Eye Tracking Research in Cartography: Looking into the Future
Abstract
:1. Introduction
2. Review Studies Related to Eye Tracking Methods in Cartographic Research
3. Current Trends
4. Future Perspectives
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koláčný, A. Cartographic Information—A Fundamental Concept and Term in Modern Cartography. Cartogr. J. 1969, 6, 47–49. [Google Scholar] [CrossRef]
- Bertin, J. Semiology of Graphics; Diagrams Networks Maps. 1983. Available online: https://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190 (accessed on 12 June 2021).
- DiBiase, D.; MacEachren, A.M.; Krygier, J.B.; Reeves, C. Animation and the Role of Map Design in Scientific Visualization. Cartogr. Geogr. Inf. Syst. 1992, 19, 201–214. [Google Scholar] [CrossRef]
- Krygier, J.B. Chapter 8—Sound and Geographic Visualization. In Visualization in Modern Cartography. MacEachren, A.M., Taylor, D.R.F., Eds.; Academic Press, 1994; Volume 2, pp. 149–166, ISBN 1363-0814. Available online: https://www.elsevier.com/books/visualization-in-modern-cartography/maceachren/978-0-08-042415-6 (accessed on 12 June 2021).
- Crampton, J.W. Interactivity Types in Geographic Visualization. Cartogr. Geogr. Inf. Sci. 2002, 29, 85–98. [Google Scholar] [CrossRef]
- Wood, M. The map-users’ response to map design. Cartogr. J. 1993, 30, 149–153. [Google Scholar] [CrossRef]
- MacEachren, A.M. How Maps Work: Representation, Visualization, and Design; Guilford Press: New York, NY, USA, 2004. [Google Scholar]
- Keates, J.S. Understanding Maps, 2nd ed.; Routledge: London, UK, 1996. [Google Scholar]
- Lloyd, R. Visual search processes used in map reading. Cartogr. Int. J. Geogr. Inf. Geo. 1997, 34, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.E. Attention on maps. Cartogr. Perspect. 2005, 52, 28–57. [Google Scholar] [CrossRef]
- Sluter, R.S., Jr. New theoretical research trends in cartography. Rev. Bras. Cartogr. 2001, 53, 29–37. [Google Scholar]
- Montello, D.R. Cognitive Map-Design Research in the Twentieth Century: Theoretical and Empirical Approaches. Cartogr. Geogr. Inf. Sci. 2002, 29, 283–304. [Google Scholar] [CrossRef]
- Ciołkosz-Styk, A. The visual search method in map perception research. Geoinf. Issues 2012, 4, 33–42. [Google Scholar]
- Williams, L.G. The Role of the User in the Map Communication Process: Obtaining Information from Displays with Discrete Elements. Cartogr. Int. J. Geogr. Inf. Geo. 1971, 8, 29–34. [Google Scholar] [CrossRef]
- Jenks, G.F. Visual Integration in Thematic Mapping: Fact or Fiction? In International Yearbook of Cartography XIII; Arnberger, E., Aurada, F., Eds.; Kartographisches Institut Bertelsmann: Gütersloh, Germany, 1973; pp. 27–35. [Google Scholar]
- Steinke, T.R. Eye Movement Studies in Cartography and Related Fields. Cartogr. Int. J. Geogr. Inf. Geo. 1987, 24, 40–73. [Google Scholar] [CrossRef]
- Kiefer, P.; Giannopoulos, I.; Raubal, M.; Duchowski, A. Eye tracking for spatial research: Cognition, computation, challenges. Spat. Cogn. Comput. 2017, 17, 1–19. [Google Scholar] [CrossRef]
- Krassanakis, V.; Cybulski, P. A review on eye movement analysis in map reading process: The status of the last decade. Geod. Cartogr. 2019, 68, 191–209. [Google Scholar] [CrossRef]
- Liao, H.; Wang, X.; Dong, W.; Meng, L. Measuring the influence of map label density on perceived complexity: A user study using eye tracking. Cartogr. Geogr. Inf. Sci. 2019, 46, 210–227. [Google Scholar] [CrossRef]
- Edler, D.; Keil, J.; Tuller, M.-C.; Bestgen, A.-K.; Dickmann, F. Searching for the ‘Right’ Legend: The Impact of Legend Position on Legend Decoding in a Cartographic Memory Task. Cartogr. J. 2020, 57, 6–17. [Google Scholar] [CrossRef]
- Popelka, S.; Vondrakova, A.; Hujnakova, P. Eye-tracking Evaluation of Weather Web Maps. ISPRS Int. J. Geo-Inf. 2019, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Šašinka, Č.; Stachoň, Z.; Čeněk, J.; Šašinková, A.; Popelka, S.; Ugwitz, P.; Lacko, D. A comparison of the performance on extrinsic and intrinsic cartographic visualizations through correctness, response time and cognitive processing. PLoS ONE 2021, 16, e0250164. [Google Scholar] [CrossRef]
- Wang, Z.; Lonsdale, M.D.S.; Cheung, V. An eye-tracking study examining information search in transit maps. Using China’s high-speed railway map as a case study. Inf. Des. J. 2021. [Google Scholar]
- Horbiński, T.; Cybulski, P.; Medyńska-Gulij, B. Web Map Effectiveness in the Responsive Context of the Graphical User Interface. ISPRS Int. J. Geo-Inf. 2021, 10, 134. [Google Scholar] [CrossRef]
- Horbiński, T.; Cybulski, P.; Medyńska-Gulij, B. Graphic Design and Button Placement for Mobile Map Applications. Cartogr. J. 2019, 57, 196–208. [Google Scholar] [CrossRef]
- Cybulski, P. Effectiveness of Memorizing an Animated Route—Comparing Satellite and Road Map Differences in the Eye-Tracking Study. ISPRS Int. J. Geo-Inf. 2021, 10, 159. [Google Scholar] [CrossRef]
- Šašinka, Č.; Stachoň, Z.; Kubíček, P.; Tamm, S.; Matas, A.; Kukaňová, M. The Impact of Global/Local Bias on Task-Solving in Map-Related Tasks Employing Extrinsic and Intrinsic Visualization of Risk Uncertainty Maps. Cartogr. J. 2019, 56, 175–191. [Google Scholar] [CrossRef]
- Havelková, L.; Gołębiowska, I.M. What Went Wrong for Bad Solvers during Thematic Map Analysis? Lessons Learned from an Eye-Tracking Study. ISPRS Int. J. Geo-Inf. 2020, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Beitlova, M.; Popelka, S.; Vozenilek, V. Differences in Thematic Map Reading by Students and Their Geography Teacher. ISPRS Int. J. Geo-Inf. 2020, 9, 492. [Google Scholar] [CrossRef]
- Golebiowska, I.; Opach, T.; Rød, J.K. Breaking the Eyes: How Do Users Get Started with a Coordinated and Multiple View Geovisualization Tool? Cartogr. J. 2020, 57, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Cybulski, P. Spatial distance and cartographic background complexity in graduated point symbol map-reading task. Cartogr. Geogr. Inf. Sci. 2020, 47, 244–260. [Google Scholar] [CrossRef]
- Cybulski, P.; Krassanakis, V. The Role of the Magnitude of Change in Detecting Fixed Enumeration Units on Dynamic Choropleth Maps. Cartogr. J. 2021, 1–17. [Google Scholar] [CrossRef]
- Keskin, M.; Ooms, K.; Dogru, A.O.; De Maeyer, P. Exploring the Cognitive Load of Expert and Novice Map Users Using EEG and Eye Tracking. ISPRS Int. J. Geo-Inf. 2020, 9, 429. [Google Scholar] [CrossRef]
- Tzelepis, N.; Kaliakouda, A.; Krassanakis, V.; Misthos, L.-M.; Nakos, B. Evaluating the perceived visual complexity of multidirectional hill-shading. Geod. Cartogr. 2020, 69, 161–172. [Google Scholar] [CrossRef]
- Popelka, S.; Herman, L.; Řezník, T.; Pařilová, M.; Jedlička, K.; Bouchal, J.; Kepka, M.; Charvát, K. User Evaluation of Map-Based Visual Analytic Tools. ISPRS Int. J. Geo-Inf. 2019, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Göbel, F.; Kiefer, P.; Raubal, M. FeaturEyeTrack: Automatic matching of eye tracking data with map features on interactive maps. Geoinformatica 2019, 23, 663–687. [Google Scholar] [CrossRef]
- Dong, W.; Yang, T.; Liao, H.; Meng, L. How does map use differ in virtual reality and desktop-based environments? Int. J. Digit. Earth 2020, 13, 1484–1503. [Google Scholar] [CrossRef]
- Dong, W.; Wu, Y.; Qin, T.; Bian, X.; Zhao, Y.; He, Y.; Xu, Y.; Yu, C. What is the difference between augmented reality and 2D navigation electronic maps in pedestrian wayfinding? Cartogr. Geogr. Inf. Sci. 2021, 48, 225–240. [Google Scholar] [CrossRef]
- Zagata, K.; Gulij, J.; Halik, Ł.; Medyńska-Gulij, B. Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold. ISPRS Int. J. Geo-Inf. 2021, 10, 96. [Google Scholar] [CrossRef]
- Çöltekin, A.; Fabrikant, S.I.; Lacayo, M. Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. Int. J. Geogr. Inf. Sci. 2010, 24, 1559–1575. [Google Scholar] [CrossRef]
- Popelka, S.; Brychtova, A. Eye-tracking Study on Different Perception of 2D and 3D Terrain Visualisation. Cartogr. J. 2013, 50, 240–246. [Google Scholar] [CrossRef]
- Cybulski, P.; Horbiński, T. User Experience in Using Graphical User Interfaces of Web Maps. ISPRS Int. J. Geo-Inf. 2020, 9, 412. [Google Scholar] [CrossRef]
- Ooms, K.; Dupont, L.; Lapon, L.; Popelka, S. Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental set-ups. J. Eye Mov. Res. 2015, 8, 5. [Google Scholar] [CrossRef]
- Popelka, S.; Stachoň, Z.; Šašinka, Č.; Doležalová, J. EyeTribe Tracker Data Accuracy Evaluation and Its Interconnection with Hypothesis Software for Cartographic Purposes. Comput. Intell. Neurosci. 2016, 2016, 9170506. [Google Scholar] [CrossRef] [Green Version]
- Ooms, K.; Krassanakis, V. Measuring the Spatial Noise of a Low-Cost Eye Tracker to Enhance Fixation Detection. J. Imaging 2018, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Papoutsaki, A.; Sangkloy, P.; Laskey, J.; Daskalova, N.; Huang, J.; Hays, J. WebGazer: Scalable Webcam Eye Tracking Using User Interactions. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, NY, USA, 9–15 July 2016; pp. 3839–3845. [Google Scholar]
- Krassanakis, V.; Kesidis, A.L.; Pappa, A.; Misthos, L.-M. Performing cartographic visual search experiments online: Opportunities and challenges. In Proceedings of the Workshop on Adaptable Research Methods for Empirical Research with Map Users, Virtual Workshop, 6 May 2021. [Google Scholar]
- Dandurand, F.; Shultz, T.R.; Onishi, K.H. Comparing online and lab methods in a problem-solving experiment. Behav. Res. Methods 2008, 40, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Murali, M.; Çöltekin, A. Conducting eye tracking studies online. In Proceedings of the Workshop on Adaptable Research Methods for Empirical Research with Map Users, Virtual Workshop, 6 May 2021. [Google Scholar]
- Popelka, S.; Beitlová, M. Map reading strategies comparison using eye-movement data. In Proceedings of the Workshop on Adaptable Research Methods for Empirical Research with Map Users, Virtual Workshop, 6 May 2021. [Google Scholar]
- Krassanakis, V.; Filippakopoulou, V.; Nakos, B. EyeMMV toolbox: An eye movement post-analysis tool based on a two-step spatial dispersion threshold for fixation identification. J. Eye Mov. Res. 2014, 7. [Google Scholar] [CrossRef]
- Krassanakis, V.; Menegaki, M.; Misthos, L.-M. LandRate toolbox: An adaptable tool for eye movement analysis and landscape rating. In Eye Tracking for Spatial Research, Proceedings of the 3rd International Workshop; Kiefer, P., Giannopoulos, I., Göbel, F., Raubal, M., Duchowski, A.T., Eds.; ETH Zurich: Zurich, Switzerland, 2018; pp. 40–45. [Google Scholar]
- Dolezalova, J.; Popelka, S. ScanGraph: A Novel Scanpath Comparison Method Using Visualisation of Graph Cliques. J. Eye Mov. Res. 2016, 9. [Google Scholar] [CrossRef]
- Krassanakis, V.; Kesidis, A.L. MatMouse: A Mouse Movements Tracking and Analysis Toolbox for Visual Search Experiments. Multimodal Technol. Interact. 2020, 4, 83. [Google Scholar] [CrossRef]
- Clay, V.; König, P.; König, S.U. Eye tracking in virtual reality. J. Eye Mov. Res. 2019, 12. [Google Scholar] [CrossRef]
- Krassanakis, V.; Da Silva, M.P.; Ricordel, V. Monitoring Human Visual Behavior during the Observation of Unmanned Aerial Vehicles (UAVs) Videos. Drones 2018, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.-F.; Krassanakis, V.; Zhang, L.; Ricordel, V.; Perreira Da Silva, M.; Le Meur, O. EyeTrackUAV2: A Large-Scale Binocular Eye-Tracking Dataset for UAV Videos. Drones 2020, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Underwood, G.; Everatt, J. The Role of Eye Movements in Reading: Some Limitations of the Eye-Mind Assumption. In The Role of Eye Movements in Perceptual Processes; Chekaluk, E., Llewellyn, K.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1992; Volume 88, pp. 111–169. ISBN 0166-4115. [Google Scholar]
- Schindler, M.; Lilienthal, A.J. Domain-specific interpretation of eye tracking data: Towards a refined use of the eye-mind hypothesis for the field of geometry. Educ. Stud. Math. 2019, 101, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Hyönä, J. The use of eye movements in the study of multimedia learning. Learn. Instr. 2010, 20, 172–176. [Google Scholar] [CrossRef]
- Anderson, J.R.; Bothell, D.; Douglass, S. Eye Movements Do Not Reflect Retrieval Processes: Limits of the Eye-Mind Hypothesis. Psychol. Sci. 2004, 15, 225–231. [Google Scholar] [CrossRef]
- Quaye-Ballard, J.A. Usability testing: Using “think aloud” method in testing cartographic product. J. Sci. Technol. 2007, 27, 141–149. [Google Scholar] [CrossRef]
- Gołębiowska, I. Legend Layouts for Thematic Maps: A Case Study Integrating Usability Metrics with the Thinking Aloud Method. Cartogr. J. 2015, 52, 28–40. [Google Scholar] [CrossRef]
- Prokop, M.; Pilař, L.; Tichá, I. Impact of Think-Aloud on Eye-Tracking: A Comparison of Concurrent and Retrospective Think-Aloud for Research on Decision-Making in the Game Environment. Sensors 2020, 20, 2750. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.J.K.; Karn, K.S. Commentary on Section 4—Eye Tracking in Human-Computer Interaction and Usability Research: Ready to Deliver the Promises. In The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research; Hyönä, J., Radach, R., Deubel, H., Eds.; North-Holland: Amsterdam, The Netherlands, 2003; pp. 573–605. ISBN 978-0-444-51020-4. [Google Scholar]
- Harrar, V.; Le Trung, W.; Malienko, A.; Khan, A.Z. A nonvisual eye tracker calibration method for video-based tracking. J. Vis. 2018, 18, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassoumi, A.; Peysakhovich, V.; Hurter, C. Improving eye-tracking calibration accuracy using symbolic regression. PLoS ONE 2019, 14, e0213675. [Google Scholar] [CrossRef] [PubMed]
- Valtakari, N.V.; Hooge, I.T.C.; Viktorsson, C.; Nyström, P.; Falck-Ytter, T.; Hessels, R.S. Eye tracking in human interaction: Possibilities and limitations. Behav. Res. Methods 2021, 1–17. [Google Scholar] [CrossRef]
- Crampton, J.; Krygier, J. An Introduction to Critical Cartography. ACME Int. J. Crit. Geogr. 1969, 4. [Google Scholar]
- Azócar Fernández, P.I.; Buchroithner, M.F. Post-Representational Cartography BT—Paradigms in Cartography: An Epistemological Review of the 20th and 21st Centuries. Azócar Fernández, P.I., Buchroithner, M.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–99, 978-3-642-38893-4. Available online: https://www.researchgate.net/publication/286103228_Paradigms_in_cartography_An_epistemological_review_of_the_20th_and_21st_centuries (accessed on 12 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krassanakis, V.; Cybulski, P. Eye Tracking Research in Cartography: Looking into the Future. ISPRS Int. J. Geo-Inf. 2021, 10, 411. https://doi.org/10.3390/ijgi10060411
Krassanakis V, Cybulski P. Eye Tracking Research in Cartography: Looking into the Future. ISPRS International Journal of Geo-Information. 2021; 10(6):411. https://doi.org/10.3390/ijgi10060411
Chicago/Turabian StyleKrassanakis, Vassilios, and Paweł Cybulski. 2021. "Eye Tracking Research in Cartography: Looking into the Future" ISPRS International Journal of Geo-Information 10, no. 6: 411. https://doi.org/10.3390/ijgi10060411
APA StyleKrassanakis, V., & Cybulski, P. (2021). Eye Tracking Research in Cartography: Looking into the Future. ISPRS International Journal of Geo-Information, 10(6), 411. https://doi.org/10.3390/ijgi10060411