School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Vector Data
2.2.2. Static Raster
2.2.3. Dynamic Raster Type Data
2.3. Methodology
2.3.1. New School Location Suitability
2.3.2. School Accessibility Analysis
2.3.3. Multi-Natural Hazard Analysis
2.3.4. Biohazard: Dynamic COVID-19 Model
2.3.5. Air, Noise, and Temperature Comfort Analysis
3. Results
3.1. School Accessibility
3.2. Multi-Hazard Index Analysis
3.3. Multi-Comfort Level Product
3.4. New School Location Suitability
4. Discussion
4.1. Results and Corresponding Data Comparison
4.2. Hazard Analysis of Existing Schools
4.3. Comfort Analysis of Existing Schools
4.4. New School Distribution by Budget Scenario
4.5. Evaluation of Existing and New School Based on COVID-19 Transmission Level
4.6. Building New Schools by Budget Scenario and Accessibility
4.7. Limitations and Future Possible Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barro, R.J. Education and Economic Growth. The Contribution of Human and Social Capital to Sustained Economic Growth and Well-Being. 2001, pp. 14–41. Available online: https://www.oecd.org/innovation/research/1825902.pdf (accessed on 16 December 2021).
- Hanushek, E.A.; Woessmann, L. Education and economic growth. Econ. Educ. 2010, 60–67. [Google Scholar]
- Reza, F.; Widodo, T. The Impact of education on economic growth in Indonesia. J. Indones. Econ. Bus. 2013, 28, 23–44. [Google Scholar]
- Ministry of Education and Culture Republic of Indonesia (MEC). Kementrian Pendidikan dan Kebudayaan. Strategic Planning (Rencana Strategis) 2020–2024. 2020. Available online: https://dikti.kemdikbud.go.id/wp-content/uploads/2020/10/RENSTRA-KEMENDIKBUD-full-version.pdf (accessed on 12 May 2020).
- Max Roser and Esteban Ortiz-Ospina—Primary and Secondary Education. 2020. Available online: https://ourworldindata.org/primary-and-secondary-education (accessed on 12 May 2020).
- Yustika, G.P.; Subagyo, A.; Iswati, S. Masalah Yang Dihadapi Dunia Pendidikan Dengan Tutorial Online: Sebuah Short Review. Tadbir. J. Stud. Manaj. Pendidik. 2019, 3, 187. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.M. Problematika Kebijakan Pendidikan Di Tengah Pandemi Dan Dampaknya Terhadap Proses Pembelajaran Di Indonesia. J. Pendidik. 2020, 2, 24. [Google Scholar]
- Ahyar, M. Problematika Pendidikan Berbasis Masyarakat dan Solusinya di Era New Normal COVID-19. J. El-Huda Study Islam 2020, 11, 15. [Google Scholar]
- Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 12 May 2020).
- Kristiansen, S. Decentralizing education in Indonesia. Int. J. Educ. Dev. 2006, 26, 513–531. [Google Scholar] [CrossRef]
- Indonesia Statistics. 2020. Available online: https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html (accessed on 20 May 2020).
- Indonesia’s Budget Planning. 2020. Available online: http://www.dpr.go.id/dokakd/dokumen/BANGGAR-RJ-20200311-085609-9144.pdf (accessed on 18 August 2020).
- Indonesia’s Disasters Occurrence Report. 2010. Available online: https://bnpb.go.id/infografis/kejadian-bencana-tahun-2010 (accessed on 20 August 2020).
- Widiyantoro, S.; Gunawan, E.; Muhari, A.; Rawlinson, N.; Mori, J.; Hanifa, N.R.; Putra, H.E. Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Sci. Rep. 2020, 10, 15274. [Google Scholar] [CrossRef]
- Reichenbach, P.; Mondini, A.C.; Rossi, M. The influence of land use change on landslide susceptibility zonation: The Briga catchment test site (Messina, Italy). Environ. Manag. 2014, 54, 1372–1384. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A.; Ferreira, C.S.S.; Bui, D.T. Development of novel hybridized models for urban flood susceptibility mapping. Sci. Rep. 2020, 10, 12937. [Google Scholar] [CrossRef]
- Yang, G.; Liu, Y.; Li, X. Spatiotemporal distribution of ground-level ozone in china at a city level. Sci. Rep. 2020, 10, 7229. [Google Scholar] [CrossRef]
- Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J. Geogr. Sci. 2007, 17, 387–398. [Google Scholar] [CrossRef]
- Nurwanda, A.; Honjo, T. The prediction of city expansion and land surface temperature in Bogor City, Indonesia. Sustain. Cities Soc. 2020, 52, 101772. [Google Scholar] [CrossRef]
- Doygun, H.; Gurun, D.K. Analysing and mapping spatial and temporal dynamics of urban traffic noise pollution: A case study in Kahramanmaraş, Turkey. Environ. Monit. Assess. 2008, 142, 65–72. [Google Scholar] [CrossRef]
- Bilaşco, Ş.; Govor, C.; Roşca, S.; Vescan, I.; Filip, S.; Fodorean, I. GIS model for identifying urban areas vulnerable to noise pollution: Case study. Front. Earth Sci. 2017, 11, 214–228. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Chithra, V.S.; Nagendra, S.S. Indoor air quality investigations in a naturally ventilated school building located close to an urban roadway in Chennai, India. Build. Environ. 2012, 54, 159–167. [Google Scholar] [CrossRef]
- Kalimeri, K.K.; Saraga, D.E.; Lazaridis, V.D.; Legkas, N.A.; Missia, D.A.; Tolis, E.I.; Bartzis, J.G. Indoor air quality investigation of the school environment and estimated health risks: Two-season measurements in primary schools in Kozani, Greece. Atmos. Pollut. Res. 2016, 7, 1128–1142. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S. The relationship between classroom temperature and children’s performance in school. Build. Environ. 2019, 157, 197–204. [Google Scholar] [CrossRef]
- Shield, B.M.; Dockrell, J.E. The effects of noise on children at school: A review. Build. Acoust. 2003, 10, 97–116. [Google Scholar] [CrossRef]
- Prasetyo, D.H.; Mohamad, J.; Fauzi, R. A GIS-based multi-criteria decision analysis approach for public school site selection in Surabaya, Indonesia. Geomatica 2018, 72, 69–84. [Google Scholar] [CrossRef]
- Samad, A.M.; Hifni, N.A.; Ghazali, R.; Hashim, K.A.; Disa, N.M.; Mahmud, S. A study on school location suitability using AHP in GIS approach. In Proceedings of the 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, Malacca, Malaysia, 23–25 March 2012; pp. 393–399. [Google Scholar]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Aprianoor, P.; Muktiali, M. Kajian Ketimpangan Wilayah di Provinsi Jawa Barat. Tek. PWK (Perenc. Wil. Kota) 2015, 4, 484–498. [Google Scholar]
- West Java’s School Statistics. 2019/2020. Available online: https://dapodik.disdik.jabarprov.go.id/statistik/?page=sma (accessed on 18 August 2020).
- West Java Development Priorities. Available online: https://jabarprov.go.id/index.php/news/33657/2019/07/11/Sembilan-Prioritas-Pembangunan-Jawa-Barat-pada-2020 (accessed on 12 May 2020).
- Severity of West Java’s Disaster Vulnerability. Available online: https://jabarprov.go.id/index.php/news/1480/2010/12/29/57-Bencana-Gerakan-Tanah-Terjadi-di-Jabar (accessed on 20 September 2020).
- West Java Education Office. West Java School Location; West Java Education Office: Bandung, Indonesia, 2020. [Google Scholar]
- USGS Earthquake Catalog. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 22 August 2020).
- Indonesia’s Basemap. Available online: https://tanahair.indonesia.go.id/portal-web/download/perwilayah (accessed on 12 May 2020).
- Soil Type and Watershed Data. Available online: http://pdashl.menlhk.go.id/service.php?type=2-Data-dan-Informasi (accessed on 12 May 2020).
- UNEP-WCMC; IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) [Online], February 2021. UNEP-WCMC and IUCN: Cambridge, UK, 2021. Available online: www.protectedplanet.net (accessed on 22 October 2020).
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation By ALOS PRISM. ISPRS Annu. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Gaughan, A.E.; Stevens, F.R.; Linard, C.; Jia, P.; Tatem, A.J. High resolution population distribution maps for Southeast Asia in 2010 and 2015. PLoS ONE 2013, 8, e55882. [Google Scholar] [CrossRef]
- Facebook Connectivity Lab and Center for International Earth Science Information Network. High Resolution Settlement Layer. University of Columbia: New York, NY, USA. Available online: https://ciesin.columbia.edu/data/hrsl/ (accessed on 27 October 2017).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC 2019. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1 (accessed on 16 September 2021).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Rajeshwari, A.; Mani, N.D. Estimation of land surface temperature of Dindigul district using Landsat 8 data. Int. J. Res. Eng. Technol. 2014, 3, 122–126. [Google Scholar]
- Sentinel 5-p Data. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5p (accessed on 22 May 2020).
- Fault Data. Available online: https://gis.bnpb.go.id/ (accessed on 12 May 2020).
- West Java COVID-19 Case Points. Available online: https://pikobar.jabarprov.go.id/ (accessed on 31 December 2020).
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2015; pp. 220–228. [Google Scholar]
- Curriculum. 2013. Available online: https://www.kemdikbud.go.id/kemdikbud/dokumen/Paparan/Paparan%20Wamendik.pdf (accessed on 12 May 2020).
- Luong, T.T.; Pöschmann, J.; Kronenberg, R.; Bernhofer, C. Rainfall Threshold for Flash Flood Warning Based on Model Output of Soil Moisture: Case Study Wernersbach, Germany. Water 2021, 13, 1061. [Google Scholar] [CrossRef]
- Quantile Explanation. Available online: http://www.ncgia.ucsb.edu/cctp/units/unit47/html/comp_class.html (accessed on 23 October 2020).
- Darmawan, K.; Suprayogi, A. Analisis tingkat kerawanan banjir di kabupaten sampang menggunakan metode overlay dengan scoring berbasis sistem informasi geografis. J. Geod. Undip 2017, 6, 31–40. [Google Scholar]
- Kusratmoko. Aplikasi Sistem Informasi Geografis untuk Penentuan Wilayah Prioritas Penanganan Bahaya Erosi Studi Kasus DAS Citarum. Jurusan Geografi dan Pusat Penelitian Geografi Terapan Fakultas MIPA Universitas Indonesia. 2002. Available online: https://library.ui.ac.id/detail?id=90287 (accessed on 16 September 2021).
- The Severity of an Earthquake. Available online: https://pubs.usgs.gov/gip/earthq4/severitygip.html (accessed on 26 December 2020).
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, Z.Y.; Avdan, U. Spaceborne Nitrogen Dioxide Observations from the Sentinel-5P TROPOMI over Turkey. Multidiscip. Digit. Publ. Inst. Proc. 2019, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.; Avdan, Z.Y. Space-borne air pollution observation from sentinel-5p tropomi: Relationship between pollutants, geographical and demographic data. Int. J. Eng. Geosci. 2020, 5, 130–137. [Google Scholar] [CrossRef]
- Carbon Monoxide. Available online: https://www.cdc.gov/co/faqs.htm (accessed on 1 July 2020).
- Nitrogen Dioxide. Available online: https://www.epa.gov/no2-pollution (accessed on 20 May 2020).
- Swaddle, J.P.; Francis, C.D.; Barber, J.R.; Cooper, C.B.; Kyba, C.C.; Dominoni, D.M.; Longcore, T. A framework to assess evolutionary responses to anthropogenic light and sound. Trends Ecol. Evol. 2015, 30, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somantri, L. Land Price Mapping in the Northern Suburbs of Bandung City. Forum Geografi. 2020, 34, 6–155. [Google Scholar] [CrossRef]
- Bera, R.; Maiti, R. Multi hazards risk assessment of Indian Sundarbans using GIS based Analytic Hierarchy Process (AHP). Reg. Stud. Mar. Sci. 2021, 44, 101766. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J.; Costache, R.; Pham, Q.B.; Lee, S.; Arshad, A.; Sahoo, S.; Linh, N.T.T.; Anh, D.T. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: A case study from Slovakia. Geomatics. Nat. Hazards Risk 2021, 12, 1153–1180. [Google Scholar] [CrossRef]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Tien Bui, D. Multi-Hazard Exposure Mapping Using Machine Learning Techniques: A Case Study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, S.; Pourghasemi, H.R.; Emami, S.N.; Pouyan, S.; Eskandari, S.; Tiefenbacher, J.P. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci. Rep. 2020, 10, 12144. [Google Scholar] [CrossRef]
- Harjupa, W.; Abdillah, M.R.; Azura, A.; Putranto, M.F.; Marzuki, M.; Nauval, F.; Risyanto; Saufina, E.; Jumianti, N.; Fathrio, I. On the utilization of RDCA method for detecting and predicting the occurrence of heavy rainfall in Indonesia. Remote Sens. Appl. Soc. Environ. 2021, 100681. [Google Scholar] [CrossRef]
- Sarli, P.W.; Abdillah, M.R.; Sakti, A.D. Relationship between wind incidents and wind-induced damage to construction in West Java, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bandung, Indonesia, 20–21 October 2001; Volume 592. [Google Scholar] [CrossRef]
- Hayati, N.; Niemeier, W.; Sadarviana, V. Ground Deformation in The Ciloto Landslides Area Revealed by Multi-Temporal InSAR. Geosciences 2020, 10, 156. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Poland, M.P.; Lopez, T.; Wright, R.; Pavolonis, M.J. Forecasting, Detecting, and Tracking Volcanic Eruptions from Space. Remote Sens. Earth Syst. Sci. 2020, 3, 55–94. [Google Scholar] [CrossRef]
- Malawani, M.N.; Lavigne, F.; Gomez, C.; Mutaqin, B.W.; Hadmoko, D.S. Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example. Geosciences 2021, 11, 109. [Google Scholar] [CrossRef]
- Selva, J.; Lorito, S.; Volpe, M.; Romano, F.; Tonini, R.; Perfetti, P.; Bernardi, F.; Taroni, M.; Scala, A.; Babeyko, A.; et al. Probabilistic tsunami forecasting for early warning. Nat. Commun. 2021, 12, 5677. [Google Scholar] [CrossRef] [PubMed]
- Cummins, P.R.; Pranantyo, I.R.; Pownall, J.M.; Griffin, J.D.; Meilano, I.; Zhao, S. Earthquakes and tsunamis caused by low-angle normal faulting in the Banda Sea, Indonesia. Nat. Geosci. 2020, 13, 312–318. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.D.; Tsuyuki, S. Spectral Mixture Analysis of Peatland Imagery for Land Cover Study of Highly Degraded Peatland in Indonesia. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science; Copernicus Publications: Göttingen, Germany, 2015. [Google Scholar]
- Andani, I.G.A.; Puello, L.L.P.; Geurs, K. Exploring the role of toll road construction on residential location choice in the Jakarta—Bandung region. Case Stud. Transp. Policy 2020, 8, 599–611. [Google Scholar] [CrossRef]
- Global Energy Observatory; Google; KTH Royal Institute of Technology in Stockholm; University of Groningen; World Resources Institute. Global Power Plant Database. Published on Resource Watch and Google Earth Engine. 2018. Available online: http://https://resourcewatch.org/ or https://earthengine.google.com/ (accessed on 16 December 2021).
- Sakti, A.D.; Rinasti, A.N.; Agustina, E.; Diastomo, H.; Muhammad, F.; Anna, Z.; Wikantika, K. Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS Int. J. Geo-Inf. 2021, 10, 481. [Google Scholar] [CrossRef]
- Fauzi, A.I.; Sakti, A.D.; Robbani, B.F.; Ristiyani, M.; Agustin, R.T.; Yati, E.; Nuha, M.U.; Anika, N.; Putra, R.; Siregar, D.I.; et al. Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 778. [Google Scholar] [CrossRef]
- Saputra, E.; Ariyanto, I.S.; Ghiffari, R.A.; Fahmi, M.S.I. Land Value in a Disaster-Prone Urbanized Coastal Area: A Case Study from Semarang City, Indonesia. Land 2021, 10, 1187. [Google Scholar] [CrossRef]
- Sakti, A.D.; Fauzi, A.I.; Wilwatikta, F.N.; Rajagukguk, Y.S.; Sudhana, S.A.; Yayusman, L.F.; Syahid, L.N.; Sritarapipat, T.; Principe, J.A.; Trang, N.T.Q.; et al. Multi-Source Remote Sensing Data Product Analysis: Investigating Anthropogenic and Naturogenic Impacts on Mangroves in Southeast Asia. Remote Sens. 2020, 12, 2720. [Google Scholar] [CrossRef]
- Fauzi, A.; Sakti, A.; Yayusman, L.; Harto, A.; Prasetyo, L.; Irawan, B.; Kamal, M.; Wikantika, K. Contextualizing Mangrove Forest Deforestation in Southeast Asia Using Environmental and Socio-Economic Data Products. Forests 2019, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Sakti, A.D.; Takeuchi, W. A Data-Intensive Approach to Address Food Sustainability: Integrating Optic and Microwave Satellite Imagery for Developing Long-Term Global Cropping Intensity and Sowing Month from 2001 to 2015. Sustainability 2020, 12, 3227. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Chang, H.-H.; Hsieh, Y.-T.; Chang, B.-Y. Can Agricultural Disaster Relief Programs Affect Farmland Prices? Empirical Evidence from Farmland Transaction Data. Land 2021, 10, 728. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; Van Der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 2018, 9, 4839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauzi, A.I.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluating mangrove forest deforestation causes in Southeast Asia by analyzing recent environment and socio-economic data products. In Proceedings of the 39th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018; Volume 2, pp. 880–889. [Google Scholar]
- Rajagukguk, Y.S.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluation of Southeast Asia mangrove forest deforestation using longterm remote sensing index datasets. In Proceedings of the 39th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 15–19 October 2018; Volume 2, pp. 931–937. [Google Scholar]
- Syahid, L.N.; Sakti, A.D.; Virtriana, R.; Wikantika, K.; Windupranata, W.; Tsuyuki, S.; Caraka, R.E.; Pribadi, R. Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia. Remote Sens. 2020, 12, 3734. [Google Scholar] [CrossRef]
Dataset | Product | Data Description/Processing | Data Type-Format | Resolution | Reference |
---|---|---|---|---|---|
School location | Educational agency | Education Office of West Java | Vector-point | - | [34] |
Earthquakes | USGS | Vector-point | - | [35] | |
Landslides and floods | BNPB | - | Vector-point | [47] | |
COVID-19 case | PIKOBAR | Vector-point | - | [48] | |
Rivers | BIG | Converted to network data using a network analysis tool | Vector-line | - | [36] |
Faults | BNPB | Weighted by Euclidean distance | Vector-line | - | [47] |
Roads | BIG | Converted to network data using a network analysis tool | Vector- line | - | [36] |
Watershed area | MENLHK | Vector -polygon | - | [37] | |
Soil types | MENLHK | Vector -polygon | - | [37] | |
Protected areas | UNEP | Vector-polygon | - | [38] | |
Provincial boundaries | BIG | Vector-polygon | - | [36] | |
District boundaries | BIG | Vector-polygon | - | [36] | |
Elevation | ALOS 30 | Derived from DEM | Raster | 30 m | [39] |
Slope | ALOS 30 | Extracted from DEM | Raster | 30 m | [39] |
Land use | MCD12Q1 | Reclassified to 5 classes | Raster | 500 m | [42] |
Precipitation | CHRIPS | Raster | 0.05 arc° | [43] | |
Sulphur dioxide | Sentinel 5-P | Raster | 0.01 arc° 3, 5 × 7, 5 km | [46] | |
Nitrogen dioxide | Raster | [46] | |||
Carbon monoxide | Raster | [46] | |||
Land surface temperature | Landsat 8 | Derived from Landsat-8 | Raster | 30 m | [44,45] |
Population density | WorldPop | Raster | 100 m | [40] | |
Residential area | CIESIN | Raster | 30 m | [41] |
Dataset | Landslide Effective Factor | Flood Effective Factor | Earthquake Effective Factor | Comfort Effective Factor | School Distance Effective Factor |
---|---|---|---|---|---|
Rivers | - | ✓ | - | - | - |
Watershed area | - | ✓ | - | - | - |
Faults | - | - | ✓ | - | - |
Roads | - | - | - | ✓ | ✓ |
School location | - | - | - | - | ✓ |
Earthquakes | - | - | ✓ | - | - |
Soil types | ✓ | ✓ | - | - | - |
Protected areas | ✓ | ✓ | ✓ | ✓ | ✓ |
Elevation | - | ✓ | ✓ | - | - |
Slope | ✓ | ✓ | ✓ | - | - |
Land use | ✓ | ✓ | - | - | - |
Precipitation | ✓ | ✓ | - | - | - |
Sulphur dioxide (SO2) | - | - | - | ✓ | - |
Nitrogen dioxide (NO2) | - | - | - | ✓ | - |
Carbon monoxide (CO) | - | - | - | ✓ | - |
Land surface temperature | - | - | - | ✓ | - |
Population density | - | - | - | - | ✓ |
Residential area | - | - | - | - | ✓ |
Provincial boundaries | ✓ | ✓ | ✓ | ✓ | ✓ |
District boundaries | ✓ | ✓ | ✓ | ✓ | ✓ |
Vulnerability Level | Number of Schools | |||
---|---|---|---|---|
Elementary | Junior High | Senior High | Vocational High | |
Very low | 4324 (22.11%) | 994 (18.56%) | 251 (15.31%) | 516 (17.82%) |
Low | 5192 (26.54%) | 1585 (29.60%) | 576 (35.14%) | 853 (29.46%) |
Medium | 4521 (23.11%) | 1303 (24.33%) | 420 (25.62%) | 782 (27.01%) |
High | 3462 (17.70%) | 900 (16.80%) | 235 (14.33%) | 431 (14.88%) |
Very high | 2057 (10.51%) | 572 (10.68%) | 157 (9.57%) | 313 (10.81%) |
Comfort Level | Number of Schools | |||
---|---|---|---|---|
Elementary | Junior High | Senior High | Vocational High | |
Very low | 977 (4.99%) | 316 (5.89%) | 144 (8.76%) | 197 (6.80%) |
Low | 7561 (38.63%) | 2191 (40.88%) | 781 (47.56%) | 1272 (43.90%) |
Medium | 9340 (47.72%) | 2452 (45.75%) | 633 (38.55%) | 1228 (42.38%) |
High | 1655 (8.45%) | 394 (7.35%) | 84 (5.11%) | 199 (6.86%) |
Very high | 38 (0.19%) | 6 (0.11%) | 0 (0%) | 1 (0.03%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakti, A.D.; Rahadianto, M.A.E.; Pradhan, B.; Muhammad, H.N.; Andani, I.G.A.; Sarli, P.W.; Abdillah, M.R.; Anggraini, T.S.; Purnomo, A.D.; Ridwana, R.; et al. School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education. ISPRS Int. J. Geo-Inf. 2022, 11, 12. https://doi.org/10.3390/ijgi11010012
Sakti AD, Rahadianto MAE, Pradhan B, Muhammad HN, Andani IGA, Sarli PW, Abdillah MR, Anggraini TS, Purnomo AD, Ridwana R, et al. School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education. ISPRS International Journal of Geo-Information. 2022; 11(1):12. https://doi.org/10.3390/ijgi11010012
Chicago/Turabian StyleSakti, Anjar Dimara, Muhammad Ario Eko Rahadianto, Biswajeet Pradhan, Hubbi Nashrullah Muhammad, I Gusti Ayu Andani, Prasanti Widyasih Sarli, Muhammad Rais Abdillah, Tania Septi Anggraini, Andhika Dimas Purnomo, Riki Ridwana, and et al. 2022. "School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education" ISPRS International Journal of Geo-Information 11, no. 1: 12. https://doi.org/10.3390/ijgi11010012
APA StyleSakti, A. D., Rahadianto, M. A. E., Pradhan, B., Muhammad, H. N., Andani, I. G. A., Sarli, P. W., Abdillah, M. R., Anggraini, T. S., Purnomo, A. D., Ridwana, R., Yulianto, F., Manessa, M. D. M., Fauziyyah, A. N., Yayusman, L. F., & Wikantika, K. (2022). School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to Support Equal Access to Education. ISPRS International Journal of Geo-Information, 11(1), 12. https://doi.org/10.3390/ijgi11010012