Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches
Abstract
:1. Introduction
2. Research Method
3. Overview of SC Transportation and Comparison
4. Impacts of Geo-Information on SC Transportation
5. Data-Driven Transportation and Big Data Technology
5.1. Data Collection and Sources
5.2. Data Analytics for Transportation
5.3. Big Data Technology and Transportation
5.3.1. Big Data Technological Frameworks
5.3.2. Big Data Architectures
5.3.3. Research Works on Big Data for Transportation
6. Machine Learning Approaches for SC Transportation
6.1. Transportation and Human Mobility for SCs
6.2. Traffic Flow and Density Prediction
6.3. Routing, Planning and Route Recommendation
7. Integrated Deep Learning towards SC Transportation
7.1. Routing and Planning
7.2. Traffic Flow and Density Prediction
7.3. Passenger Flow in Public Transportation and City
8. Transportation Empowered by Artificial Intelligence (AI) and Other Techniques
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spéc. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Ang, L.-M.; Seng, K.P.; Zungeru, A.M.; Ijemaru, G. Big Sensor Data Systems for Smart Cities. IEEE Internet Things J. 2017, 4, 1259–1271. [Google Scholar] [CrossRef]
- Abdalla, R. Introduction to Geospatial Information and Communication Technology (GeoICT); Springer: Singapore, 2016. [Google Scholar]
- Weinberg, C. Is Alphabet Going to Build a City? The Information. 5 April 2016. Available online: https://www.theinformation.com/articles/is-alphabet-going-to-build-a-city (accessed on 30 November 2021).
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Sun, H.; Liu, H.; Xiao, H.; He, R.R.; Ran, B. Use of Local Linear Regression Model for Short-Term Traffic Forecasting. Transp. Res. Rec. J. Transp. Res. Board 2003, 1836, 143–150. [Google Scholar] [CrossRef]
- Vlahogianni, E.; Karlaftis, M.G.; Golias, J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transp. Res. Part C Emerg. Technol. 2005, 13, 211–234. [Google Scholar] [CrossRef]
- Zenina, N.; Borisov, A. Regression Analysis for Transport Trip Generation Evaluation. Inf. Technol. Manag. Sci. 2013, 16, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Guo, J.; Huang, W.; Yu, F. Short Term Forecasting of Remaining Parking Spaces in Parking Guidance Systems. In Proceedings of the Transport Research Board Annual Meeting, Washington, DC, USA, 10–14 January 2016. No. 16-5060. [Google Scholar]
- Bin, Y.; Zhongzhen, Y.; Baozhen, Y. Bus Arrival Time Prediction Using Support Vector Machines. J. Intell. Transp. Syst. 2006, 10, 151–158. [Google Scholar] [CrossRef]
- Haydari, A.; Yilmaz, Y. Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2020, 23, 11–32. [Google Scholar] [CrossRef]
- Chen, T. Going Deeper with Convolutional Neural Network for Intelligent Transportation; Worcester Polytechnic Institute: Worcester, MA, USA, 2015. [Google Scholar]
- Duan, Y.; Lv, Y.; Kang, W.; Zhao, Y. A deep learning based approach for traffic data imputation. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 912–917. [Google Scholar]
- Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Hong, H.; Li, M.; Hu, W.; Song, G.; Xie, K. Deep architecture for traffic flow prediction. In Proceedings of the International Conference on Advanced Data Mining and Applications, Hangzhou, China, 14–16 December 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 165–176. [Google Scholar]
- Srivastava, S.K. Green supply-chain management: A state-of-the-art literature review. Int. J. Manag. Rev. 2007, 9, 53–80. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Wang, B.; Lewis, K.; Duarte, F.; Ratti, C.; Behdad, S. The future of waste management in smart and sustainable cities: A review and concept paper. Waste Manag. 2018, 81, 177–195. [Google Scholar] [CrossRef]
- Govada, S.S.; Spruijt, W.; Rodgers, T. Smart city concept and framework. In Smart Economy in Smart Cities; Springer: Singapore, 2017; pp. 187–198. [Google Scholar]
- Kumar, R.; Goel, S.; Sharma, V.; Garg, L.; Srinivasan, K.; Julka, N. A Multifaceted Vigilare System for Intelligent Transportation Services in Smart Cities. IEEE Internet Things Mag. 2020, 3, 76–80. [Google Scholar] [CrossRef]
- Parmar, P.; Champaneria, T. Study and comparison of transportation system architectures for smart city. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 675–680. [Google Scholar]
- Ji, Z.; Ganchev, I.; O’Droma, M.; Zhang, X. A cloud-based intelligent car parking services for smart cities. In Proceedings of the 2014 31st URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar]
- Vakula, D.; Raviteja, B. Smart public transport for smart cities. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Thirupur, India, 12–13 December 2017; IEEE: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Lee, O.L.; Tay, R.I.; Too, S.T.; Gorod, A. A Smart City transportation System of Systems Governance Framework: A Case Study of Singapore. In Proceedings of the 2019 14th Annual Conference System of Systems Engineering (SoSE), Anchorage, AK, USA, 19–22 May 2019; pp. 37–42. [Google Scholar]
- Zhu, F.; Li, Z.; Chen, S.; Xiong, G. Parallel Transportation Management and Control System and Its Applications in Building Smart Cities. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1576–1585. [Google Scholar] [CrossRef]
- Malik, F.; Shah, M.A.; Khattak, H.A. Intelligent Transport System: An Important Aspect of Emergency Management in Smart Cities. In Proceedings of the 2018 24th International Conference on Automation and Computing (ICAC), Newcastle upon Tyne, UK, 6–7 September 2018; pp. 1–6. [Google Scholar]
- Lin, C.; Han, G.; Du, J.; Xu, T.; Shu, L.; Lv, Z. Spatiotemporal Congestion-Aware Path Planning Toward Intelligent Transportation Systems in Software-Defined Smart City IoT. IEEE Internet Things J. 2020, 7, 8012–8024. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R. A Review on Traffic Prediction Methods for Intelligent Transportation System in Smart Cities. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–5. [Google Scholar]
- Acunzo, D.; Zhu, Y.; Xie, B.; Baratoff, G. Context-Adaptive Approach for Vehicle Detection under Varying Lighting Conditions. In Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Bellevue, WA, USA, 30 September–3 October 2007; pp. 654–660. [Google Scholar]
- Farkas, K.; Fehér, G.; Benczúr, A.; Sidlo, C. Crowdsending based public transport information service in smart cities. IEEE Commun. Mag. 2015, 53, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Guo, D.; Shi, J.; Qin, Y. Smart City-Wide Package Distribution Using Crowdsourced Public Transportation Systems. IEEE Internet Things J. 2019, 6, 7584–7594. [Google Scholar] [CrossRef]
- Bergenhem, C.; Shladover, S.; Coelingh, E.; Englund, C.; Tsugawa, S. Overview of platooning systems. In Proceedings of the 19th ITS World Congress, Vienna, Austria, 22–26 October 2012. [Google Scholar]
- Chen, C.; Zhang, Y.; Khosravi, M.R.; Pei, Q.; Wan, S. An Intelligent Platooning Algorithm for Sustainable Transportation Systems in Smart Cities. IEEE Sens. J. 2020, 21, 15437–15447. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Tripathy, P.K.; Mohapatra, A.G.; Ray, N.K.; Mohanty, S.P. WeDoShare: A Ridesharing Framework in Transportation Cyber-Physical System for Sustainable Mobility in Smart Cities. IEEE Consum. Electron. Mag. 2020, 9, 41–48. [Google Scholar] [CrossRef]
- Barth, M.; Todd, M. Intelligent transportation system architecture for a multi-station shared vehicle system. In Proceedings of the 2000 IEEE Intelligent Transportation Systems, Dearborn, MI, USA, 6 August 2002; pp. 240–245. [Google Scholar]
- Mahmood, I.; Zubairi, J.A. Efficient Waste Transportation and Recycling: Enabling technologies for smart cities using the Internet of Things. IEEE Electr. Mag. 2019, 7, 33–43. [Google Scholar] [CrossRef]
- Daniel, S.; Doran, M.A. geoSmartCity: Geomatics contribution to the smart city. In Proceedings of the 14th Annual International Conference on Digital Government Research, New York, NY, USA, 17–20 June 2013; pp. 65–71. [Google Scholar]
- Doran, M.-A.; Daniel, S. Geomatics and Smart City: A transversal contribution to the Smart City development. Inf. Polity 2014, 19, 57–72. [Google Scholar] [CrossRef]
- Roche, S. Geographic Information Science I: Why does a smart city need to be spatially enabled? Prog. Hum. Geogr. 2014, 38, 703–711. [Google Scholar] [CrossRef]
- Nahiduzzaman, K.M.; Aldosary, A.S. City structure in transition: A conceptual discourse on the impact of information and communication technology (ICT). In Social Development and High Technology Industries: Strategies and Applications; IGI Global: Hershey, PA, USA, 2012; pp. 187–199. [Google Scholar]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- Aina, Y.A. Achieving smart sustainable cities with GeoICT support: The Saudi evolving smart cities. Cities 2017, 71, 49–58. [Google Scholar] [CrossRef]
- Abukhater, A.; Walker, D. Making smart growth smarter with GeoDesign. Directions Magazine, 20 July 2010. [Google Scholar]
- Liu, T.; Zhao, D.; Pan, M. An approach to 3D model fusion in GIS systems and its application in a future ECDIS. Comput. Geosci. 2016, 89, 12–20. [Google Scholar] [CrossRef]
- Bremer, M.; Mayr, A.; Wichmann, V.; Schmidtner, K.; Rutzinger, M. A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models. Comput. Environ. Urban Syst. 2016, 57, 144–154. [Google Scholar] [CrossRef]
- Steiniger, S.; Neun, M.; Edwardes, A.; Lenz, B. Foundations of LBS, CartouCHe-Cartography Swiss Higher Education. Obtido Em 2008, 20, 2010. [Google Scholar]
- Jiang, B.; Yao, X. Location-based services and GIS in perspective. Comput. Environ. Urban Syst. 2006, 30, 712–725. [Google Scholar] [CrossRef]
- Batty, M. Big data, smart cities and city planning. Dialog Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef]
- Chauhan, S.; Agarwal, N.; Kar, A.K. Addressing big data challenges in smart cities: A systematic literature review. Info 2016, 18, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Cao, J.; Yao, Y. Big data in smart cities. Sci. China Inf. Sci. 2015, 58, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Dragicevic, S.; Anton, F.; Sester, M.; Winter, S.; Çöltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Leak, A.; Longley, P. A geocomputational analysis of Twitter activity around different world cities. Geo-Spat. Inf. Sci. 2014, 17, 145–152. [Google Scholar] [CrossRef]
- De Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef] [Green Version]
- Hawelka, B.; Sitko, I.; Beinat, E.; Sobolevsky, S.; Kazakopoulos, P.; Ratti, C. Geo-located Twitter as proxy for global mobility patterns. Cartogr. Geogr. Inf. Sci. 2014, 41, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Mu, L.; Shen, Y. Effect of climate and seasonality on depressed mood among twitter users. Appl. Geogr. 2015, 63, 184–191. [Google Scholar] [CrossRef]
- Aina, Y.A. Applications of geospatial technologies for practitioners: An emerging perspective of geospatial education. In Emerging Informatics–Innovative Concepts and Applications; InTech: Rijeka, Croatia, 2012; pp. 1–20. [Google Scholar]
- Jackson, D.; Simpson, R. (Eds.) D_City: Digital Earth|Virtual Nations| Data Cities: Connecting Global Futures for Environmental Planning; DCity: Newton, NSW, Australia, 2013. [Google Scholar]
- Pertence, A.A.; Mini, R.A.; Marques-Neto, H.T. Vulnerability Analysis of the Urban Transport System in the Context of Smart Cities. In Proceedings of the 2020 IEEE International Smart Cities Conference, Piscataway, NJ, USA, 28 September–1 October 2020; pp. 1–8. [Google Scholar]
- Tong, L. Research on the Application of Key Technologies in the Construction of Smart Cities Based on Smart Transportation. In Proceedings of the 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 11–13 December 2020; pp. 189–194. [Google Scholar]
- Htay, T.Z.; Komapov, V.G.; Glushenkov, V.A. Creation of an interactive geo-information model of the multifunctional magnetic levitation transport system ELTRO in Naypyidaw, Republic of Myanmar. In Proceedings of the 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia, 12–14 March 2021; pp. 1–5. [Google Scholar]
- Ghosh, K.; Musti, K.S. Integration of SLAM with GIS to model sustainable urban transportation system: A smart city perspective. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 261–267. [Google Scholar]
- Timofeev, V.S.; Teselkina, K.V.; Veselova, A.S. Development and Research of Transport Speed Models Using the Methods of Geo-Statistical Data Analysis. In Proceedings of the 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, 2–6 October 2018; pp. 315–319. [Google Scholar]
- Shanmugasundaram, R.; Santhiyakumari, N. Urban Sprawl Classification Analysis Using Image Processing Technique in Geoinformation System. In Proceedings of the 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), Tiruchengode, India, 2–3 March 2018; pp. 192–196. [Google Scholar]
- Chen, M.; Yu, X.; Liu, Y. TraLFM: Latent factor modeling of traffic trajectory data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4624–4634. [Google Scholar] [CrossRef]
- Gokasar, I.; Cetinel, Y.; Baydogan, M.G. Estimation of Influence Distance of Bus Stops Using Bus GPS Data and Bus Stop Properties. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4635–4642. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Torre-Bastida, A.I.; Del Ser, J.; Laña, I.; Ilardia, M.; Bilbao, M.N.; Campos-Cordobés, S. Big Data for transportation and mobility: Recent advances, trends and challenges. IET Intell. Transp. Syst. 2018, 12, 742–755. [Google Scholar] [CrossRef]
- Kaffash, S.; Nguyen, A.T.; Zhu, J. Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis. Int. J. Prod. Econ. 2021, 231, 107868. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big data analytics in intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2019, 20, 383–398. [Google Scholar] [CrossRef]
- Mohammed, S.; Arabnia, H.R.; Qu, X.; Zhang, D.; Kim, T.H.; Zhao, J. IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation. IEEE Access 2020, 8, 201331–201344. [Google Scholar] [CrossRef]
- Kim, K.; Gutesa, S.; Dimitrijevic, B.; Lee, J.; Spasovic, L.; Mirza, W.; Singh, J. Performance evaluation of video analytics for traffic incident detection and vehicle counts collection. In Recent Advances in Intelligent Image Search and Video Retrieval; Springer: Cham, Switzerland, 2017; pp. 213–231. [Google Scholar]
- Wang, X.; Zhao, S.; Dong, L. Research and application of traffic visualization based on vehicle GPS big data. In Proceedings of the 2nd International Conference on Intelligent Transportation, Singapore, 25 November 2016; pp. 293–302. [Google Scholar]
- Shukla, S.N.; Champaneria, T.A. Survey of various data collection ways for smart transportation domain of smart city. In Proceedings of the 2017 IEEE International Conference on i-Smac (Iot in Social, Mobile, Analytics and Cloud) (I-Smac), Palladam, India, 10–11 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 681–685. [Google Scholar]
- Wen, S.; Gao, Y.; Zhang, D.; Yang, J.; Li, Q. An Efficient Data Acquisition System for Large Numbers of Various Vehicle Terminals. IEEE Trans. Intell. Transp. Syst. 2020, 1–6. [Google Scholar] [CrossRef]
- Chen, C.; Luan, T.H.; Guan, X.; Lu, N.; Liu, Y. Connected vehicular transportation: Data analytics and traffic-dependent networking. IEEE Veh. Technol. Mag. 2017, 12, 42–54. [Google Scholar] [CrossRef]
- Lam, A.Y.; James, J.Q.; Hou, Y.; Li, V.O. Coordinated autonomous vehicle parking for vehicle-to-grid services: Formulation and distributed algorithm. IEEE Trans. Smart Grid 2018, 9, 4356–4366. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Castillo, J.; Zeadally, S.; Ibañez, J.A. Solving vehicular ad hoc network challenges with big data solutions. IET Netw. 2016, 5, 81–84. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, W.; Wang, P.; Shen, D.; Chen, S.; Wang, X.; Zhang, Q.; Yang, L. Big data for social transportation. IEEE Trans. Intell. Transp. Syst. 2015, 17, 620–630. [Google Scholar] [CrossRef]
- Mounica, B.; Lavanya, K. Social Media data analysis for intelligent transportation systems. In Proceedings of the 2020 IEEE International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Ghahramani, M.; Zhou, M.; Hon, C.T. Mobile Phone Data Analysis: A Spatial Exploration Toward Hotspot Detection. IEEE Trans. Autom. Sci. Eng. 2019, 16, 351–362. [Google Scholar] [CrossRef]
- Cottrill, C.D.; Derrible, S. Leveraging Big Data for the Development of Transport Sustainability Indicators. J. Urban Technol. 2015, 22, 45–64. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Ning, B.; Tang, T. Cross-Layer Handoff Design in MIMO-Enabled WLANs for Communication-Based Train Control (CBTC) Systems. IEEE J. Sel. Areas Commun. 2012, 30, 719–728. [Google Scholar] [CrossRef]
- Biuk-Aghai, R.P.; Kou, W.T.; Fong, S. Big data analytics for transportation: Problems and prospects for its application in China. In Proceedings of the 2016 IEEE Region 10 Symposium (TENSYMP), Bali, Indonesia, 9–11 May 2016; IEEE: Piscataway, NJ, USA, 2020; pp. 173–178. [Google Scholar]
- Ayed, A.B.; Halima, M.B.; Alimi, A.M. Big data analytics for logistics and transportation. In Proceedings of the 2015 4th IEEE International Conference on Advanced Logistics and Transport (ICALT), Valenciennes, France, 20–22 May 2015; IEEE: Piscataway, NJ, USA, 2020; pp. 311–316. [Google Scholar]
- Davenport, T.H.; Barth, P.; Bean, R. How’big data’is different. MIT Sloan Manag. Rev. 2012, 54, 43. [Google Scholar]
- Wemegah, T.D.; Zhu, S. Big data challenges in transportation: A case study of traffic volume count from massive Radio Frequency Identification (RFID) data. In Proceedings of the 2017 IEEE International Conference on the Frontiers and Advances in Data Science (FADS), Xi’an, China, 23–25 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 58–63. [Google Scholar]
- Ramesh, R.; Divya, G.; Dorairangaswamy, M.A.; Unnikrishnan, K.N.; Joseph, A.; Vijayakumar, A.; Mani, A. Real-Time Vehicular Traffic Analysis using Big Data Processing and IoT based Devices for Future Policy Predictions in Smart Transportation. In Proceedings of the 2019 IEEE International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1482–1488. [Google Scholar]
- Syarif, M.; Adji, T.B. Big data analytics: Estimation of destination for users of bus rapid transit (BRT) public transportation in Jakarta. In Proceedings of the 2019 IEEE International Conference of Artificial Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, 13–15 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 209–214. [Google Scholar]
- Lu, Y.; Misra, A.; Wu, H. Smartphone sensing meets transport data: A collaborative framework for transportation service analytics. IEEE Trans. Mob. Comput. 2017, 17, 945–960. [Google Scholar] [CrossRef]
- Trueblood, F.; Rodriguez, D.; Hernandez, J.; Salomon, M.; Soundarajan, S.; Pirouz, M. Demystifying Transportation Using Big Data Analytics. In Proceedings of the 2019 IEEE International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1281–1286. [Google Scholar]
- Al Najada, H.; Mahgoub, I. Anticipation and alert system of congestion and accidents in VANET using Big Data analysis for Intelligent Transportation Systems. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8. [Google Scholar]
- Lu, Y.; Wu, H.; Liu, X.; Chen, P. TourSense: A framework for tourist identification and analytics using transport data. IEEE Trans. Knowl. Data Eng. 2019, 31, 2407–2422. [Google Scholar] [CrossRef]
- Puiu, D.; Bischof, S.; Serbanescu, B.; Nechifor, S.; Parreira, J.; Schreiner, H. A public transportation journey planner enabled by IoT data analytics. In Proceedings of the 2017 20th IEEE Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 355–359. [Google Scholar]
- Cyril, A.; George, V.; Mulangi, R.H. Electronic ticket machine data analytics for public bus transport planning. In Proceedings of the 2017 IEEE International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3917–3922. [Google Scholar]
- Kwon, O.; Lee, N.; Shin, B. Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 2014, 34, 387–394. [Google Scholar]
- Kong, X.; Li, M.; Tang, T.; Tian, K.; Moreira-Matias, L.; Xia, F. Shared subway shuttle bus route planning based on transport data analytics. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1507–1520. [Google Scholar] [CrossRef]
- Saroj, A.; Roy, S.; Guin, A.; Hunter, M.; Fujimoto, R. Smart city real-time data-driven transportation simulation. In Proceedings of the 2018 IEEE Winter Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 857–868. [Google Scholar]
- Nelson, Q.; Steffensmeier, D.; Pawaskar, S. A simple approach for sustainable transportation systems in smart cities: A graph theory model. In Proceedings of the 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 11–13 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Darwish, T.S.; Bakar, K.A.; Kaiwartya, O.; Lloret, J. TRADING: Traffic Aware Data Offloading for Big Data Enabled Intelligent Transportation System. IEEE Trans. Veh. Technol. 2020, 69, 6869–6879. [Google Scholar] [CrossRef]
- Howard, A.J.; Lee, T.; Mahar, S.; Intrevado, P.; Woodbridge, D.M.K. Distributed data analytics framework for smart transportation. In Proceedings of the 2018 20th IEEE International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1374–1380. [Google Scholar]
- Katrakazas, C.; Antoniou, C.; Vazquez, N.S.; Trochidis, I.; Arampatzis, S. Big data and emerging transportation challenges: Findings from the noesis project. In Proceedings of the 2019 6th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Cracow, Poland, 5–7 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar]
- Demirkan, H.; Delen, D. Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decis. Support Syst. 2013, 55, 412–421. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Singh, J.; Singla, V. Big data: Tools and technologies in big data. Int. J. Comput. App. 2015, 112, 6–10. [Google Scholar]
- Alam, M.M.; Torgo, L.; Bifet, A. A Survey on Spatio-temporal Data Analytics Systems. arXiv 2021, arXiv:2103.09883. [Google Scholar] [CrossRef]
- Alam, M.M.; Ray, S.; Bhavsar, V.C. A Performance Study of Big Spatial Data Systems. In Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Seattle, WA, USA, 6 November 2018; pp. 1–9. [Google Scholar]
- Jan, B.; Farman, H.; Khan, M.; Talha, M.; Din, I.U. Designing a smart transportation system: An internet of things and big data approach. IEEE Wirel. Commun. 2019, 26, 73–79. [Google Scholar] [CrossRef]
- Azeroual, O.; Fabre, R. Processing Big Data with Apache Hadoop in the Current Challenging Era of COVID-19. Big Data Cogn. Comput. 2021, 5, 12. [Google Scholar] [CrossRef]
- Galliers, R.D.; Newell, S.; Shanks, G.; Topi, H. Datification and its human, organizational and societal effects. J. Strateg. Inf. Syst. 2017, 26, 185–190. [Google Scholar] [CrossRef]
- Fiore, S.; Elia, D.; Pires, C.E.; Mestre, D.G.; Cappiello, C.; Vitali, M.; Andrade, N.; Braz, T.; Lezzi, D.; Moraes, R.; et al. An Integrated Big and Fast Data Analytics Platform for Smart Urban Transportation Management. IEEE Access 2019, 7, 117652–117677. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 2018, 126, 3–13. [Google Scholar]
- Guo, Y.; Wang, S.; Zheng, L.; Lu, M. Trajectory Data Driven Transit-Transportation Planning. In Proceedings of the 2017 5th IEEE International Conference on Advanced Cloud and Big Data (CBD), Shanghai, China, 13–16 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 380–384. [Google Scholar]
- Van Oort, N.; Cats, O. Improving public transport decision making, planning and operations by using big data: Cases from Sweden and the Netherlands. In Proceedings of the 2015 18th IEEE international conference on intelligent transportation systems, Gran Canaria, Spain, 15–18 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 19–24. [Google Scholar]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Jeon, G. Efficient graph-oriented smart transportation using internet of things generated big data. In Proceedings of the 2015 11th IEEE International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Bangkok, Thailand, 23–27 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 512–519. [Google Scholar]
- Wang, Y.; Ram, S.; Currim, F.; Dantas, E.; Sabóia, L.A. A big data approach for smart transportation management on bus network. In Proceedings of the 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 12–15 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Shukla, S.; Balachandran, K.; Sumitha, V.S. A framework for smart transportation using Big Data. In Proceedings of the 2016 International Conference on ICT in Business Industry & Government, Indore, India, 18–19 November 2016; pp. 1–3. [Google Scholar]
- Shi, Q.; Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transp. Res. Part C Emerg. Technol. 2015, 58, 380–394. [Google Scholar] [CrossRef]
- Marshall, A.; Mueck, S.; Shockley, R. How leading organizations use big data and analytics to innovate. Strategy Leadersh. 2015, 43, 32–39. [Google Scholar] [CrossRef]
- De Gennaro, M.; Paffumi, E.; Martini, G. Big data for supporting low-carbon road transport policies in Europe: Applications, challenges and opportunities. Big Data Res. 2016, 6, 11–25. [Google Scholar] [CrossRef]
- Fetene, G.M.; Kaplan, S.; Mabit, S.L.; Jensen, A.F.; Prato, C.G. Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transp. Res. Part D Transp. Environ. 2017, 54, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Cao, F.; Jin, C.; Yu, Z.; Huang, R. Carbon emission flow from self-driving tours and its spatial relationship with scenic spots—A traffic-related big data method. J. Clean. Prod. 2017, 142, 946–955. [Google Scholar] [CrossRef]
- Land, A.; Buus, A.; Platt, A. Data Analytics in Rail Transportation: Applications and Effects for Sustainability. IEEE Eng. Manag. Rev. 2020, 48, 85–91. [Google Scholar] [CrossRef]
- Dimanche, V.; Goupil, A.; Philippot, A.; Riera, B.; Urban, A.; Gabriel, G. Massive Railway Operating Data Visualization; a Tool for RATP Operating Expert. IFAC-PapersOnLine 2017, 50, 15841–15846. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, J.; Zhang, Y.; Xue, K.; Nan, J.; Li, B. Big Data Based Intelligent Operation and Maintenance Platform. In Proceedings of the 2020 5th IEEE International Conference on Intelligent Transportation Engineering (ICITE), Beijing, China, 11–13 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 249–253. [Google Scholar]
- Gao, H.; Liu, S.; Cao, G.; Zhao, P.; Zhang, J.; Zhang, P. Big Data Analysis of Beijing Urban Rail Transit Fares Based on Passenger Flow. IEEE Access 2020, 8, 80049–80062. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, G.; Li, X.; Sun, R. Vulnerability Assessment of the Urban Rail Transit Network Based on Travel Behavior Analysis. IEEE Access 2020, 9, 1407–1419. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zhang, F.; Yin, L.; Zhang, J.; Tian, C.; Jiang, W. Analysis of subway passenger flow based on smart card data. In Proceedings of the 2020 6th IEEE International Conference on Big Data Computing and Communications (BIGCOM), Deqing, China, 24–25 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 198–202. [Google Scholar]
- Zhiyuan, H.; Liang, Z.; Ruihua, X.; Feng, Z. Application of big data visualization in passenger flow analysis of Shanghai Metro network. In Proceedings of the 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 1–3 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 184–188. [Google Scholar]
- Saki, M.; Abolhasan, M.; Lipman, J. A novel approach for big data classification and transportation in rail networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1239–1249. [Google Scholar] [CrossRef]
- Saboo, A.R.; Kumar, V.; Park, I. Using big data to model time-varying effects for marketing resource (re) allocation. Mis Q. 2016, 40, 911–939. [Google Scholar] [CrossRef]
- Wu, P.J.; Yang, C.K. Unstructured big data analytics for air cargo logistics management. In Proceedings of the 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Singapore, 31 July–2 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 274–278. [Google Scholar]
- Sankaranarayanan, H.B.; Thind, R.S. Multi-modal travel in India: A big data approach for policy analytics. In Proceedings of the 2017 7th IEEE International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida, India, 12–13 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 243–248. [Google Scholar]
- Kasturi, E.; Devi, S.P.; Kiran, S.V.; Manivannan, S. Airline Route profitability analysis and Optimization using BIG DATA analyticson aviation data sets under heuristic techniques. Procedia Comput. Sci. 2016, 87, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yang, Y.; Yang, L.; Su, H.; Zhang, G.; Wang, J. Civil aircraft big data platform. In Proceedings of the 2017 11th IEEE International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 30 January–1 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 328–333. [Google Scholar]
- Zhijun, W.; Caiyun, W. Security-as-a-service in big data of civil aviation. In Proceedings of the 2015 IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 10–11 October 2015; pp. 240–244. [Google Scholar]
- Alsrehin, N.O.; Klaib, A.F.; Magableh, A. Intelligent transportation and control systems using data mining and machine learning techniques: A comprehensive study. IEEE Access 2019, 7, 49830–49857. [Google Scholar] [CrossRef]
- Maeda, T.N.; Mori, J.; Hayashi, I.; Sakimoto, T.; Sakata, I. Comparative examination of network clustering methods for extracting community structures of a city from public transportation smart card data. IEEE Access 2019, 7, 53377–53391. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Liu, D.; Song, H. Applying Machine Learning to Aviation Big Data for Flight Delay Prediction. In Proceedings of the 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 665–672. [Google Scholar]
- Diao, Z.; Zhang, D.; Wang, X.; Xie, K.; He, S.; Lu, X.; Li, Y. A hybrid model for short-term traffic volume prediction in massive transportation systems. IEEE Trans. Intell. Transp. Syst. 2018, 20, 935–946. [Google Scholar] [CrossRef]
- Castro-Neto, M.; Jeong, Y.S.; Jeong, M.K.; Han, L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Exp. Syst. Appl. 2009, 36, 6164–6173. [Google Scholar] [CrossRef]
- Ke, R.; Li, Z.; Tang, J.; Pan, Z.; Wang, Y. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow. IEEE Trans. Intell. Transp. Syst. 2018, 20, 54–64. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, D.; Tu, L.; Zhang, F.; Xu, C.; Wang, Y.; Tian, C.; Li, X.; Huang, B.; Li, Z. A real-time passenger flow estimation and prediction method for urban bus transit systems. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3168–3178. [Google Scholar] [CrossRef]
- Feng, W.; Chen, H.; Zhang, Z. Short-term traffic flow prediction based on wavelet function and extreme learning machine. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 531–535. [Google Scholar]
- Wang, D.; Xiong, J.; Xiao, Z.; Li, X. Short-term traffic flow prediction based on ensemble real-time sequential extreme learning machine under non-stationary condition. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Zapata, L.P.; Flores, M.; Larios, V.; Maciel, R.; Antúnez, E.A. Estimation of people flow in public transportation network through the origin-destination problem for the South-Eastern corridor of Quito city in the smart cities context. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 181–186. [Google Scholar]
- Liu, R.; Wang, Y.; Zhou, H.; Qian, Z. Short-term passenger flow prediction based on wavelet transform and kernel extreme learning machine. IEEE Access 2019, 7, 158025–158034. [Google Scholar] [CrossRef]
- Said, A.M.; Abd-Elrahman, E.; Afifi, H. A comparative study on machine learning algorithms for green context-aware intelligent transportation systems. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras AI Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–5. [Google Scholar]
- Heghedus, C.; Chakravorty, A.; Rong, C. Neural network frameworks. Com$parison on public transportation prediction. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 842–849. [Google Scholar]
- Bazzan, A.L.; Chamby-Diaz, J.C.; Estevam, R.S.; Schmidt, L.D.A.; Pasin, M.; Samatelo, J.L.A.; Ribeiro, M.V.L. Using Information from Heterogeneous Sources and Machine Learning in Intelligent Transportation Systems. In Proceedings of the 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 2019; pp. 213–220. [Google Scholar]
- Seng, K.P.; Ang, L.M. A big data layered architecture and functional units for the multimedia Internet of Things. IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 500–512. [Google Scholar] [CrossRef]
- Seng, J.K.P.; Ang, K.L.M. Multimodal Emotion and Sentiment Modeling From Unstructured Big Data: Challenges, Architecture, & Techniques. IEEE Access 2019, 7, 90982–90998. [Google Scholar]
- Shoumy, N.J.; Ang, L.M.; Seng, K.P.; Rahaman, D.M.; Zia, T. Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals. J. Netw. Comput. Appl. 2019, 149, 102447. [Google Scholar] [CrossRef]
- Panovski, D.; Scurtu, V.; Zaharia, T. A neural network-based approach for public transportation prediction with traffic density matrix. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland, 26–28 November 2018; pp. 1–6. [Google Scholar]
- Panovski, D.; Zaharia, T. Real-time public transportation prediction with machine learning algorithms. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–4. [Google Scholar]
- Panovski, D.; Zaharia, T. Simulation-based vehicular traffic lights optimization. In Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 258–265. [Google Scholar]
- Liu, Y.; Liu, C.; Yuan, N.J.; Duan, L.; Fu, Y.; Xiong, H.; Xu, S.; Wu, J. Intelligent bus routing with heterogeneous human mobility patterns. Knowl. Inf. Syst. 2017, 50, 383–415. [Google Scholar] [CrossRef]
- Soares, E.F.D.S.; Revoredo, K.; Baião, F.; de MS Quintella, C.A.; Campos, C.A.V. A combined solution for real-time travel mode detection and trip purpose prediction. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4655–4664. [Google Scholar] [CrossRef]
- Minea, M.; Dumitrescu, C.; Chiva, I.C. Unconventional public transport anonymous data collection employing artificial intelligence. In Proceedings of the 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 1–6. [Google Scholar]
- Veres, M.; Moussa, M. Deep learning for intelligent transportation systems: A survey of emerging trends. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3152–3168. [Google Scholar] [CrossRef]
- Lin, F.; Fang, J.Y.; Hsieh, H.P. A Gaussian-Prioritized Approach for Deploying Additional Route on Existing Mass Transportation with Neural-Network-Based Passenger Flow Inference. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Siripanpornchana, C.; Panichpapiboon, S.; Chaovalit, P. Travel-time prediction with deep learning. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1859–1862. [Google Scholar]
- Wang, D.; Zhang, J.; Cao, W.; Li, J.; Zheng, Y. When will you arrive? Estimating travel time based on deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Zhang, H.; Wu, H.; Sun, W.; Zheng, B. Deeptravel: A neural network based travel time estimation model with auxiliary supervision. arXiv 2018, arXiv:1802.02147. [Google Scholar]
- Zhu, X.; Li, J.; Liu, Z.; Wang, S.; Yang, F. Learning transportation annotated mobility profiles from GPS data for context-aware mobile services. In Proceedings of the 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA, 27 June–2 July 2016; pp. 475–482. [Google Scholar]
- Jindal, I.; Qin, Z.T.; Chen, X.; Nokleby, M.; Ye, J. Optimizing taxi carpool policies via reinforcement learning and spatio-temporal mining. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1417–1426. [Google Scholar]
- Abedalla, A.; Fadel, A.; Tuffaha, I.; Al-Omari, H.; Omari, M.; Abdullah, M.; Al-Ayyoub, M. MTRecS-DLT: Multi-modal transport recommender system using deep learning and tree models. In Proceedings of the 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 22–25 October 2019; pp. 274–278. [Google Scholar]
- Ma, Y.; Zhang, Z. Travel Mode Choice Prediction Using Deep Neural Networks with Entity Embeddings. IEEE Access 2020, 8, 64959–64970. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, Q.; Zhong, T.; Chen, D.; Zhang, N. Variational Graph Neural Networks for Road Traffic Prediction in Intelligent Transportation Systems. IEEE Trans. Ind. Inform. 2020, 17, 2802–2812. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Zheng, Z.; Yang, Y.; Liu, J.; Dai, H.N.; Zhang, Y. Deep and embedded learning approach for traffic flow prediction in urban informatics. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3927–3939. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Guo, S.; Lin, Y.; Li, S.; Chen, Z.; Wan, H. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3913–3926. [Google Scholar] [CrossRef]
- Dai, G.; Ma, C.; Xu, X. Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU. IEEE Access 2019, 7, 143025–143035. [Google Scholar] [CrossRef]
- Zheng, G.; Chai, W.K.; Katos, V. An Ensemble Model for Short-Term Traffic Prediction in Smart City Transportation System. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Shukla, A.; Bhattacharya, P.; Tanwar, S.; Kumar, N.; Guizani, M. Dwara: A deep learning-based dynamic toll pricing scheme for intelligent transportation systems. IEEE Trans. Veh. Technol. 2020, 69, 12510–12520. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, F.; Shen, Q. Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit. IEEE Access 2019, 7, 147653–147671. [Google Scholar] [CrossRef]
- Zhu, K.; Xun, P.; Li, W.; Li, Z.; Zhou, R. Prediction of passenger flow in urban rail transit based on big data analysis and deep learning. IEEE Access 2019, 7, 142272–142279. [Google Scholar] [CrossRef]
- Sha, S.; Li, J.; Zhang, K.; Yang, Z.; Wei, Z.; Li, X.; Zhu, X. RNN-based subway passenger flow rolling prediction. IEEE Access 2020, 8, 15232–15240. [Google Scholar] [CrossRef]
- Li, J.; Peng, H.; Liu, L.; Xiong, G.; Du, B.; Ma, H.; Wang, L.; Bhuiyan, M.Z.A. Graph CNNs for urban traffic passenger flows prediction. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 29–36. [Google Scholar]
- Li, D.; Cao, J.; Li, R.; Wu, L. A Spatio-Temporal Structured LSTM Model for Short-Term Prediction of Origin-Destination Matrix in Rail Transit with Multisource Data. IEEE Access 2020, 8, 84000–84019. [Google Scholar] [CrossRef]
- Toqué, F.; Côme, E.; El Mahrsi, M.K.; Oukhellou, L. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 1071–1076. [Google Scholar]
- Machin, M.; Sanguesa, J.A.; Garrido, P.; Martinez, F.J. On the use of artificial intelligence techniques in intelligent transportation systems. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 332–337. [Google Scholar]
- Kumar, N.; Rahman, S.S.; Dhakad, N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4919–4928. [Google Scholar] [CrossRef]
- Lv, Z.; Lou, R.; Singh, A.K. AI Empowered Communication Systems for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4579–4587. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sinha, H.; Mustafa, R. A belief rule based expert system to control traffic signals under uncertainty. In Proceedings of the 2015 International Conference on Computer and Information Engineering (ICCIE), Rajshahi, Bangladesh, 26–27 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 83–86. [Google Scholar]
- Olwan, M.A.; Mostafa, A.A.; AbdELAty, Y.M.; Mahfouz, D.M.; Shehata, O.M.; Morgan, E.I. Behavior Evaluation of Vehicle Platoon via Different Fuzzy-X Tuned Controllers. In Proceedings of the 2020 8th EEE International Conference on Control, Mechatronics and Automation (ICCMA), Moscow, Russia, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 149–155. [Google Scholar]
- Wang, W.C.; Tai, C.C.; Wu, S.J.; Liu, Z.Y. A hybrid genetic algorithm with fuzzy logic controller for wireless power transmission system of electric vehicles. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2622–2627. [Google Scholar]
- Yeh, Y.C.; Tsai, M.S. Development of a genetic algorithm based electric vehicle charging coordination on distribution networks. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 283–290. [Google Scholar]
- Alaguvelu, R.; Curry, D.M.; Dagli, C.H. Fuzzy—Genetic algorithm approach to generate an optimal meta-architecture for a smart, safe & efficient city transportation system of systems. In Proceedings of the 2016 11th IEEE System of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Nayeem, M.A.; Islam, M.M.; Yao, X. Solving transit network design problem using many-objective evolutionary approach. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3952–3963. [Google Scholar] [CrossRef]
- Tang, J.; Liu, F.; Zou, Y.; Zhang, W.; Wang, Y. An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2340–2350. [Google Scholar] [CrossRef]
- Bao, D. A multi-index fusion clustering strategy for traffic flow state identification. IEEE Access 2019, 7, 166404–166409. [Google Scholar] [CrossRef]
- Leung, C.K.; Elias, J.D.; Minuk, S.M.; de Jesus, A.R.R.; Cuzzocrea, A. An Innovative Fuzzy Logic-Based Machine Learning Algorithm for Supporting Predictive Analytics on Big Transportation Data. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Ai, C.; Jia, L.; Hong, M.; Zhang, C. Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow. IEEE Access 2020, 8, 69461–69470. [Google Scholar] [CrossRef]
- Yin, H.; Wong, S.; Xu, J.; Wong, C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C Emerg. Technol. 2002, 10, 85–98. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J. A Vehicle Routing Problem Model With Multiple Fuzzy Windows Based on Time-Varying Traffic Flow. IEEE Access 2020, 8, 39439–39444. [Google Scholar] [CrossRef]
- Sun, F.; Wang, X.L.; Zhang, Y.; Liu, W.X.; Zhang, R.J. Analysis of bus trip characteristic analysis and demand forecasting based on GA-NARX neural network model. IEEE Access 2020, 8, 8812–8820. [Google Scholar] [CrossRef]
- Thiranjaya, C.; Rushan, R.; Udayanga, P.; Kaushalya, U.; Rankothge, W. Towards a Smart City: Application of Optimization for a Smart Transportation Management System. In Proceedings of the 2018 IEEE International Conference on Information and Automation for Sustainability (ICIAfS), Colombo, Sri Lanka, 21–22 December 2018; pp. 1–6. [Google Scholar]
- Yang, H.J.; Hu, X. Wavelet neural network with improved genetic algorithm for traffic flow time series prediction. Optik 2016, 127, 8103–8110. [Google Scholar] [CrossRef]
- Qu, Y.; Lin, Z.; Li, H.; Zhang, X. Feature recognition of urban road traffic accidents based on GA-XGBoost in the context of big data. IEEE Access 2019, 7, 170106–170115. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.; Gong, D.; Zhang, H.; Tu, Q. An improved multi-objective quantum-behaved particle swarm optimization for railway freight transportation routing design. IEEE Access 2019, 7, 157353–157362. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Z.; Wang, L.; Zhang, H. Resource-Expandable Railway Freight Transportation Routing Optimization. IEEE Access 2019, 7, 161607–161620. [Google Scholar] [CrossRef]
- Liu, W. Route optimization for last-mile distribution of rural E-commerce logistics based on ant colony optimization. IEEE Access 2020, 8, 12179–12187. [Google Scholar] [CrossRef]
Classification Descriptor | References |
---|---|
Overview of Smart City Transportation and Comparison | |
Intelligent transportation | [18,19] |
Transportation system architectures | [20,21,22,23,24] |
Traffic monitoring and management | [25,26,27,28] |
Social transportation and crowdsourcing | [29,30,31] |
Platooning for sustainable transportation | [32,33] |
UAV-enabled transport for smart city | [34] |
Ridesharing in smart city | [35] |
Multi-station vehicle sharing in smart city | [36] |
Waste transportation in smart city | [37] |
Emerging Technologies for Smart City Transportation | |
Impacts of geo-information on smart city transportation | [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66] |
Data-driven transportation and Big data technology | [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136] |
Machine learning approaches for smart city transportation | [137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159] |
Integrated deep learning towards smart city transportation | [160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182] |
Transportation empowered by AI and other techniques | [183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205] |
Data Sources | Data Collection Tools | Data Type | Applications | Ref. |
---|---|---|---|---|
Smart card | Smart card | OD flows, travel time | Passenger travel behaviour pattern, public transportation services planning and management | [70] |
Video | Video camera | Vehicle position, vehicle speed, vehicle density, vehicle classification, plate number | Traffic flow detection, and monitoring, vehicle identification, incident detection, vehicle emission modelling | [70,72] |
GPS | GPS | Vehicle position, vehicle density, vehicle classification, road quality | Navigation services, traffic monitoring, travel mode detection, travel delay measurement, routing optimisation, | [73] |
Road site sensors | Pneumatic road tubes, inductive magnetic loops, microwave radars, piezoelectric loop arrays, ultrasonic sensors, acoustic sensors, IR sensors, light detection and ranging (LIDAR) sensors, toll plazas, vehicle detectors, | Vehicle position, vehicle flow, vehicle density, vehicle speed, vehicle classification, trip time | Vehicle counting, and identification, traffic density and speed estimation, congestion prevention and route planning, short-time forecasting, parking demand modelling | [74] |
Floating car sensors | Automatic vehicle identification (AVI), transponder, license plate recognition (LPR) | OD flow, travel time | Travel route selection and estimation, driver monitoring, driver behaviour modelling | [75] |
Wide area sensor | GPS, cell phone tracking, video processing sound recording, photogrammetric processing, space-based radar, airborne sensors, | OD flow, travel time | Wide area traffic monitoring | [71,75] |
Connected and autonomous vehicles (CAVs) and VANET | Various sensors | Coordinates, speed, acceleration, safety data | Online vehicle diagnosis, smart charging planning, travel delay reduction, safety performance enhancement, congestion and accident detection, traffic flow prediction | [76,77,78] |
Passive collection | Social media (tweeter, Facebook, Weibo,), mobile phone, collaborative applications | Travel time, OD flow | Real-time congestion avoidance routing, OD estimation | [79,80,81] |
Other sources | Smart grid, smart meters, cellular service, dedicated tests | Electric and energy consumption, location, channel data | Performance and efficiency improvement, dashboard analysis | [82,83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, K.L.-M.; Seng, J.K.P.; Ngharamike, E.; Ijemaru, G.K. Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches. ISPRS Int. J. Geo-Inf. 2022, 11, 85. https://doi.org/10.3390/ijgi11020085
Ang KL-M, Seng JKP, Ngharamike E, Ijemaru GK. Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches. ISPRS International Journal of Geo-Information. 2022; 11(2):85. https://doi.org/10.3390/ijgi11020085
Chicago/Turabian StyleAng, Kenneth Li-Minn, Jasmine Kah Phooi Seng, Ericmoore Ngharamike, and Gerald K. Ijemaru. 2022. "Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches" ISPRS International Journal of Geo-Information 11, no. 2: 85. https://doi.org/10.3390/ijgi11020085
APA StyleAng, K. L.-M., Seng, J. K. P., Ngharamike, E., & Ijemaru, G. K. (2022). Emerging Technologies for Smart Cities’ Transportation: Geo-Information, Data Analytics and Machine Learning Approaches. ISPRS International Journal of Geo-Information, 11(2), 85. https://doi.org/10.3390/ijgi11020085