Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy
Abstract
:1. Introduction
1.1. Lane-Level Data Acquisition of Road Geometry
1.2. Lane-Level Road Network Generation with a Probe Vehicle
1.3. Spatial Metrics of Trajectory Similarity
2. Preliminaries
2.1. Definitions
2.1.1. Trajectory Points and Segments
2.1.2. Closest Distance between Two Trajectories
2.1.3. Trajectory Similarity
2.2. Data Acquisition
3. Geometric-Based Approach for Inferring Lane-Level Road Networks
3.1. Overview
3.2. Lane Graph Processing
3.3. Intersection Graph Construction
4. TSJ Pruning-Based Algorithm for Inferring Lane Geometry
4.1. Algorithm Framework
Algorithm 1 TSJ Pruning Based Framework |
Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid, distance similarity: SimD, angle similarity: SimAng |
Output: all lane centerline trajectory points |
1: compute AngT, AngS |
2: for each point in T do |
3: compute CandSetpd |
4: end for |
5: compute CandSubSetpd |
6: for point in CandSubSetpd and T do |
7: compute CandSubSetpp |
8: end for |
9: repeat filter in CandSubSetpp |
10: until CandSubSetpp |
11: compute LLane, RLane |
12: return all lane centerline trajectory points |
4.2. TSJ Pruning Strategy
4.2.1. Candidate Pair Fast Searching
4.2.2. TSJ Pruning Based on Different Distances
Algorithm 2 TSJ Pruning Algorithm |
Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid, the set of the nearest point distance candidate pairs: CandSetpd, angle similarity: SimAng |
Output: the candidate set after pruning: CandSubSetpd |
1: computer PhaseHwpd |
2: for each point in T do |
3: if there are more than 2 consecutive same PhaseHwpd then |
4: if trajectories are similar then |
5: delete points in the same PhaseHwpd interval |
6: update CandSetpd |
7: end if |
8: end if |
9: end for |
10: return CandSubSetpd |
4.2.3. Validation, Refinement, and Calculation
Algorithm 3 Validation, Refinement, and Calculation |
Input: angle similarity: SimAng, the candidate set after pruning: CandSubSetpd, distance similarity: SimD, lane centerline trajectory: T, road segment centerline trajectory: S |
Output: all lane centerline trajectory points |
1: computer CandSetpp |
2: computer PhaseHwpp |
3: for each point in CandSetpp do |
4: if there are more than 2 consecutive same PhaseHwpp then |
5: if trajectories are similar then |
6: delete points in the same PhaseHwpp interval |
7: update CandSetpp |
8: end if |
9: end if |
10: end for |
11: CandSubSetpp ← CandSetpp |
12: compute LLane, RLane |
13: return all lane centerline trajectory points |
4.3. Time Complexity Analysis of the Algorithm
5. Experiments
5.1. Data and Experimental Setting
5.2. Generation of Lane-Level Road Network
5.2.1. Experimental Data Acquisition
5.2.2. Visualization of Road Network Graphics
5.3. Performance of the TSJ-PS-Based Algorithm
5.3.1. Adopted Comparison Algorithm
Algorithm 4 grid-based Algorithm |
Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid |
Output: all lane centerline trajectory points |
1: computer GridStep |
2: computer GridT, GridS |
3: computer AngT, AngS |
4: computer BoundaryCoorS |
5: for each point in GridT do |
6: compute NearestPoint |
7: compute filterindex |
8: end for |
9: computer vertical point in filterindex |
10: computer all lane centerline trajectory points |
11: return all lane centerline trajectory points |
5.3.2. Accuracy Evaluation of Road Network Graphics
5.3.3. Algorithm Efficiency
5.3.4. Effect of Similarity of Angles (SimAng)
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brubaker, M.A.; Geiger, A.; Urtasun, R. Map-Based Probabilistic Visual Self-Localization. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Gruyer, D.; Belaroussi, R.; Revilloud, M. Accurate lateral positioning from map data and road marking detection. Expert Syst. Appl. 2016, 43, 1–8. [Google Scholar] [CrossRef]
- Dominguez, S.; Khomutenko, B.; Garcia, G.; Martinet, P. An Optimization Technique for Positioning Multiple Maps for Self-Driving Car’s Autonomous Navigation. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18 September 2015; pp. 2694–2699. [Google Scholar]
- Chen, S.; Shang, J.; Zhang, S.; Zheng, N. Cognitive Map-Based Model: Toward A Developmental Framework for Self-Driving Cars. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Yoneda, K.; Yanase, R.; Aldibaja, M.; Suganuma, N.; Sato, K. Mono-Camera Based Vehicle Localization Using Lidar Intensity Map for Automated Driving. Artif. Life Robot. 2019, 24, 147–154. [Google Scholar] [CrossRef]
- Häne, C.; Lee, G.H.; Fraundorfer, F.; Furgale, P.; Sattler, T.; Pollefeys, M.; Heng, L. 3D visual perception for self-driving cars using a multi-camera system: Calibration, mapping, localization, and obstacle detection. Image Vis. Comput. 2017, 68, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Editorial Department on China Journal of Highway and Transport. Review on China’s Automotive Engineering Research Progress:2017. Chin. J. Highw. Transp. 2017, 30, 1–197. [Google Scholar]
- Liu, C.; Jiang, K.; Yang, D.; Xiao, Z. Design of a multi-layer lane-level map for vehicle route planning. In Proceedings of the MATEC Web of Conferences, Hong Kong, China, 1–3 July 2017; p. 03001. [Google Scholar]
- Wang, M.; Guo, B.; Li, D.; Gong, J. Multiple Sensors and Road Network Used for Mobile Navigating. Geomat. Inf. Sci. Wuhan Univ. 2001, 26, 205–208. [Google Scholar]
- Poggenhans, F.; Pauls, J.-H.; Janosovits, J.; Orf, S.; Naumann, M.; Kuhnt, F.; Mayr, M. Lanelet2: A high-definition map framework for the future of automated driving. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1672–1679. [Google Scholar]
- Jiang, K.; Yang, D.; Liu, C.; Zhang, T.; Xiao, Z. A Flexible Multi-Layer Map Model Designed for Lane-Level Route Planning in Autonomous Vehicles. Engineering 2019, 5, 305–318. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Li, J.; Wang, C.; Wang, R.; Chapman, M.A. Mobile Laser Scanned Point-Clouds for Road Object Detection and Extraction: A Review. Remote Sens. 2018, 10, 1531. [Google Scholar] [CrossRef]
- Wu, T.; Xiang, L.; Gong, J. Updating Road Networks by Local Renewal from GPS Trajectories. ISPRS Int. J. Geo-Inf. 2016, 5, 163. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Xing, X.; Yang, F.; Rong, W.; Zhu, H. Extraction of Road Intersections from GPS Traces Based on the Dominant Orientations of Roads. ISPRS Int. J. Geo-Inf. 2017, 6, 403. [Google Scholar] [CrossRef]
- Yang, X.; Tang, L.; Niu, L.; Zhang, X.; Li, Q. Generating lane-based intersection maps from crowdsourcing big trace data. Transp. Res. Part C Emerg. Technol. 2018, 89, 168–187. [Google Scholar] [CrossRef]
- Uduwaragoda, E.; Perera, A.; Dias, S. Generating lane level road data from vehicle trajectories using kernel density estimation. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 384–391. [Google Scholar]
- Chen, Z.; Ellis, T. Automatic lane detection from vehicle motion trajectories. In Proceedings of the 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, Krakow, Poland, 27–30 August 2013; pp. 466–471. [Google Scholar]
- Chen, Z.; Yan, Y.; Ellis, T. Lane detection by trajectory clustering in urban environments. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 3076–3081. [Google Scholar]
- Qiu, J.; Wang, R. Road Map Inference: A Segmentation and Grouping Framework. ISPRS Int. J. Geo-Inf. 2016, 5, 130. [Google Scholar] [CrossRef]
- Yang, X.; Tang, L.; Stewart, K.; Dong, Z.; Zhang, X.; Li, Q. Automatic change detection in lane-level road networks using GPS trajectories. Int. J. Geogr. Inf. Sci. 2018, 32, 601–621. [Google Scholar] [CrossRef]
- Jo, K.; Sunwoo, M. Generation of a Precise Roadway Map for Autonomous Cars. IEEE Trans. Intell. Transp. Syst. 2013, 15, 925–937. [Google Scholar] [CrossRef]
- Betaille, D.; Toledo-Moreo, R. Creating Enhanced Maps for Lane-Level Vehicle Navigation. IEEE Trans. Intell. Transp. Syst. 2010, 11, 786–798. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, X.; Ghogho, M.; Ayanoglu, E.; Huang, T.; Zheng, N. Guest Editorial Special Issue on IoT on the Move: Enabling Technologies and Driving Applications for Internet of Intelligent Vehicles (IoIV). IEEE Internet Things J. 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Ge, X. Ultra-Reliable Low-Latency Communications in Autonomous Vehicular Networks. IEEE Trans. Veh. Technol. 2019, 68, 5005–5016. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, H.; Guo, C.; Zhang, H.; Zuo, W.; Yang, C. Progress and Consideration of High Precision Road Navigation Map. Eng. Sci. 2018, 20, 99–105. [Google Scholar] [CrossRef]
- Gwon, G.-P.; Hur, W.-S.; Kim, S.-W.; Seo, S.-W. Generation of a Precise and Efficient Lane-Level Road Map for Intelligent Vehicle Systems. IEEE Trans. Veh. Technol. 2017, 66, 4517–4533. [Google Scholar] [CrossRef]
- Guo, C.; Kidono, K.; Meguro, J.; Kojima, Y.; Ogawa, M.; Naito, T. A Low-Cost Solution for Automatic Lane-Level Map Generation Using Conventional In-Car Sensors. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2355–2366. [Google Scholar] [CrossRef]
- Zhang, T.; Arrigoni, S.; Garozzo, M.; Yang, D.-G.; Cheli, F. A lane-level road network model with global continuity. Transp. Res. Part C: Emerg. Technol. 2016, 71, 32–50. [Google Scholar] [CrossRef]
- Zheng, L.; Li, B.; Zhang, H.; Shan, Y.; Zhou, J. A High-Definition Road-Network Model for Self-Driving Vehicles. ISPRS Int. J. Geo-Inf. 2018, 7, 417. [Google Scholar] [CrossRef]
- Bernhardsen, T. Geographic Information Systems: An Introduction; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Chehreghan, A.; Abbaspour, R.A. An Assessment of The Efficiency of Spatial Distances in Linear Object Matching on Multi-Scale, Multi-Source Maps. Int. J. Image Data Fusion 2017, 9, 95–114. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, H.; Xiao, X.; Li, X. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems. Sensors 2017, 17, 524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Zhao, W. An Improved Probabilistic Relaxation Method for Matching Multi-Scale Road Networks. Int. J. Digit. Earth 2018, 11, 635–655. [Google Scholar] [CrossRef]
- Xing, R.; Wu, F.; Zhang, H.; Gong, X. Dual-carriageway Road Extraction Based on Facing Project Distance. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 152–158. [Google Scholar] [CrossRef]
- Ta, N.; Li, G.; Xie, Y.; Li, C.; Hao, S.; Feng, J. Signature-Based Trajectory Similarity Join. IEEE Trans. Knowl. Data Eng. 2017, 29, 870–883. [Google Scholar] [CrossRef]
- Cao, X.; Xu, J.; Chen, D.; Lü, Y.; Xu, J.; Li, L.; Li, B.; Zheng, L.; Li, M.; Liu, B.; et al. Framework Data Exchange Format for Navigation Electronic Map; Standards Press of China: Beijing, China, 2017. [Google Scholar]
- Zhang, T.; Yang, D.; Li, T.; Li, K.; Lian, X. An improved virtual intersection model for vehicle navigation at intersections. Transp. Res. Pt. C-Emerg. Technol. 2011, 19, 413–423. [Google Scholar] [CrossRef]
- Schindler, A.; Maier, G.; Pangerl, S. Exploiting arc splines for digital maps. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1–6. [Google Scholar]
- Brisan, C.; Vasiu, R.-V.; Munteanu, L. A modular road auto-generating algorithm for developing the road models for driving simulators. Transp. Res. Part C: Emerg. Technol. 2013, 26, 269–284. [Google Scholar] [CrossRef]
- Chen, A.; Ramanandan, A.; Farrell, J.A. High-precision lane-level road map building for vehicle navigation. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 1035–1042. [Google Scholar]
- Jo, K.; Lee, M.; Kim, C.; Sunwoo, M. Construction process of a three-dimensional roadway geometry map for autonomous driving. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 1414–1434. [Google Scholar] [CrossRef]
Method | Mean (m) | Std (m) | RMSE (m) | Max (m) |
---|---|---|---|---|
Unimproved | 0.37 | 0.43 | 0.57 | 1.89 |
Grid-based | 0.46 | 0.51 | 0.63 | 1.99 |
Proposed | 0.51 | 0.52 | 0.69 | 1.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Song, H.; Li, B.; Zhang, H. Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy. ISPRS Int. J. Geo-Inf. 2019, 8, 416. https://doi.org/10.3390/ijgi8090416
Zheng L, Song H, Li B, Zhang H. Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy. ISPRS International Journal of Geo-Information. 2019; 8(9):416. https://doi.org/10.3390/ijgi8090416
Chicago/Turabian StyleZheng, Ling, Huashan Song, Bijun Li, and Hongjuan Zhang. 2019. "Generation of Lane-Level Road Networks Based on a Trajectory-Similarity-Join Pruning Strategy" ISPRS International Journal of Geo-Information 8, no. 9: 416. https://doi.org/10.3390/ijgi8090416