A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations
Abstract
:1. Introduction
2. Theoretical Background
2.1. Object Detection
2.1.1. YOLO Models
2.1.2. RT-DETR
2.2. Object Tracking
2.2.1. KCF Tracker
2.2.2. DeepSort Tracker
2.3. Time-Series Prediction
LSTM Networks
2.4. Related Works
3. Materials and Methods
3.1. UAV
3.1.1. Hardware
3.1.2. Software
3.2. Remote Server
3.3. Dataset Distribution
4. Results and Discussion
4.1. Onboard Model
4.2. Selection of the Server’s Detection Model
4.3. Tracking Prediction Model
- Number of neighbors: The different alternatives described above did not make a significant difference, with the exception of the total lack of neighbor information, which resulted in slightly worse results (RMSE > 8 on the validation set, with a decaying learning rate, batch size = 32, and scaled data, while the other configurations achieved an RMSE of around 6.5–7).
- Batch size: The batch sizes tested did not seem to have a significant effect on the final results. For a batch size of 32, it seemed like convergence was achieved a few epochs earlier.
- Data Scaling: Scaling the data caused a significant improvement in the results. Min-max scaling was used, which caused the RMSE to drop from around 27 to 13 with learning rate = 0.0001 and batch size = 32.
- Learning Rate: The learning rate configuration was also of key importance. With learning rates above 0.0005, the model could not converge to a stable state, and with very low learning rates, it converged to local minima, leading to increased errors. The solution to this was the introduction of a decaying learning rate, decreasing from 0.001 to , which resulted in a final validation loss of about 6.5–7 with batch size = 32, four neighbors, and scaled data.
4.4. An Indication of the Server’s Contribution
4.5. Model Inference Times and Overall Temporal Performance
4.6. Overview of Results and Contributions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DETR | DEtection TRansformer |
RT-DETR | Real-Time DEtection TRansformer |
YOLO | You Only Look Once |
NCS | Neural Compute Stick |
CNN | Convolutional Neural Network |
R-CNN | Region-based Convolutional Neural Network |
UAV | Unmanned Aerial Vehicle |
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
KCF | Kernelized Correlation Filter |
SORT | Simple Online and Realtime Tracking |
HAT | Hardware Attached on Top |
RMSE | Root Mean Square Error |
FPN | Feature Pyramid Network |
CSPNet | Cross-Stage Partial Network |
SPP | Spatial Pyramid Pooling |
SPPF | Spatial Pyramid Pooling—Fast |
BCE Loss | Binary Cross-Entropy Loss |
CIoU Loss | Complete IoU Loss |
IoU | Intersection over Union |
E-ELAN | Extended Efficient Layer Aggregation Network |
NMS | Non-Maximum Suppression |
AIFI | Attention-based Intra-scale Feature Interaction |
CCFF | CNN-based Cross-scale Feature Fusion |
API | Application Programming Interface |
MOSSE | Minimum Output Sum of Squared Error |
References
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2016; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W. CSPNet: A New Backbone that can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2019; pp. 1571–1580. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Jocher, G. Ultralytics YOLOv5. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 12 June 2024). [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 12 June 2024).
- Wang, C.Y.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Newry, UK, 2017; Volume 30. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Lv, W.; Xu, S.; Zhao, Y.; Wang, G.; Wei, J.; Cui, C.; Du, Y.; Dang, Q.; Liu, Y. DETRs Beat YOLOs on Real-time Object Detection. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2023; pp. 16965–16974. [Google Scholar]
- Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable DETR: Deformable Transformers for End-to-End Object Detection. arXiv 2020, arXiv:2010.04159. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar] [CrossRef]
- Scholkopf, B.; Smola, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; Adaptive Computation and Machine Learning series; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.T.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. 1955, 52, 83–97. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zhang, X.; Zhang, X. Autonomous navigation of UAV in large-scale unknown complex environment with deep reinforcement learning. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 858–862. [Google Scholar] [CrossRef]
- Imanberdiyev, N.; Fu, C.; Kayacan, E.; Chen, I.M. Autonomous navigation of UAV by using real-time model-based reinforcement learning. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Dong, Q. Autonomous navigation of UAV in multi-obstacle environments based on a Deep Reinforcement Learning approach. Appl. Soft Comput. 2022, 115, 108194. [Google Scholar] [CrossRef]
- Cui, J.Q.; Lai, S.; Dong, X.; Liu, P.; Chen, B.M.; Lee, T.H. Autonomous navigation of UAV in forest. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 726–733. [Google Scholar] [CrossRef]
- Aguilar, W.G.; Salcedo, V.S.; Sandoval, D.S.; Cobeña, B. Developing of a Video-Based Model for UAV Autonomous Navigation. In Proceedings of the Computational Neuroscience, Porto Alegre, Brazil, 22–24 November 2017; Barone, D.A.C., Teles, E.O., Brackmann, C.P., Eds.; Springer: Cham, Switzerland, 2017; pp. 94–105. [Google Scholar]
- Li, Y.; Zhang, W.; Li, P.; Ning, Y.; Suo, C. A Method for Autonomous Navigation and Positioning of UAV Based on Electric Field Array Detection. Sensors 2021, 21, 1146. [Google Scholar] [CrossRef]
- Kouris, A.; Bouganis, C.S. Learning to Fly by MySelf: A Self-Supervised CNN-Based Approach for Autonomous Navigation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Mansouri, S.S.; Kanellakis, C.; Kominiak, D.; Nikolakopoulos, G. Deploying MAVs for autonomous navigation in dark underground mine environments. Robot. Auton. Syst. 2020, 126, 103472. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Schaeuble, M.; Nieto, J.; Siegwart, R.; Cadena, C. From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1527–1533. [Google Scholar] [CrossRef]
- Menshchikov, A.; Shadrin, D.; Prutyanov, V.; Lopatkin, D.; Sosnin, S.; Tsykunov, E.; Iakovlev, E.; Somov, A. Real-Time Detection of Hogweed: UAV Platform Empowered by Deep Learning. IEEE Trans. Comput. 2021, 70, 1175–1188. [Google Scholar] [CrossRef]
- Speth, S.; Alves Gonçalves, A.; Rigault, B.; Suzuki, S.; Bouazizi, M.; Matsuo, Y.; Prendinger, H. Deep learning with RGB and thermal images onboard a drone for monitoring operations. J. Field Robot. 2022, 39, 840–868. [Google Scholar] [CrossRef]
- Ayoub, N.; Schneider-Kamp, P. Real-Time On-Board Deep Learning Fault Detection for Autonomous UAV Inspections. Electronics 2021, 10, 1091. [Google Scholar] [CrossRef]
- Amato, G.; Ciampi, L.; Falchi, F.; Gennaro, C. Counting Vehicles with Deep Learning in Onboard UAV Imagery. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, M.H.; Yeom, S. Detection and Tracking of Multiple Moving Vehicles with a UAV. Int. J. Fuzzy Log. Intell. Syst. 2018, 18, 182–189. [Google Scholar] [CrossRef]
- Wu, Y.; Sui, Y.; Wang, G. Vision-Based Real-Time Aerial Object Localization and Tracking for UAV Sensing System. IEEE Access 2017, 5, 23969–23978. [Google Scholar] [CrossRef]
- Balamuralidhar, N.; Tilon, S.; Nex, F. MultEYE: Monitoring System for Real-Time Vehicle Detection, Tracking and Speed Estimation from UAV Imagery on Edge-Computing Platforms. Remote Sens. 2021, 13, 573. [Google Scholar] [CrossRef]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar] [CrossRef]
- Lee, J.; Wang, J.; Crandall, D.; Šabanović, S.; Fox, G. Real-Time, Cloud-Based Object Detection for Unmanned Aerial Vehicles. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 36–43. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, W.Y.; Torr, P. BING: Binarized Normed Gradients for Objectness Estimation at 300fps. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3286–3293. [Google Scholar] [CrossRef]
- Alam, M.S.; Natesha, B.V.; Ashwin, T.S.; Guddeti, R.M.R. UAV based cost-effective real-time abnormal event detection using edge computing. Multimed. Tools Appl. 2019, 78, 35119–35134. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, F.; Zhang, B.; Ma, R.; Hao, Q. Development of UAV-Based Target Tracking and Recognition Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3409–3422. [Google Scholar] [CrossRef]
- Hossain, S.; Lee, D.J. Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial Imagery via a Flying Robot with GPU-Based Embedded Devices. Sensors 2019, 19, 3371. [Google Scholar] [CrossRef]
- Zhu, P.; Wen, L.; Du, D.; Bian, X.; Ling, H.; Hu, Q.; Nie, Q.; Cheng, H.; Liu, C.; Liu, X.; et al. VisDrone-DET2018: The Vision Meets Drone Object Detection in Image Challenge Results. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; Proceedings, Part V. Springer: Berlin/Heidelberg, Germany, 2019; pp. 437–468. [Google Scholar] [CrossRef]
- Zhu, P.; Wen, L.; Du, D.; Bian, X.; Ling, H.; Hu, Q.; Wu, H.; Nie, Q.; Cheng, H.; Liu, C.; et al. VisDrone-VDT2018: The Vision Meets Drone Video Detection and Tracking Challenge Results. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; Proceedings, Part V. Springer: Berlin/Heidelberg, Germany, 2019; pp. 496–518. [Google Scholar] [CrossRef]
- Du, D.; Qi, Y.; Yu, H.; Yang, Y.F.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Available online: https://tinyurl.com/uavguidancesample (accessed on 26 December 2024).
- Liu, W.; Wang, G.; Sun, J.; Bullo, F.; Chen, J. Learning Robust Data-Based LQG Controllers From Noisy Data. IEEE Trans. Autom. Control 2024, 69, 8526–8538. [Google Scholar] [CrossRef]
- Li, W.; Qin, K.; Li, G.; Shi, M.; Zhang, X. Robust bipartite tracking consensus of multi-agent systems via neural network combined with extended high-gain observer. ISA Trans. 2023, 136, 31–45. [Google Scholar] [CrossRef]
- Shi, L.; Ma, Z.; Yan, S.; Zhou, Y. Cucker-Smale Flocking Behavior for Multiagent Networks With Coopetition Interactions and Communication Delays. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 5824–5833. [Google Scholar] [CrossRef]
Model | Significant Modifications |
---|---|
YOLOv2 [3] | Darknet-19 network; anchor boxes; k-means on training boxes to |
determine initial box coordinates; batch normalization increased | |
classifier resolution; added passthrough layer for detection of more | |
detailed features; multiscale training; direct box location prediction | |
YOLOv3 [4] | Darknet-53 network; predictions across 3 scales with an FPN [5]-like |
mechanism; multi-label classification | |
YOLOv4 [6] | CSPDarknet53 network [7]; SPP block [8]; |
PANet path aggregation network [9] | |
YOLOv5 [10] | SPPF structure; updated box coordinate prediction formula; |
training loss as a weighted sum of classes losses (BCE loss); | |
objectness loss (BCE loss) and location loss (CIoU loss) | |
YOLOX [11] | Decoupled head for separate classification; box localization |
and objectness prediction; anchor-free box detection | |
YOLOv7 [12] | E-ELAN backbone block; lead + auxiliary head for output |
and deeply supervised training, respectively; | |
planned re-parametrization | |
YOLOv6 [13] | EfficientRep backbone; enhancements in neck structure (Rep-PAN) |
and head (Efficient Decoupled Head) | |
YOLOv8 [14] | CSPDarknet53 backbone; C2f module instead of FPN (combination |
of features of various levels) | |
YOLOv9 [15] | Generalized Efficient Layer Aggregation Network (GELAN); |
programmable gradient information | |
YOLOv10 [16] | Dual-label assignment to avoid NMS post-processing |
YOLOv8x | |||||
---|---|---|---|---|---|
Image | Confidence | Pretrained | Pretrained | New | New |
Size | Threshold | Recall | Accuracy | Recall | Accuracy |
1442 × 856 | 0.3 | 0.22 | 0.67 | 0.53 | 0.74 |
481 × 285 | 0.3 | 0.15 | 0.58 | 0.46 | 0.73 |
1442 × 856 | 0.1 | 0.31 | 0.51 | 0.58 | 0.55 |
481 × 285 | 0.1 | 0.23 | 0.47 | 0.50 | 0.57 |
1442 × 856 | 0.05 | 0.36 | 0.41 | 0.59 | 0.45 |
481 × 285 | 0.05 | 0.26 | 0.38 | 0.52 | 0.46 |
RT-DETR | |||||
---|---|---|---|---|---|
Image | Confidence | Pretrained | Pretrained | New | New |
Size | Threshold | Recall | Accuracy | Recall | Accuracy |
1442 × 856 | 0.3 | 0.34 | 0.52 | 0.60 | 0.57 |
481 × 285 | 0.3 | 0.25 | 0.50 | 0.50 | 0.60 |
1442 × 856 | 0.2 | 0.41 | 0.34 | 0.63 | 0.39 |
481 × 285 | 0.2 | 0.32 | 0.33 | 0.53 | 0.43 |
1442 × 856 | 0.1 | 0.49 | 0.15 | 0.66 | 0.19 |
481 × 285 | 0.1 | 0.40 | 0.15 | 0.57 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntousis, O.; Makris, E.; Tsanakas, P.; Pavlatos, C. A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations. Technologies 2025, 13, 35. https://doi.org/10.3390/technologies13010035
Ntousis O, Makris E, Tsanakas P, Pavlatos C. A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations. Technologies. 2025; 13(1):35. https://doi.org/10.3390/technologies13010035
Chicago/Turabian StyleNtousis, Odysseas, Evangelos Makris, Panayiotis Tsanakas, and Christos Pavlatos. 2025. "A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations" Technologies 13, no. 1: 35. https://doi.org/10.3390/technologies13010035
APA StyleNtousis, O., Makris, E., Tsanakas, P., & Pavlatos, C. (2025). A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations. Technologies, 13(1), 35. https://doi.org/10.3390/technologies13010035