Impact of Indices on Stock Price Volatility of BRICS Countries During Crises: Comparative Study
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Data
3.2. Classification Techniques
Measures of Classifier Performance
3.3. Multiple Linear Regression (MLR)
4. Findings and Discussion
4.1. Stock Price Volatility of BRICS Countries
4.2. Classification of SPV Data for BRICS Countries
4.2.1. Naïve Bayes
4.2.2. Simple Logistic
4.2.3. Meta-Bagging
4.2.4. Meta-Classification via Regression
4.2.5. Meta-Logit Boost
4.2.6. Random Forest
4.2.7. Random Tree
4.2.8. Comparison of the Classifiers
4.3. Crises
4.3.1. The 2007–2010 Global Financial Crisis
MLR Results for 2007–2010
MLR Results for 2018–2021
Comparing MLR Results for 2007–2010 and 2018–2021 Crises
Random Tree Results for 2007–2010
Random Tree Results for 2018–2021
Comparing MLR and Random Tree Outputs for 2007–2010
Comparison of MLR and Random Tree for 2018–2021
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Adeniyi, O., & Kumeka, T. (2020). Exchange rate and stock prices in Nigeria: Firm-level evidence. Journal of African Business, 21(2), 235–263. [Google Scholar] [CrossRef]
- Ameer, S., Nor, S. M., Ali, S., & Zawawi, N. H. M. (2023). The impact of COVID-19 on BRICS and MSCI emerging markets efficiency: Evidence from MF-DFA. Fractal and Fractional, 7(7), 519. [Google Scholar] [CrossRef]
- Akrur, B. (2016). Brazil: Yearning for the good times. Global economic outlook, Q2 2016. (Archived from the original on 23 August 2016. Retrieved 21 May 2016). Deloitte University Press. Available online: https://en.wikipedia.org/wiki/2014_Brazilian_economic_crisis#cite_note-1/ (accessed on 19 February 2023).
- Arfaoui, M., & Rejeb, A. B. (2017). Oil, Gold, US dollar and Stock market interdependencies: A global analytical insight. European Journal of Management and Business Economics, 26, 278–293. [Google Scholar] [CrossRef]
- Assous, H. F., Al-Rousan, N., Al-Najjar, D., & Al-Najjar, H. (2020). Can international market indices estimate TASI’s movements? The ARIMA model. Journal of Open Innovation: Technology, Market, and Complexity, 6, 27. [Google Scholar] [CrossRef]
- Ataman, G., & Kahraman, S. (2022). Stock market prediction in BRICS countries using linear regression and artificial neural network hybrid models. The Singapore Economic Review, 67(2), 635–653. [Google Scholar] [CrossRef]
- Attilio, L., Assis, J. R., Faria, M., & Prado, M. (2024). The impact of the US stock market on the BRICS and G7: A GVAR approach. Journal of Economic Studies, 51(7), 1481–1506. [Google Scholar] [CrossRef]
- Awolusi, O. D., & Mbonigaba, J. (2020). Economic growth and environmental sustainability within the BRICS countries: A comparative analysis. International Journal of Green Economics, 14(3), 207. [Google Scholar] [CrossRef]
- Bagchi, B. (2017). Volatility spillovers between crude oil price and stock markets: Evidence from BRIC countries. International Journal of Emerging Markets, 12(2), 352–365. [Google Scholar] [CrossRef]
- Balcilar, M., Roubaud, D., Usman, O., & Wohar, M. E. (2021). Moving out of the linear rut: A period-specific and regime-dependent exchange rate and oil price pass-through in the BRICS countries. Energy Economics, 98, 105249. [Google Scholar] [CrossRef]
- Bello, J., Guo, J., & Newaz, M. K. (2022). Financial contagion effects of major crises in African stock markets. International Review of Financial Analysis, 82, 102128. [Google Scholar] [CrossRef]
- Bello, W. (2015). The BRICS: Competition and crisis in the global economy, Rosa-Luxemburg, Stiftung. Available online: https://www.rosalux.de/en/publication/id/4047/the-brics-competition-and-crisis-in-the-global-economy (accessed on 1 March 2024).
- Bhutto, S. A., Rajper, Z. A., & Kishan, J. (2020). The essentials of financial policies and interest rate shocks in downturn and upswing of stock market: A cointegration and causality analysis. International Journal of Psychosocial Rehabilitation, 24(7), 10880–10892. [Google Scholar]
- Boubaker, H., & Larbi, O. B. (2022). Dynamic dependence and hedging strategies in BRICS stock markets with oil during crises. Economic Analysis and Policy, 76, 263–279. [Google Scholar] [CrossRef]
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. [Google Scholar] [CrossRef]
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. [Google Scholar] [CrossRef]
- Brewin, D. G. (2021). The impact of COVID-19 on the grains and oilseeds sector: 12 months later. Canadian Journal of Agricultural Economics, 69, 197–202. Available online: https://doi-org.ezproxy.lib.torontomu.ca/10.1111/cjag.12281 (accessed on 18 March 2023). [CrossRef]
- Castello, O., & Resta, M. (2022). Modeling the yield curve of BRICS countries: Parametric vs. machine learning techniques. Risks, 10, 36. [Google Scholar] [CrossRef]
- Chkili, W. (2016). Dynamic correlations and hedging effectiveness between gold and stock markets: Evidence for BRICS countries. Research in International Business and Finance, 38, 22–34. [Google Scholar] [CrossRef]
- Chkili, W., & Nguyen, D. K. (2014). Exchange rate movements and stock market returns in a regime-switching environment: Evidence for BRICS countries. Research in International Business and Finance, 31, 46–56. [Google Scholar] [CrossRef]
- Chong, T., Sam, T.-L., Cheng, H. S., & Wong, E. N.-Y. (2010). A comparison of stock market efficiency of the BRIC countries. Technology and Investment, 1, 235–238. [Google Scholar] [CrossRef]
- Claessens, S., & Kose, A. (2013). Financial crises explanations, types, and implications. IMF Working Paper, 13, wp1328. [Google Scholar] [CrossRef]
- Data 1: (2023) World Bank database. (2023). Available online: https://databank.worldbank.org (accessed on 8 February 2024).
- Data 2: World Bank data, (2022): World development indicator. Database of world development indicators. World Bank national accounts data, and OECD national accounts data files. (2022). Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?locations=BR-CN-IN-RU-ZA (accessed on 28 January 2024).
- Data 3: OECD data. (2022). Available online: https://data.oecd.org/gdp/investment-gfcf.htm#indicator-chart (accessed on 1 May 2024).
- Data 4: OECD. Inflation (CPI) (indicator). Cross-country indexes, period-over-period change. (2024, July 19). Available online: https://www.oecd.org/en/data/indicators/inflation-cpi.html (accessed on 17 November 2024). [CrossRef]
- Data 5: IMF, world economic outlook. n.d. (). Available online: www.imf.org (accessed on 6 July 2024).
- Demers, E., Hendrikse, J., Joos, P., & Lev, B. (2021). ESG did not immunize stocks during the COVID-19 crisis, but investments in intangible assets did. Journal of Business, Finance & Accounting, 48, 433–462. [Google Scholar]
- Devi, T. S., & Sundaram, K. M. (2016). A comparative analysis of meta and tree classification algorithms using weka. International Research Journal of Engineering and Technology, 3(11), 77–83. [Google Scholar]
- Duignan, B. (2024). Financial crisis of 2007–2008. Encyclopedia Britannica. Available online: https://www.britannica.com/money/financial-crisis-of-2007-2008 (accessed on 5 July 2024).
- Elmi, Z., Faez, K., Goodarzi, M., & Goudarzi, N. (2009). Feature selection method based on fuzzy entropy for regression in QSAR studies. Molecular Physics, 107(17), 1787–1798. [Google Scholar] [CrossRef]
- Fan, X., Liu, H., Wang, Y., Wan, Y., & Zhang, D. (2022). Models of internationalization of higher education in developing countries—A perspective of international research collaboration in BRICS countries. Sustainability, 14(20), 13659. [Google Scholar] [CrossRef]
- Fasanya, I. O., Adekoya, O., & Sonola, R. (2023). Forecasting stock prices with commodity prices: New evidence from Feasible Quasi Generalized Least Squares (FQGLS) with non-linearities. Economic Systems, 47, 101043. [Google Scholar] [CrossRef]
- Federal Reserve History. (2013). The great recession and its aftermath. Available online: https://www.federalreservehistory.org/essays/great-recession-and-its-aftermath (accessed on 28 June 2024).
- Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63–76. [Google Scholar] [CrossRef]
- Friedman, J., Hastie, T., & Tibshirani, R. (2020). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2), 337–407. [Google Scholar] [CrossRef]
- Gaba, A. K., & Gaba, N. (2022). Entrepreneurial activity and economic growth of BRICS countries: Retrospect and prospects. The Journal of Entrepreneurship, 31(2), 402–424. [Google Scholar] [CrossRef]
- Gyedu, S., Tang, H., Henry, A., Ntarmah, Y., He, Y., & Frimppong, E. (2021). The impact of innovation on economic growth among G7 and BRICS countries: A GMM style panel vector autoregressive (VAR) approach. Technological Forecasting & Social Change, 173, 121169. [Google Scholar] [CrossRef]
- Huang, Q., Wang, X., & Zhang, S. (2021). The effects of exchange rate fluctuations on the stock market and the affecting mechanisms: Evidence from BRICS countries. The North American Journal of Economics and Finance, 56, 101340. [Google Scholar] [CrossRef]
- Hussain, M., Bashir, U., & Rehman, R. U. (2024). Exchange rate and stock prices volatility connectedness and spillover during pandemic induced-crises: Evidence from BRICS countries. Asia-Pacific Financial Markets, 31, 183–203. [Google Scholar] [CrossRef]
- Hussain, R., Namarta, Y., Kumari, B., Kumari, S., & Al-Faryan, M. A. S. (2023). Does economic policy uncertainty affect foreign remittances? Linear and non-linear ARDL approach in BRIC economies. Cogent Economics & Finance, 11(1), 2183642. [Google Scholar] [CrossRef]
- Jebran, K., Chen, S., Saeed, G., & Zeb, A. (2017). Dynamics of oil price shocks and stock market behavior in Pakistan: Evidence from the 2007 financial crisis period. Financial Innovation, 3(2), 12. [Google Scholar] [CrossRef]
- Jijin, P., Mishra, A. K., & Nithin, M. (2022). Macroeconomic determinants of remittances to India. Economic Change and Restructuring, 55(2), 1229–1248. [Google Scholar] [CrossRef]
- Kalu, E., Ume, A. C., Arize, O. E. U., Okaro, F., Onaga, F., & Alio, F. C. (2020). A cross-country and country specific modelling of stock market performance, bank development and global equity index in emerging market economies: A case of BRICS countries. PLoS ONE, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Karadag, T., & Simsek, G. G. (2023). A Time-varying copula approach to investigate the dependence structures of BRICS stock markets before and after COVID-19. Emerging Markets Finance and Trade, 59(5), 1475–1486. [Google Scholar] [CrossRef]
- Kulikova, M. V., Taylor, D. R., & Kulikov, G. Y. (2024). Evolving efficiency of the BRICS markets. Economic Systems, 48, 101166. [Google Scholar] [CrossRef]
- Lal, S. B. (2023). The BRICS countries: Trends of demographic and economic development. International Journal of Science and Research, 12(4), 702–708. [Google Scholar] [CrossRef]
- Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine Learning, 59, 161–205. [Google Scholar] [CrossRef]
- Larionova, M., & Shelepov, A. (2022). BRICS, G20 and global economic governance reform. International Political Science Review, 43(4), 512–530. [Google Scholar] [CrossRef]
- Lone, U., Mushtaq, M., Darzi, A., & Ul Islam, K. (2023). Macroeconomic variables and stock market performance: A PMG/ARDL approach for BRICS economies. Macroeconomics and Finance in Emerging Market Economies, 16(2), 300–325. [Google Scholar] [CrossRef]
- Mamman, S. O., Wang, Z., & Iliyasu, J. (2023). Commonality in BRICS stock markets’ reaction to global economic policy uncertainty: Evidence from a panel GARCH model with cross sectional dependence. Finance Research Letters, 55, 103877. [Google Scholar] [CrossRef]
- McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. [Google Scholar] [CrossRef] [PubMed]
- Mensi, W., Hammoudeh, S., Nguyen, D. K., & Kang, S. H. (2016). Global financial crisis and spillover effects among the U.S. and BRICS stock markets. International Review of Economics and Finance, 42, 257–276. [Google Scholar] [CrossRef]
- Mile, B. (2023). Evolving efficiency of stock returns and market conditions: The case from Croatia. Montenegrin Journal of Economics, 19(1), 107–116. [Google Scholar] [CrossRef]
- Mroua, M., & Trabelsi, L. (2020). Causality and dynamic relationships between exchange rate and stock market indices in BRICS countries. Journal of Economics, Finance and Administrative Science, 25(50), 395–412. [Google Scholar] [CrossRef]
- Mudiangombe, B. M., & Mwamba, J. W. M. (2023). Dependence structure and time–frequency impact of exchange rates on crude oil and stock markets of BRICS countries: Markov-switching-based wavelet analysis. Journal of Risk and Financial Management, 16, 319. [Google Scholar] [CrossRef]
- Nguyen, D. V., & Duong, M. T. H. (2021). Shadow economy, corruption and economic growth: An analysis of BRICS countries. Journal of Asian Finance, Economics and Business, 8(4), 665–676. [Google Scholar]
- O’Neill, J. (2001). Building better global economic BRICS. Global Economic Papers, 66, 1–16. [Google Scholar]
- Panda, P., Ahmad, W., & Thiripalraju, M. (2023). Better to give than to receive: A study of BRICS countries stock markets. Journal of Emerging Market Finance, 22(2), 164–188. [Google Scholar] [CrossRef]
- Panda, P., & Thiripalraju, M. (2020). Stock markets, macroeconomics and financial structure of BRICS countries and USA. Prajnan, 49(2), 123–158. [Google Scholar]
- Phiri, A. (2022). Changing efficiency of BRICS currency markets during the COVID-19 pandemic. Economic Change and Restructuring, 55, 1673–1699. [Google Scholar] [CrossRef]
- Rababah, A., Nikitina, N., Grebennikova, V. M., Gardanova, Z. R., Zekiy, V. V., Ponkratov, N. N., Bashkirova, N. V., Kuznetsov, T. I., Volkova, M. V., Vasiljeva, M. I., Ivleva, N., & Elyakova, I. D. (2021). University social responsibility during the COVID-19 pandemic: Universities’ case in the BRICS countries. Sustainability, 13(13), 7035. [Google Scholar] [CrossRef]
- Radulescu, I. G., Panait, M., & Voica, C. (2014). BRICS countries challenge to the world economy new trends. Procedia economics and finance, 1st international conference ‘Economic scientific research—Theoretical, empirical and practical approaches’. Espera, 8, 605–613. [Google Scholar] [CrossRef]
- Rani, R., & Kumar, N. (2019). On the causal dynamics between economic growth, trade openness and gross capital formation: Evidence from BRICS countries. Global Business Review, 20(3), 795–812. [Google Scholar] [CrossRef]
- Rehman, M. U., Saleem, A., & Sági, J. (2024). Oil crisis vs. pandemic: A broader outlook of time-frequency volatility transmission between Islamic and conventional stock markets. Cogent Economics & Finance, 12(1), 2365366. [Google Scholar] [CrossRef]
- Reinhart, C. M., & Rogoff, K. S. (2008). Is the 2007 U.S. subprime crisis so different? An international historical comparison. American Economic Review, 98(2), 339–344. [Google Scholar] [CrossRef]
- Ross, A. G. 2024 January 26. Will BRICS expansion finally end western economic and geopolitical dominance? Situation Reports. Available online: https://www.geopoliticalmonitor.com (accessed on 3 February 2024).
- Rout, B. S., & Das, N. M. (2024). BRICS stock markets performances during COVID-19: Comparison with other economic crises. The Journal for Decision Makers, 49(3), 230–243. [Google Scholar] [CrossRef]
- Ruzgar, N. (2024). Key indicators influencing BRICS countries’ stock price volatility through classification techniques: A comparative study. WSEAS TRANSACTIONS on Business and Economics, 21, 1494–1510. [Google Scholar] [CrossRef]
- Ruzgar, N., & Chua-Chow, S. (2023). Behavior of banks’ stock market prices during long-term crises. International Journal of Financial Studies, 11, 31. [Google Scholar] [CrossRef]
- Ruzive, T., Wait, C., & Phiri, A. (2021). Does financial inclusion spur growth in BRICS countries? Evidence from a panel smooth transition regression model. International Journal of Sustainable Economy, 13(3), 281–305. [Google Scholar] [CrossRef]
- Salisu, A., Cuñado, J., Isah, K., & Gupta, R. (2021). Stock markets and exchange rate behaviour of the BRICS. Journal of Forecasting, 40, 1581–1595. [Google Scholar] [CrossRef]
- Sharma, G., Kayal, P., & Pandey, P. (2019). Information linkages among BRICS countries: Empirical evidence from implied volatility indices. Journal of Emerging Market Finance, 18(3), 263–289. [Google Scholar] [CrossRef]
- Singh, R. K., Singh, Y., Kumar, S., Kumar, A., & Alruwaili, W. S. (2024). Mapping risk–return linkages and volatility spillover in BRICS stock markets through the lens of linear and non-linear GARCH models. Journal of Risk and Financial Management, 17, 437. [Google Scholar] [CrossRef]
- Sonnenfeld, J. (2022). Over 300 companies have withdrawn from russia—But some remain. Yale School of Management, Chief Executive Leadership Institute. Retrieved 10 March 2022. [Google Scholar]
- Steytler, P. N., & Powell, D. (2010). The impact of the global financial crisis on decentralized government in South Africa. Revue L’Europe en Formation, 358(4), 149–172. Available online: https://shs.cairn.info/revue-l-europe-en-formation-2010-4-page-149?lang=fr#no17 (accessed on 23 April 2024). [CrossRef]
- Trabelsi, N. (2019). Dynamic and frequency connectedness across Islamic stock indexes, bonds, crude oil and gold. International Journal of Islamic and Middle Eastern Finance and Management, 12(3), 306–321. [Google Scholar] [CrossRef]
- Tripathy, N. (2022). Longmemory and volatility persistence across BRICS stock markets. Research in International Business and Finance, 63, 101782. [Google Scholar] [CrossRef]
- Usman, K., Liu, Z., Shen, H., Jie, X., & Jin, Y. (2022). The study of innovation and absorptive capacity of BRICS countries by using multiple regression analysis. International Journal of Innovation, 10(1), 118–151. [Google Scholar] [CrossRef]
- Wang, X., Qian, H., & Zhang, S. (2023). Effects of macroeconomic factors on stock prices for BRICS using the variational mode decomposition and quantile method. North American Journal of Economics and Finance, 67, 101939. [Google Scholar] [CrossRef]
- Weiss, G. M. (2013). Imbalance learning: Foundations, algorithms, and applications. Wiley. [Google Scholar] [CrossRef]
- WEKA 3.8.6. (n.d.). Available online: https://sourceforge.net/projects/weka/ (accessed on 13 December 2023).
- World Economic Outlook. (2024, April 16). imf.org. Available online: https://www.imf.org/en/Publications/WEO (accessed on 19 May 2024).
- Yildirim, Z., & Guloglu, H. (2024). Macro-financial transmission of global oil shocks to BRIC countries—International financial (uncertainty) conditions matter. Energy, 306, 132297. [Google Scholar] [CrossRef]
- Younsi, M., & Bechtini, M. (2020). Economic growth, financial development, and income inequality in BRICS countries: Does Kuznets’ inverted u-shaped curve exist? Journal of the Knowledge Economy, 11, 721–742. [Google Scholar] [CrossRef]
- Zhou, Z., Jiang, Y., Liu, Y., Lin, L., & Liu, Q. (2019). Does international oil volatility have directional predictability for stock returns? Evidence from BRICS countries based on cross-quantilogram analysis. Economic Modelling, 80, 352–382. [Google Scholar] [CrossRef]
Variables | Indices |
---|---|
CPI price percent y o y nominal seas adj a | |
Producer Prices Index (aggregated 2000) b | |
National Currency per SDR Period Average b | |
Domestic Currency per USD Period Average rate b | |
Lending Rate Percent per Annum b | |
Official Reserve Assets Gold Volume Fine Troy Ounces (aggregated 2000) b | |
Gold Holdings National Valuation USD (aggregated 2000) b | |
Exports Merchandise Customs current USD (aggregated 2000) seas adj c | |
Imports Merchandise Customs current USD (aggregated 2000) seas adj c | |
Nominal Effective Exchange Rate c | |
Real Effective Exchange Rate c | |
Total Reserves (aggregated 2000) c | |
Consumer Price Index All items d | |
Energy Index e | |
Crude oil average USD bbl e | |
Imports Merchandise Customs Price USD seas adj c | |
Industrial Production constant USD a | |
Y | Stock Market Prices USD c |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 59.21% | 54.51% | 58.85% | 55.56% | 58.80% |
Kappa statistic | 0.1776 | 0.0721 | 0.1306 | 0.1491 | 0.2079 |
RMSE | 0.5307 | 0.5396 | 0.5151 | 0.5597 | 0.5720 |
TP Rate * | 0.592 | 0.545 | 0.588 | 0.556 | 0.588 |
FP Rate * | 0.416 | 0.473 | 0.462 | 0.398 | 0.365 |
Precision * | 0.591 | 0.547 | 0.578 | 0.606 | 0.634 |
Recall * | 0.592 | 0.545 | 0.588 | 0.556 | 0.588 |
F-Measure * | 0.589 | 0.546 | 0.578 | 0.535 | 0.585 |
ROC Area * | 0.640 | 0.569 | 0.611 | 0.534 | 0.581 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 65.74% | 64.26% | 60.65% | 64.25% | 66.00% |
Kappa statistic | 0.3114 | 0.222 | 0.1307 | 0.2645 | 0.2604 |
RMSE | 0.4651 | 0.4764 | 0.4811 | 0.4596 | 0.4643 |
TP Rate * | 0.657 | 0.643 | 0.606 | 0.643 | 0.660 |
FP Rate * | 0.346 | 0.454 | 0.485 | 0.383 | 0.414 |
Precision * | 0.657 | 0.641 | 0.597 | 0.640 | 0.657 |
Recall * | 0.657 | 0.643 | 0.606 | 0.643 | 0.660 |
F-Measure * | 0.657 | 0.617 | 0.566 | 0.636 | 0.641 |
ROC Area * | 0.719 | 0.656 | 0.631 | 0.647 | 0.656 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 83.39% | 87.73% | 81.59% | 85.51% | 84.00% |
Kappa statistic | 0.6671 | 0.7437 | 0.6134 | 0.7048 | 0.6651 |
RMSE | 0.3699 | 0.3697 | 0.3742 | 0.3622 | 0.3759 |
TP Rate * | 0.834 | 0.877 | 0.816 | 0.855 | 0.840 |
FP Rate * | 0.167 | 0.147 | 0.217 | 0.156 | 0.186 |
Precision * | 0.834 | 0.880 | 0.819 | 0.856 | 0.841 |
Recall * | 0.834 | 0.877 | 0.816 | 0.855 | 0.840 |
F-Measure * | 0.834 | 0.876 | 0.812 | 0.854 | 0.838 |
ROC Area * | 0.915 | 0.947 | 0.917 | 0.775 | 0.850 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 63.90% | 64.62% | 75.45% | 66.67% | 63.60% |
Kappa statistic | 0.2739 | 0.2473 | 0.4839 | 0.3190 | 0.2081 |
RMSE | 0.4707 | 0.4630 | 0.4167 | 0.4558 | 0.4649 |
TP Rate * | 0.639 | 0.646 | 0.755 | 0.667 | 0.636 |
FP Rate * | 0.366 | 0.408 | 0.283 | 0.351 | 0.439 |
Precision * | 0.638 | 0.640 | 0.755 | 0.665 | 0.628 |
Recall * | 0.639 | 0.646 | 0.755 | 0.667 | 0.636 |
F-Measure * | 0.638 | 0.634 | 0.750 | 0.667 | 0.615 |
ROC Area * | 0.699 | 0.697 | 0.819 | 0.692 | 0.642 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 73.65% | 71.84% | 74.37% | 78.26% | 73.20% |
Kappa statistic | 0.4755 | 0.3907 | 0.4474 | 0.555 | 0.4118 |
RMSE | 0.4213 | 0.4317 | 0.4243 | 0.3939 | 0.4338 |
TP Rate * | 0.736 | 0.718 | 0.744 | 0.783 | 0.732 |
FP Rate * | 0.258 | 0.348 | 0.318 | 0.235 | 0.346 |
Precision * | 0.744 | 0.731 | 0.758 | 0.784 | 0.751 |
Recall * | 0.736 | 0.718 | 0.744 | 0.783 | 0.732 |
F-Measure * | 0.736 | 0.720 | 0.730 | 0.780 | 0.713 |
ROC Area * | 0.817 | 0.780 | 0.804 | 0.737 | 0.708 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 100% | 100% | 100% | 100% | 100% |
Kappa statistic | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
RMSE | 0.1793 | 0.1888 | 0.1833 | 0.1868 | 0.1821 |
TP Rate * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
FP Rate * | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Precision * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Recall * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
F-Measure * | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
ROC Area * | 1.000 | 1.000 | 1.000 | 0.978 | 0.989 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 100% | 99.64% | 100% | 99.52% | 100% |
Kappa statistic | 1.000 | 0.9926 | 1.000 | 0.9902 | 1.000 |
RMSE | 0.000 | 0.044 | 0.0222 | 0.0491 | 0.000 |
TP Rate * | 1.000 | 0.996 | 1.000 | 0.995 | 1.000 |
FP Rate * | 0.000 | 0.005 | 0.000 | 0.006 | 0.000 |
Precision * | 1.000 | 0.996 | 1.000 | 0.995 | 1.000 |
Recall * | 1.000 | 0.996 | 1.000 | 0.995 | 1.000 |
F-Measure * | 1.000 | 0.996 | 1.000 | 0.995 | 1.000 |
ROC Area * | 1.000 | 1.000 | 1.000 | 0.900 | 0.944 |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
R-Squared | 0.956 | 0.919 | 0.839 | 0.801 | 0.810 |
Std. Error of the Estimate | 0.0009990963 | 0.001968757 | 0.001467655 | 0.0016610777 | 0.001388063 |
ANOVA Sig. | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Constant | 0.128574 * | 0.020494 * | 0.018491 * | −0.023049 * | −0.008262 *** |
0.001537 * (1.473) | |||||
−0.000710 * (1.541) | 0.000410 * (2.340) | ||||
0.001402 * (2.395) | |||||
0.000108 * (1.399) | |||||
0.0000237 * (2.745) | −0.000024 * (3.562) | ||||
−0.000540 * (3.606) | −0.000506 * (1.430) | 0.000421 * (1.597) | |||
0.0000042 *** (3.073) | 0.000033 * (2.407) | ||||
−0.000898 *** (1.088) | |||||
0.000132 * (1.987) | |||||
−0.0000545 * (3.044) | 0.000224 * (1.886) | 0.000108 * (3.674) | |||
0.000155 * (1.772) | −0.000021 ** (1.503) |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
R Square | 0.716 | 0.922 | 0.980 | 0.792 | 0.931 |
Std. Error of the Estimate | 0.002179877 | 0.001167656 | 0.000277608 | 0.000743215 | 0.000560249 |
ANOVA Sig. | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Constant | 0.042096 * | 0.027453 * | 0.009410 * | 0.029232 * | −0.001857 * |
−0.000142 * (1.348) | |||||
−0.000124 * (1.173) | |||||
0.000183 * (1.034) | |||||
0.000739 * (2.821) | 0.000909 * (3.157) | ||||
0.000001 * (1.004) | |||||
−0.000020 * (1.083) | |||||
−0.000004 * (1.141) | |||||
0.000250 * (1.083) | 0.000165 * (1.004) | ||||
0.000012 * (2.599) | |||||
0.000019 * (2.896) | |||||
0.000156 * (1.157) | |||||
−0.000014 ** (2.943) |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 48 100% | 48 100% | 48 100% | 48 100% | 48 100% |
Confusion Matrix | a b 31 0 | a = P 0 17 | b = N | a b 21 0 | a = N 0 27 | b = P | a b 28 0 | a = P 0 20 | b = N | a b 26 0 | a = P 0 22 | b = N | a b 29 0 | a = P 0 19 | b = N |
BRAZIL | RUSSIA | INDIA | CHINA | SOUTH AFRICA | |
---|---|---|---|---|---|
Accuracy | 48 100% | 48 100% | 48 100% | 48 100% | 48 100% |
Confusion Matrix | a b 21 0 | a = P 0 27 | b = N | a b 29 0 | a = P 0 19 | b = N | a b 31 0 | a = P 0 17 | b = N | a b 25 0 | a = P 0 23 | b = N | a b 26 0 | a = P 0 22 | b = N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruzgar, N.S. Impact of Indices on Stock Price Volatility of BRICS Countries During Crises: Comparative Study. Int. J. Financial Stud. 2025, 13, 8. https://doi.org/10.3390/ijfs13010008
Ruzgar NS. Impact of Indices on Stock Price Volatility of BRICS Countries During Crises: Comparative Study. International Journal of Financial Studies. 2025; 13(1):8. https://doi.org/10.3390/ijfs13010008
Chicago/Turabian StyleRuzgar, Nursel Selver. 2025. "Impact of Indices on Stock Price Volatility of BRICS Countries During Crises: Comparative Study" International Journal of Financial Studies 13, no. 1: 8. https://doi.org/10.3390/ijfs13010008
APA StyleRuzgar, N. S. (2025). Impact of Indices on Stock Price Volatility of BRICS Countries During Crises: Comparative Study. International Journal of Financial Studies, 13(1), 8. https://doi.org/10.3390/ijfs13010008