Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Properties of Initial Sewage Sludge and Experimental Setup
2.2. CSTR Setup and Operation
2.3. Analysis and Calculations
3. Results and Discussion
3.1. Bio-Hydrogen Production from a 100 L Sewage Sludge Bioreactor Using Different Pretreatment Methods
3.2. Effect of Pretreatment on the Composition and Characteristics of Mixed Sewage Sludge
3.3. Volatile Fatty Acids Production at Different Pretreatments from the Self-Fermented CSTR Reactor (100 L)
3.4. Microbiological Examination of Sludge in Thermal Pretreatment as the Optimum Phase
3.5. Total Energy Yields from the 100 L Sewage Sludge Self-Fermented Bioreactor in Different Pretreatment Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghazy, M.; Dockhorn, T.; Dichtl, N. Sewage sludge management in Egypt: Current status and perspectives towards a sustainable agricultural use. Int. J. Environ. Ecol. Eng. 2009, 3, 270–278. [Google Scholar]
- Hassan, G.K.; Abdel-Karim, A.; Al-Shemy, M.T.; Rojas, P.; Sanz, J.L.; Ismail, S.H.; Mohamed, G.G.; El-gohary, F.A.; Al-sayed, A. Harnessing Cu@Fe3O4 core shell nanostructure for biogas production from sewage sludge: Experimental study and microbial community shift. Renew. Energy 2022, 188, 1059–1071. [Google Scholar] [CrossRef]
- Hassan, G.K.; Mahmoud, W.H.; Al-sayed, A.; Ismail, S.H.; El-Sherif, A.A.; Abd El Wahab, S.M. Multi-functional of TiO2@ Ag core–shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH4 production. Fuel 2023, 333, 126608. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Hassan, G.; Alaneny, A.; Afify, A.; El-Liethy, M.A.; El-Gohary, F. Production of biofuels (H2&CH4) from food leftovers via dual-stage anaerobic digestion: Enhancement of bioenergy production and determination of metabolic fingerprinting of microbial communities. Egypt. J. Chem. 2021, 64, 4105–4115. [Google Scholar]
- Hellal, M.S.; Abou-Taleb, E.M.; Rashad, A.M.; Hassan, G.K. Boosting biohydrogen production from dairy wastewater via sludge immobilized beads incorporated with polyaniline nanoparticles. Biomass Bioenergy 2022, 162, 106499. [Google Scholar] [CrossRef]
- Hassan, G.K.; Jones, R.J.; Massanet-Nicolau, J.; Dinsdale, R.; Abo-Aly, M.M.; El-Gohary, F.A.; Guwy, A. Increasing 2-Bio-(H2 and CH4) production from food waste by combining two-stage anaerobic digestion and electrodialysis for continuous volatile fatty acids removal. Waste Manag. 2021, 129, 20–25. [Google Scholar] [CrossRef]
- El-Khateeb, M.; Hassan, G.K.; El-Liethy, M.A.; El-Khatib, K.M.; Abdel-Shafy, H.I.; Hu, A.; Gad, M. Sustainable municipal wastewater treatment using an innovative integrated compact unit: Microbial communities, parasite removal, and techno-economic analysis. Ann. Microbiol. 2023, 73, 35. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.; Brandon, N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar] [CrossRef]
- Poleto, L.; Souza, P.; Magrini, F.E.; Beal, L.L.; Torres AP, R.; de Sousa, M.P.; Laurino, J.P.; Paesi, S. Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Int. J. Hydrogen Energy 2016, 41, 4374–4381. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Argun, H.; Dao, S. Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. Int. J. Hydrogen Energy 2017, 42, 2569–2574. [Google Scholar] [CrossRef]
- Guo, L.; Lu, M.; Li, Q.; Zhang, J.; She, Z. A comparison of different pretreatments on hydrogen fermentation from waste sludge by fluorescence excitation-emission matrix with regional integration analysis. Int. J. Hydrogen Energy 2015, 40, 197–208. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J. Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J. Hazard. Mater. 2009, 168, 163–167. [Google Scholar] [CrossRef]
- Hassan, G.K.; Massanet-Nicolau, J.; Dinsdale, R.; Jones, R.J.; Abo-Aly, M.M.; El-Gohary, F.A.; Guwy, A. A novel method for increasing biohydrogen production from food waste using electrodialysis. Int. J. Hydrogen Energy 2019, 44, 14715–14720. [Google Scholar] [CrossRef]
- Shin, H.S.; Youn, J.H. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 2005, 16, 33–44. [Google Scholar] [CrossRef]
- Tawfik, A.; Hassan, G.K.; Yu, Z.; Salah, H.A.; Hassan, M.; Meng, F. Dynamic approach for mono-and di-fermentation of black liquor and livestock wastewater for 2-bio-(H2&CH4) production. Biomass Bioenergy 2021, 145, 105947. [Google Scholar]
- Hassan, G.K.; Hemdan, B.A.; El-Gohary, F.A. Utilization of food waste for bio-hydrogen and bio-methane production: Influences of temperature, OLR, and in situ aeration. J. Mater. Cycles Waste Manag. 2020, 22, 1218–1226. [Google Scholar] [CrossRef]
- Mohan, S.V.; Babu, V.L.; Sarma, P.N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol. 2008, 99, 59–67. [Google Scholar] [CrossRef]
- Kumar, G.; Dharmaraja, J.; Arvindnarayan, S.; Shoban, S.; Bakonyi, P.; Saratale, G.D.; Nemestóthy, N.; Bélafi-Bakó, K.; Yoon, J.-J.; Kim, S.H. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 2019, 251, 352–367. [Google Scholar] [CrossRef]
- Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Bougrier, C.; Carrère, H.; Delgenes, J.P. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 2005, 106, 163–169. [Google Scholar] [CrossRef]
- Weemaes, M.P.; Verstraete, W.H. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. 1998, 73, 83–92. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, Y.; Zhang, H.; Jiang, S.; Zhou, Q.; Gu, G. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 2006, 40, 2025–2029. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, J. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production. Radiat. Phys. Chem. 2016, 121, 110–114. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Maktabifard, M.; Grubba, D.; Majtacz, J.; Hassan, G.K.; Lu, X.; Piechota, G.; Mannina, G.; Bott, C.B.; Mąkinia, J. An Advanced Synergy of Partial Denitrification-Anammox for Optimizing Nitrogen Removal from Wastewater: A Review. Bioresour. Technol. 2023, 381, 129168. [Google Scholar] [CrossRef]
- Bundhoo, M.Z.; Mohee, R.; Hassan, M.A. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J. Environ. Manag. 2015, 157, 20–48. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Hassan, G.K.; Maktabifard, M.; Grubba, D.; Majtacz, J.; Mąkinia, J. Integrating Conventional Nitrogen Removal with Anammox in Wastewater Treatment Systems: Microbial Metabolism, Sustainability and Challenges. Environ. Res. 2022, 215, 114432. [Google Scholar] [CrossRef]
- Zhu, H.; Béland, M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int. J. Hydrogen Energy 2006, 31, 1980–1988. [Google Scholar] [CrossRef]
- Mersal, M.; Zedan, A.F.; Mohamed, G.G.; Hassan, G.K. Fabrication of Nitrogen Doped TiO2/Fe2O3 Nanostructures for Photocatalytic Oxidation of Methanol Based Wastewater. Sci. Rep. 2023, 13, 4431. [Google Scholar] [CrossRef]
- Yu, H.; Du, W.; Zhang, J.; Ma, F.; Zhang, X.; Zhong, W. Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour. Technol. 2010, 101, 6728–6734. [Google Scholar] [CrossRef]
- Kavitha, S.; Kannah, R.Y.; Yeom, I.T.; Do, K.U.; Banu, J.R. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour. Technol. 2015, 197, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jeong, E.; Oh, S.E.; Shin, H.S. Combined (alkaline+ ultrasonic) pretreatment effect on sewage sludge disintegration. Water Res. 2010, 44, 3093–3100. [Google Scholar] [CrossRef]
- Yang, S.S.; Guo, W.Q.; Cao, G.L.; Zheng, H.S.; Ren, N.Q. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol. 2012, 124, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Jing, Y.; Zhang, S.; Angelidaki, I.; Luo, G. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. Water Res. 2016, 102, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Masset, J.; Calusinska, M.; Hamilton, C.; Hiligsmann, S.; Joris, B.; Wilmotte, A.; Thonart, P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels 2012, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fang, H.H. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 2007, 37, 1–39. [Google Scholar] [CrossRef]
- Al-Dhabaan FA, M.; Bakhali, A.H. Analysis of the bacterial strains using Biolog plates in the contaminated soil from Riyadh community. Saudi J. Biol. Sci. 2017, 24, 901–906. [Google Scholar] [CrossRef]
- Burrows, E.H.; Chaplen, F.W.; Ely, R.L. Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int. J. Hydrogen Energy 2008, 33, 6092–6099. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J. pH dependency of hydrogen fermentation from alkali-pretreated sludge. Chin. Sci. Bull. 2006, 51, 399–404. [Google Scholar] [CrossRef]
- Zhang, M.L.; Fan, Y.T.; Xing, Y.; Pan, C.M.; Zhang, G.S.; Lay, J.J. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 2007, 31, 250–254. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Gavala, H.N.; Skiadas, I.V.; Lyberatos, G. Influence of pH on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrogen Energy 2010, 35, 1921–1928. [Google Scholar] [CrossRef]
- Assawamongkholsiri, T.; Reungsang, A.; Pattra, S. Effect of acid, heat and combined acid-heat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. Int. J. Hydrogen Energy 2013, 38, 6146–6153. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Fang, H.H. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 2003, 69, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Liu, J.; Wei, Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci. Technol. 2004, 38, 3195–3202. [Google Scholar] [CrossRef]
- Xiao, B.Y.; Liu, J.X. Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge. J. Environ. Sci. 2006, 18, 6–12. [Google Scholar]
- Wu, F.; Zhou, S.Q. Continuous pro-hydrogen by anaerobic fermentation of municipal sludge. Int. J. Green Energy 2011, 8, 130–145. [Google Scholar] [CrossRef]
- Xiao, B.Y.; Liu, J.X. Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 2009, 54, 2038–2044. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: Performance evaluation and kinetic analysis. Bioresour. Technol. 2017, 243, 1027–1036. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Enhanced hydrogen production from sewage sludge by Co-fermentation with forestry wastes. Energy Fuels 2017, 31, 9633–9641. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.H.; Lee, M.; Kim, S.; Kim, S.W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Elmaadawy, K.; Liu, B.; Hassan, G.; Wang, X.; Wang, Q.; Hu, J.; Hou, H.; Yang, J.; Wu, X.; Protection, E. Microalgae-assisted fixed-film activated sludge MFC for landfill leachate treatment and energy recovery. Process Saf. Environ. Prot. 2022, 160, 221–231. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, R.C. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 1999, 74, 498–500. [Google Scholar] [CrossRef]
- Fang, H.H.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Q.; Yu, Y.F.; Lin, H.; Zhao, Y.C. Effects of initial pH on bio-hydrogen production from alkaline pretreated municipal sludge. Adv. Mater. Res. 2014, 878, 689–698. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, J.; Wang, J. Fermentative hydrogen production from macroalgae Laminaria japonica pretreated by microwave irradiation. Int. J. Hydrogen Energy 2019, 44, 10398–10406. [Google Scholar] [CrossRef]
- Sim, S.J.; Joun, J.; Hong, M.E.; Patel, A.K. Split mixotrophy: A novel cultivation strategy to enhance the mixotrophic biomass and lipid yields of Chlorella protothecoides. Bioresour. Technol. 2019, 291, 121820. [Google Scholar] [CrossRef]
- Hu, J.; Danish, M.; Lou, Z.; Zhou, P.; Zhu, N.; Yuan, H.; Qian, P. Effectiveness of wind turbine blades waste combined with the sewage sludge for enriched carbon preparation through the co-pyrolysis processes. J. Clean. Prod. 2018, 174, 780–787. [Google Scholar] [CrossRef]
- Yun, Y.M.; Lee, M.K.; Im, S.W.; Marone, A.; Trably, E.; Shin, S.R.; Kim, M.-G.; Cho, S.-K.; Kim, D.H. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef]
- Ghimire, A.; Trably, E.; Frunzo, L.; Pirozzi, F.; Lens, P.N.; Esposito, G.; Cazier, E.A.; Escudié, R. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresour. Technol. 2018, 248, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [Google Scholar] [CrossRef] [PubMed]
- El-Qelish, M.; Chatterjee, P.; Dessì, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J. Bio-hydrogen production from sewage sludge: Screening for pretreatments and semi-continuous reactor operation. Waste Biomass Valorization 2020, 11, 4225–4234. [Google Scholar] [CrossRef]
- Zheng, H.S.; Guo, W.Q.; Yang, S.S.; Feng, X.C.; Du, J.S.; Zhou, X.J.; Chang, J.-S.; Ren, N.Q. Thermophilic hydrogen production from sludge pretreated by thermophilic bacteria: Analysis of the advantages of microbial community and metabolism. Bioresour. Technol. 2014, 172, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Saady, N.M.C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. Int. J. Hydrogen Energy 2013, 38, 13172–13191. [Google Scholar] [CrossRef]
- Shah, A.T.; Favaro, L.; Alibardi, L.; Cagnin, L.; Sandon, A.; Cossu, R.; Basaglia, M. Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl. Energy 2016, 176, 116–124. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Xu, X.; Zhu, D.; Jian, Q.; Wang, X.; Zheng, X.; Xue, G.; Liu, Y.; Li, X.; Hassan, G.K. Treatment of Industrial Ferric Sludge through a Facile Acid-Assisted Hydrothermal Reaction: Focusing on Dry Mass Reduction and Hydrochar Recyclability Performance. Sci. Total Environ. 2023, 869, 161879. [Google Scholar] [CrossRef]
Parameters | pH | COD tot (g/L) | VFAS (g/L) | ALK (g/L) | TS (g/L) | VS (g/L) |
---|---|---|---|---|---|---|
Initial sewage sludge (Control (C)) | 7.62 | 32.43 | 0.82 | 2.78 | 26.55 | 17.92 |
Thermal pretreatment (TP) | 6.40 | 39.70 | 0.74 | 2.67 | 21.00 | 14.20 |
Shock alkaline pretreatment (SKP) | 6.70 | 33.20 | 0.97 | 2.75 | 26.00 | 18.20 |
Alkaline pretreatment (KP) | 7.40 | 37.87 | 0.86 | 2.62 | 24.70 | 19.11 |
Acid pretreatment (AP) | 6.90 | 34.23 | 0.94 | 2.84 | 21.00 | 14.28 |
Substrate | Fermentation Conditions | Maximum Hydrogen Yield | References |
---|---|---|---|
Thermal pretreated sludge | Batch 37 °C | 12.23 mL/g-VSadded | [46] |
Ultrasound pretreated sludge | CSTR 36.5 °C | 25.2 mL/g-VSadded | [47] |
Alkaline pretreated sludge | Batch 37 °C | 11.68 mL/g-VSadded | [48] |
Thermal pretreated sludge | Batch 37 °C | 60 mL/g VSadded | [49] |
Thermal pretreated sludge | Batch 36 °C | 20.8–51.7 mL/g VS | [50] |
Thermal pretreated sludge | CSTR 55 °C | 64.8 mL H2/g VS | our study |
Item | Control (C) | Thermal (TP) | Shock Alkaline (SKP) | Alkaline (KP) | Acid (AP) |
---|---|---|---|---|---|
pH | 7.45 | 6.50 | 6.05 | 8.91 | 5.40 |
COD tot (g/L) | 27.80 | 27.60 | 23.76 | 25.17 | 22.94 |
ALK (g/L) | 2.49 | 2.82 | 2.79 | 2.08 | 2.18 |
TS (g/L) | 21.89 | 15.43 | 27.10 | 34.00 | 18.65 |
VS (g/L) | 13.98 | 9.88 | 15.99 | 21.76 | 10.26 |
Max H2 yield (L H2/g VS) | 0.03 | 6.48 | 1.73 | 1.04 | 0.74 |
Pretreatment Phase | Hydrogen Yield (mL/g VS) | Energy Yield (K j/g VS) |
---|---|---|
Control | 30 | 300 |
Acidic | 740 | 7400 |
Alkaline | 1004 | 10,040 |
Shock alkaline | 1730 | 17,300 |
Thermal | 6480 | 64,800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-kebeer, A.A.; Mahmoud, U.F.; Ismail, S.; Jalal, A.A.E.; Kowal, P.; Al-Hazmi, H.E.; Hassan, G.K. Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods. Processes 2024, 12, 118. https://doi.org/10.3390/pr12010118
El-kebeer AA, Mahmoud UF, Ismail S, Jalal AAE, Kowal P, Al-Hazmi HE, Hassan GK. Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods. Processes. 2024; 12(1):118. https://doi.org/10.3390/pr12010118
Chicago/Turabian StyleEl-kebeer, Alaa A., Usama F. Mahmoud, Sayed Ismail, Abu Abbas E. Jalal, Przemysław Kowal, Hussein E. Al-Hazmi, and Gamal K. Hassan. 2024. "Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods" Processes 12, no. 1: 118. https://doi.org/10.3390/pr12010118