlot, S.; de Marchi, G.; Ferruit, P.; et al. The near-infrared spectrograph (nirspec) on the james webb space telescope-iii. integral-field spectroscopy. Astron. Astrophys. 2022, 661, A82. [Google Scholar] [CrossRef]
- Magnier, E.A.; Chambers, K.; Flewelling, H.; Hoblitt, J.; Huber, M.; Price, P.; Sweeney, W.; Waters, C.; Denneau, L.; Draper, P.; et al. The Pan-STARRS data-processing system. Astrophys. J. Suppl. Ser. 2020, 251, 3. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Liu, J.; Han, Z.; Yuan, X. Optical design for SiTian project. In Proceedings of the Optical Design and Testing XII; SPIE: Bellingham, WA, USA, 2022; Volume 12315, pp. 16–22. [Google Scholar]
- Grundahl, F.; Christensen-Dalsgaard, J.; Pallé, P.L.; Andersen, M.F.; Frandsen, S.; Harpsøe, K.; Jørgensen, U.G.; Kjeldsen, H.; Rasmussen, P.K.; Skottfelt, J.; et al. Stellar observations network group: The prototype is nearly ready. Proc. Int. Astron. Union 2013, 9, 69–75. [Google Scholar] [CrossRef]
- Halferty, G.; Reddy, V.; Campbell, T.; Battle, A.; Furfaro, R. Photometric characterization and trajectory accuracy of Starlink satellites: Implications for ground-based astronomical surveys. Mon. Not. R. Astron. Soc. 2022, 516, 1502–1508. [Google Scholar] [CrossRef]
- Hainaut, O.R.; Williams, A.P. Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. Astron. Astrophys. 2020, 636, A121. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv 2023, arXiv:2303.12712. [Google Scholar]
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676. [Google Scholar]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. Npj Digit. Med. 2023, 6, 120. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
Method | Input Parameters | Output Parameters | Statistical Operators |
---|---|---|---|
MLP [41] | Temperature, relative humidity, and pressure at the height of 2 m; potential temperature gradient and wind shear at the height of 15 m | = 0.87, weekly a | |
RF [42] | Surface station: dew point temperature, pressure, wind speed, relative humidity, etc. | = 0.09 b | |
Optimized BP [43] | Surface pressure, temperature at a height of 0.5 m and 2 m, relative humidity at 0.5 m and 2 m, wind speed at the height of 0.5 m and 2 m, and snow surface temperature | and = 0.2367 c | |
DNN [44] | Simulated from laser beam intensity scintillation patterns | /: = 0.072 and = 0.06 d | |
GA-BP [45] | Vertical profiles from sounding balloon: height, pressure, temperature, wind speed, wind shear, and temperature gradient | ||
RF and MLP [48] | Seeing, surface atmospheric parameters (pressure, temperature, wind, humidity, etc.) | Seeing | ; 2 h |
RF [49] | ground parameters (wind, temperature, relative humidity, pressure), seeing, isoplanatic angle, etc. | Seeing | Pearson correlation coefficient at start time |
K-means [51] | Free seeing, vertical profile of wind velocity and wind shear from GFS, etc. | Seeing of total and free atmospheric parameters for the next 5 days | |
RF [53] | Seeing, wavefront coherence time, isoplanatic angle, ground layer fraction, and atmospheric parameters (temperature, relative humidity, wind speed, and direction) | Seeing | ; 1 h ; 2 h |
LSTM and GPR [54] | Wind speed and temperature gradient at heights of 2 m, 4 m, 6 m, 8 m, 10 m, and 12 m | Seeing | ; 10 min |
Catalog Database | Volume | Representative Catalogues |
---|---|---|
I. Astrometric Data | 1136 | AGK3 Catalogue (I/61B) |
UCAC3 Catalogue (I/315) | ||
II. Photometric Data | 747 | General Catalog of Variable Stars, 4th Ed (II/139B) |
BATC–DR1 (II/262) | ||
III. Spectroscopic Data | 291 | Catalogue of Stellar Spectral Classifications (III/233B) |
Spectral Library of Galaxies, Clusters and Stars (III/219) | ||
IV. Cross-Identifications | 19 | SAO-HD-GC-DM Cross Index (IV/12) |
HD-DM-GC-HR-HIP-Bayer-Flamsteed Cross Index (IV/27A) | ||
V. Combined Data | 554 | The SDSS Photometric Catalogue, Release 12 (V/147) |
LAMOST DR5 catalogs (V/164) | ||
VI. Miscellaneous | 379 | Atomic Spectral Line List (VI/69) |
Plate Centers of POSS-II (VI/114) | ||
VII. Non-stellar Objects | 292 | NGC 2000.0 (VII/118) |
SDSS DR5 quasar catalog (VII/252) | ||
VIII. Radio and Far-IR Data | 99 | The 3C and 3CR Catalogues (VIII/1A) |
Miyun 232 MHz survey (VIII/44) | ||
IX.High-Energy Data | 47 | Wisconsin soft X-ray diffuse background all-sky Survey (IX1) |
Item | Time Cost | Accuracy | Level |
---|---|---|---|
Site Seeing Estimate and Prediction | 0 | 0 | 0 |
Assessment of Site Observation Conditions | 1 | −1 | 0 |
Optimization of Dome Seeing | 1 | 1 | 2 |
Adaptive Optics | 1 | 0 | 1 |
Optical Path Calibration | 1 | 0 | 1 |
Mirror Surface Calibration | 1 | 0 | 1 |
Observation Schedule | 1 | 1 | 2 |
Fault Diagnosis | 1 | 0 | 1 |
Database Data Fusion | 1 | 0 | 1 |
Date Classification | 1 | 1 | 2 |
Preselected Quasar Candidates | 1 | 1 | 2 |
Photometric Infrared Evaluation | 1 | 1 | 2 |
Stellar Parameter Measurements | 1 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Hu, T.; Cai, J.; Pan, X.; Hou, Y.; Xu, L.; Wang, H.; Zhang, Y.; Cui, X. Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives. Universe 2024, 10, 210. https://doi.org/10.3390/universe10050210
Huang K, Hu T, Cai J, Pan X, Hou Y, Xu L, Wang H, Zhang Y, Cui X. Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives. Universe. 2024; 10(5):210. https://doi.org/10.3390/universe10050210
Chicago/Turabian StyleHuang, Kang, Tianzhu Hu, Jingyi Cai, Xiushan Pan, Yonghui Hou, Lingzhe Xu, Huaiqing Wang, Yong Zhang, and Xiangqun Cui. 2024. "Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives" Universe 10, no. 5: 210. https://doi.org/10.3390/universe10050210