Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation
Abstract
:Highlights
- Clustering analysis of meteorological parameters was used to characterize DTR variations
- DTR decreased over the years due to the large increase of minimum daily temperature
- Low DTR was associated with high net longwave radiation at night and low net longwave radiation during the daytime
- DTR was up to 4 °C higher during the warmer months
- High DTR was associated with high daytime net longwave radiation and low cloudiness
1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. DTR Index and Statistical Analysis
2.3. Urbanization and Cluster Analysis for Local Climatic Parameters
3. Results
3.1. DTR Trend Analysis
3.2. Urbanization
3.3. Cluster Analysis for Regional Climatic Parameters
4. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- EUROSTAT Eurostat Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 30 April 2019).
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnef, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ. Eng. Manag. 2015. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 2017. [Google Scholar] [CrossRef]
- Karl, T.R.; Jones, P.D.; Knight, R.W.; Kukla, G.; Plummer, N.; Razuvayev, V.N.; Gallo, K.P.; Lindesay, J.A.; Charlson, R.J.; Peterson, T.C. Asymmetric trends of daily maximum and minimum temperature: Empirical evidence and possible causes. Bull. Am. Meteorol. Soc. 1993, 74, 1007–1023. [Google Scholar] [CrossRef]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef]
- New, M.; Hulme, M.; Jones, P. Representing twentieth-century space-time climate variability. Part II: Development of 1901—96 monthly grids of terrestrial surface climate. J. Clim. 2000. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997. [Google Scholar] [CrossRef]
- Gallo, K.P.; Owen, T.W.; Easterling, D.R.; Jamason, P.F. Temperature trends of the U.S. historical climatology network based on satellite-designated land use/land cover. J. Clim. 1999, 12, 1344–1348. [Google Scholar] [CrossRef]
- Wang, K.; Ye, H.; Chen, F.; Xiong, Y.; Wang, C. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 2012, 25, 1022–1027. [Google Scholar] [CrossRef]
- Kueh, M.T.; Lin, C.Y.; Chuang, Y.J.; Sheng, Y.F.; Chien, Y.Y. Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 1999. [Google Scholar] [CrossRef]
- Zhou, L.; Dai, A.; Dai, Y.; Vose, R.S.; Zou, C.Z.; Tian, Y.; Chen, H. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dyn. 2009. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure Appl. Geophys. 2017. [Google Scholar] [CrossRef]
- Nykjaer, L. Mediterranean Sea surface warming 1985–2006. Clim. Res. 2009. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014. [Google Scholar] [CrossRef]
- Founda, D.; Pierros, F.; Petrakis, M.; Zerefos, C. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmos. Res. 2015, 161, 1–13. [Google Scholar] [CrossRef]
- Sun, X.; Ren, G.; You, Q.; Ren, Y.; Xu, W.; Xue, X.; Zhan, Y.; Zhang, S.; Zhang, P. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- Whan, K.; Zscheischler, J.; Orth, R.; Shongwe, M.; Rahimi, M.; Asare, E.O.; Seneviratne, S.I. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extrem. 2015, 9, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Bilbao, J.; Roman, R.; de Miguel, A. Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate 2019, 7. [Google Scholar] [CrossRef]
- Price, C.; Michaelides, S.; Pashiardis, S.; Alpert, P. Long term changes in diurnal temperature range in Cyprus. Atmos. Res. 1999, 51, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Diaz, H.F.; Kukla, G. Urbanization: Its Detection and Effect in the United States Climate Record. J. Clim. 2002. [Google Scholar] [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K.; Studer, M.; Roudier, P.; Gonzalez, J. Cluster: ‘Finding Groups in Data’: Cluster Analysis Extended Rousseeuw et Al. (version 2.0.6). 2017. Available online: http://cran.us.r-project.org/web/packages/cluster/index.html.
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. https://CRAN.R-project.org/package=factoextra, R package version 1.0.3, 2016.
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R.B. Evidence for a significant urbanization effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Vose, R.S.; Dai, Y. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proc. Natl. Acad. Sci. USA 2007, 104, 17937–17942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, G.; Paluzzi, P.; Oliver, J.P. Systematic Error in the Synoptic Sky Cover Record of the South Pole. J. Clim. 2002. [Google Scholar] [CrossRef]
- Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Clim. 2004. [Google Scholar] [CrossRef]
- He, B.; Huang, L.; Wang, Q. Precipitation deficits increase high diurnal temperature range extremes. Sci. Rep. 2015, 5, 12004. [Google Scholar] [CrossRef] [PubMed]
- Stenchikov, G.L.; Robock, A. Diurnal asymmetry of climatic response to increased CO2 and aerosols: Forcings and feedbacks. J. Geophys. Res. Atmos. 1995, 100, 26211–26227. [Google Scholar] [CrossRef]
- Yeo, H.; Park, S.J.; Kim, B.M.; Shiobara, M.; Kim, S.W.; Kwon, H.; Kim, J.H.; Jeong, J.H.; Park, S.S.; Choi, T. The observed relationship of cloud to surface longwave radiation and air temperature at Ny-Ålesund, Svalbard. Tellus B Chem. Phys. Meteorol. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982. [Google Scholar] [CrossRef]
J | F | M | A | M | J | J | A | S | O | N | D | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAXT | 0.58 | 0.67 | 0.71 | 0.90 | 0.06 | 0.09 | 0.08 | 0.23 | 0.55 | 0.81 | 0.17 | 0.05 |
MINT | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 |
MEANT | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | ≈0 | 0.07 | 0.56 | ≈0 |
Tau (τ) | 2-Sided p-Value | |
---|---|---|
Nicosia’s urban station | ||
MAXT | 0.07 | 0.048 |
MINT | 0.32 | <2.22e-16 |
DTR | −0.24 | 2.34e-10 |
Nicosia’s suburban station | ||
MAXT | 0.11 | 0.003 |
MINT | 0.41 | <2.22e-16 |
DTR | −0.36 | <2.22e-16 |
Cold period (NDJFMA) | Warm period (MJJASO) | |||||
---|---|---|---|---|---|---|
Cluster | 1 | 2 | 3 | 1 | 2 | 3 |
DTR [°C] | 11.3 | 13.2 | 9.1 | 13.6 | 11.9 | 13.5 |
Downward longwave [W/m2] | 248.0 | 286.2 | 285.8 | 351.4 | 305.9 | 321.7 |
Upward longwave [W/m2] | 314.5 | 353.7 | 340.2 | 427.3 | 366.8 | 396.5 |
Net longwave [W/m2] | −66.5 | −67.5 | −54.5 | −75.9 | −60.9 | −74.8 |
Precipitation [mm] | 0.7 | 0.2 | 2.5 | 0.1 | 2.2 | 0.1 |
Water vapor [kg/m3] | 0.0071 | 0.0098 | 0.0084 | 0.018 | 0.012 | 0.013 |
Maximum temperature [°C] | 16.6 | 25.2 | 18.5 | 37.3 | 27.3 | 32.2 |
Minimum temperature [°C] | 5.3 | 12.0 | 9.4 | 23.7 | 15.4 | 18.7 |
Cold Period (NDJFMA) | Warm Period (MJJASO) | |||||
---|---|---|---|---|---|---|
Cluster | 1 | 2 | 3 | 1 | 2 | 3 |
DTR [°C] | 13.5 | 11.2 | 9.0 | 13.3 | 13.6 | 12.3 |
Downward longwave [W/m2] | 352.3 | 317.1 | 366.4 | 390.4 | 432.5 | 419.9 |
Upward longwave [W/m2] | 515.0 | 420.6 | 421.7 | 601.6 | 672.0 | 624.6 |
Net longwave [W/m2] | −162.7 | −103.5 | −55.3 | −211.2 | −239.5 | −204.7 |
Precipitation [mm] | 0.0 | 0.17 | 3.1 | 0.01 | 0.08 | 1.3 |
Water vapor [kg/m3] | 0.0097 | 0.0077 | 0.010 | 0.013 | 0.017 | 0.016 |
Maximum temperature [°C] | 24.7 | 16.8 | 18.0 | 30.6 | 37.1 | 33.7 |
Minimum temperature [°C] | 11.2 | 5.5 | 9.0 | 17.2 | 23.5 | 21.3 |
UVA [W/m2] | 0.49 | 0.39 | 0.25 | 0.59 | 0.63 | 0.51 |
UVB [W/m2] | 0.03 | 0.02 | 0.01 | 0.05 | 0.05 | 0.04 |
Cloudiness [oktas] | 3 | 3 | 6 | 3 | 2 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation. Climate 2019, 7, 89. https://doi.org/10.3390/cli7070089
Pyrgou A, Santamouris M, Livada I. Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation. Climate. 2019; 7(7):89. https://doi.org/10.3390/cli7070089
Chicago/Turabian StylePyrgou, Andri, Mattheos Santamouris, and Iro Livada. 2019. "Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation" Climate 7, no. 7: 89. https://doi.org/10.3390/cli7070089