Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems
Abstract
:1. Introduction
2. SOA Structure and Measurement Methods
2.1. Structure of the QDash-SOA
2.2. Measurement Methods
3. Results and Discussion of Device Measurement
3.1. Polarization Dependency of QDash-SOA
3.2. Fundamental Scenario: 20 °C, 300 mA Bias Current
3.3. The Influence of Bias Current
3.4. The Influence of Temperature
3.5. Discussion of Device Results
4. Heterodyne-Detected mmWave Radio-over-Fibre System Experimentation
4.1. System Setup
4.2. System Results and Discussion
4.2.1. QDash-SOA at OA1
4.2.2. QDash-SOA at OA2
4.2.3. Discussion of System Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Release 17 Description; Summary of Rel-17 Work Items, 3GPP. 2023. Available online: https://www.3gpp.org/specifications-technologies/releases/release-17 (accessed on 26 August 2024).
- Zeb, K.; Lu, Z.; Liu, J.; Mao, Y.; Liu, G.; Poole, P.J.; Rahim, M.; Pakulski, G.; Barrios, P.; Jiang, W.; et al. InAs/InP Quantum Dash Buried Heterostructure Mode-Locked Laser for High Capacity Fiber-Wireless Integrated 5G New Radio Fronthaul Systems. Opt. Express OE 2021, 29, 16164–16174. [Google Scholar] [CrossRef] [PubMed]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated Microwave Photonics. Nat. Photon 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Maram, R.; Kaushal, S.; Azaña, J.; Chen, L.R. Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics. Photonics 2019, 6, 13. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, L.; Liu, Y.; Chen, Y.; Liu, X.; Yi, J.; Yu, Y.; Zhang, X. Optical Filter Switchable Between Bandstop and Bandpass Responses in SOI Wafer. IEEE Photonics Technol. Lett. 2020, 32, 1105–1108. [Google Scholar] [CrossRef]
- Shao, S.; Hu, Z.; Xiao, Z.; Cao, G.; Zhu, X.; Wu, Y.; Feng, J.; Guo, J. 50 Gb/s Silicon Optical Modulators for Intra-Datacenter and On-Chip Optical Interconnect. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020; pp. 1–3. [Google Scholar]
- Sobhanan, A.; Anthur, A.; O’Duill, S.; Pelusi, M.; Namiki, S.; Barry, L.; Venkitesh, D.; Agrawal, G.P. Semiconductor Optical Amplifiers: Recent Advances and Applications. Adv. Opt. Photon. AOP 2022, 14, 571–651. [Google Scholar] [CrossRef]
- Zilkie, A.J.; Meier, J.; Mojahedi, M.; Poole, P.J.; Barrios, P.; Poitras, D.; Rotter, T.J.; Yang, C.; Stintz, A.; Malloy, K.J.; et al. Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 μm. IEEE J. Quantum Electron. 2007, 43, 982–991. [Google Scholar] [CrossRef]
- Bramann, G.; Wunsche, H.-J.; Busolt, U.; Schmidt, C.; Schlak, M.; Sartorius, B.; Nolting, H.-P. Two-wave competition in ultralong semiconductor optical amplifiers. IEEE J. Quantum Electron. 2005, 41, 1260–1267. [Google Scholar] [CrossRef]
- Guan, A.; Fu, H.-L. Experiment study on reducing SOA induced crosstalk by CW light injection and dispersion management. In Proceedings of the Optical Transmission, Switching, and Subsystems VI, Hangzhou, China, 27–30 October 2008; Volume 7136, pp. 577–584. [Google Scholar]
- Poole, P.J.; Kaminska, K.; Barrios, P.; Lu, Z.; Liu, J. Growth of InAs/InP-based quantum dots for 1.55 μm laser applications. J. Cryst. Growth 2009, 311, 1482–1486. [Google Scholar] [CrossRef]
- Mao, Y.; Xie, X.; Song, C.; Lu, Z.; Poole, P.J.; Liu, J.; Toreja, M.; Qi, Y.; Liu, G.; Barrios, P.; et al. Performance Investigations of InAs/InP Quantum-Dash Semiconductor Optical Amplifiers with Different Numbers of Dash Layers. Micromachines 2023, 14, 2230. [Google Scholar] [CrossRef]
- Eyvazi, M.; Yadipour, R.; Rostami, A. All-Optical Broadband QDs Semiconductor Optical Amplifier (QDs-SOA): Inhomogeneous Broadening. IEEE Access 2024, 12, 47993–48003. [Google Scholar] [CrossRef]
- Bauer, S.; Sichkovskyi, V.; Eyal, O.; Septon, T.; Becker, A.; Khanonkin, I.; Eisenstein, G.; Reithmaier, J.P. 1.5-μm Indium Phosphide-Based Quantum Dot Lasers and Optical Amplifiers: The Impact of Atom-Like Optical Gain Material for Optoelectronics Devices. IEEE Nanotechnol. Mag. 2021, 15, 23–36. [Google Scholar] [CrossRef]
- Vallaitis, T.; Bonk, R.; Guetlein, J.; Hillerkuss, D.; Li, J.; Brenot, R.; Lelarge, F.; Duan, G.H.; Freude, W.; Leuthold, J. Quantum Dot SOA Input Power Dynamic Range Improvement for Differential-Phase Encoded Signals. Opt. Express OE 2010, 18, 6270–6276. [Google Scholar] [CrossRef] [PubMed]
- Boriboon, B.; Worasucheep, D.; Shimizu, S.; Shinada, S.; Furukawa, H.; Matsumoto, A.; Akahane, K.; Yamamoto, N.; Wada, N. Performances of Conventional SOAs Versus QD-SOA in 1530-nm Upstream Transmission of 40 Gb/s Access Network. IEEE Photonics J. 2022, 14, 7108912. [Google Scholar] [CrossRef]
- St-Arnault, C.; Bernal, S.; Gutiérrez-Castrejón, R.; Berikaa, E.; Wei, Z.; Rautert, J.; Poltavtsev, S.V.; Gubenko, A.E.; Belykh, V.V.; Mikhrin, V.S.; et al. Performance Comparison of QD-SOA, QW-SOA, Bulk-SOA and PDFA for Multi-Tbps O-Band WDM Links. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 24–28 March 2024; p. M3E.5. [Google Scholar]
- Hadass, D.; Bilenca, A.; Alizon, R.; Dery, H.; Mikhelashvili, V.; Eisenstein, G.; Schwertberger, R.; Somers, A.; Reithmaier, J.P.; Forchel, A.; et al. Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: Model and experiments. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 1015–1026. [Google Scholar] [CrossRef]
- Zajnulina, M.; Lingnau, B.; Lüdge, K. Four-Wave Mixing in Quantum-Dot Semiconductor Optical Amplifiers: A Detailed Analysis of the Nonlinear Effects. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 3000112. [Google Scholar] [CrossRef]
- Qasaimeh, O. Broadband Gain-Clamped Linear Quantum Dash Optical Amplifiers. Opt. Quantum Electron. 2013, 45, 1277–1286. [Google Scholar] [CrossRef]
- Gioannini, M. Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers. IEEE J. Quantum Electron. 2004, 40, 364–373. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, X. Impact of Excited States Transitions on Polarization Property of InAs/InP Quantum Dots. IEEE J. Quantum Electron. 2022, 58, 7100109. [Google Scholar] [CrossRef]
- Xia, M.; Ghafouri-Shiraz, H. Quantum Transmission Line Modeling Method and Its Application to Quantum Dot Amplifiers. IEEE J. Quantum Electron. 2016, 52, 5100107. [Google Scholar] [CrossRef]
- Liu, S.; Tong, Y.; Norman, J.; Dumont, M.; Gossard, A.; Tsang, H.K.; Bowers, J. High Efficiency, High Gain and High Saturation Output Power Quantum Dot SOAs Grown on Si and Applications. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 30 March–3 April 2020; pp. 1–3. [Google Scholar]
- Lelarge, F.; Dagens, B.; Renaudier, J.; Brenot, R.; Accard, A.; van Dijk, F.; Make, D.; Gouezigou, O.L.; Provost, J.-G.; Poingt, F.; et al. Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 111–124. [Google Scholar] [CrossRef]
- Matsuura, M.; Raz, O.; Gomez-Agis, F.; Calabretta, N.; Dorren, H.J.S. Ultrahigh-Speed and Widely Tunable Wavelength Conversion Based on Cross-Gain Modulation in a Quantum-Dot Semiconductor Optical Amplifier. Opt. Express OE 2011, 19, B551–B559. [Google Scholar] [CrossRef] [PubMed]
- Farmani, A.; Farhang, M.; Sheikhi, M.H. High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller. Opt. Laser Technol. 2017, 93, 127–132. [Google Scholar] [CrossRef]
- Boriboon, B.; Worasucheep, D.; Matsumoto, A.; Akahane, K.; Yamamoto, N.; Wada, N. Optimized design of QD-LD toward QD-SOA to achieve 35-dB maximum chip gain with 400-mA injected current. Opt. Commun. 2020, 475, 126238. [Google Scholar] [CrossRef]
- Akahane, K.; Umezawa, T.; Matsumoto, A.; Yoshida, Y.; Yamamoto, N. High Temperature Operation of Quantum Dot Semiconductor Optical Amplifier for Uncooled 80 Gbps Data Transmission. In Proceedings of the Conference on Lasers and Electro-Optics, Online, 11–14 May 2020; p. AW3M.2. [Google Scholar]
- Fan, Z.; Hinokuma, Y.; Jiang, H.; Hamamoto, K. Active-MMI SOA on Quantum-Dots toward High Saturation Output Power under High Temperature. In Proceedings of the 2021 26th Microoptics Conference (MOC), Virtual, 26–19 September 2021; pp. 1–2. [Google Scholar]
- Sekiguchi, S.; Yasuoka, N.; Okumura, S.; Kawaguchi, K.; Ebe, H.; Morito, K.; Sugawara, M.; Arakawa, Y. Highly efficient columnar-quantum-dot semiconductor optical amplifier in high temperature condition. In Proceedings of the 2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference, San Francisco, CA, USA, 21–25 March 2010; pp. 1–3. [Google Scholar]
- Matsumoto, A.; Masuda, W.; Akahane, K.; Umezawa, T.; Yamamoto, N.; Kita, T. 1.55-μm Si-Photonics-Based Heterogeneous Tunable Laser Integrated with Highly Stacked QD-RSOA. In Proceedings of the 2021 Conference on Lasers and Electro-Optics (CLEO), Virtual, 9–14 May 2021; pp. 1–2. [Google Scholar]
- Connelly, M.J.; Krzczanowicz, L.; Morel, P.; Sharaiha, A.; Lelarge, F.; Brenot, R.; Joshi, S.; Barbet, S. 40 Gb/s NRZ-DQPSK Data Wavelength Conversion with Amplitude Regeneration Using Four-Wave Mixing in a Quantum Dash Semiconductor Optical Amplifier. Front. Optoelectron. 2016, 9, 341–345. [Google Scholar] [CrossRef]
- Itoh, T.; Sagara, M.; Matsuura, M. 40 Gb/s Operation of Photonic Digital-to-Analog Conversion Using Frequency Chirp in a QD-SOA. In Proceedings of the 2023 International Conference on Photonics in Switching and Computing (PSC), Mantova, Italy, 26–29 September 2023; pp. 1–3. [Google Scholar]
- Takemoto, T.; Tsuda, J.; Matsuura, M. All-Optical AND Logic Gate Using Filter-Sliced Frequency Chirp in a QD-SOA. In Proceedings of the 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC), Toyama, Japan, 3–6 July 2022; pp. 1–3. [Google Scholar]
- Martinez, A.; Aubin, G.; Lelarge, F.; Brenot, R.; Landreau, J.; Ramdane, A. Variable optical delays at 1.55 μm using fast light in an InAs/InP quantum dash based semiconductor optical amplifier. Appl. Phys. Lett. 2008, 93, 091116. [Google Scholar] [CrossRef]
- Ezra, Y.B.; Haridim, M.; Lembrikov, B.I.; Ran, M. Proposal for All-Optical Generation of Ultra-Wideband Impulse Radio Signals in Mach–Zehnder Interferometer With Quantum-Dot Optical Amplifier. IEEE Photonics Technol. Lett. 2008, 20, 484–486. [Google Scholar] [CrossRef]
- Poole, P.J.; Lu, Z.; Liu, J.; Barrios, P.; Mao, Y.; Liu, G. A Performance Comparison Between Quantum Dash and Quantum Well Fabry-Pérot Lasers. IEEE J. Quantum Electron. 2021, 57, 2500207. [Google Scholar] [CrossRef]
- Liu, G.; Poole, P.J.; Lu, Z.; Liu, J.; Song, C.-Y.; Mao, Y.; Barrios, P. Mode-Locking and Noise Characteristics of InAs/InP Quantum Dash/Dot Lasers. J. Light. Technol. 2023, 41, 4262–4270. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Poole, P.J.; Mao, Y.; Weber, J.; Liu, G.; Barrios, P. InAs/InP Quantum Dash Semiconductor Coherent Comb Lasers and Their Applications in Optical Networks. J. Light. Technol. JLT 2021, 39, 3751–3760. [Google Scholar] [CrossRef]
- Grecco, H.E.; Dartiailh, M.C.; Thalhammer-Thurner, G.; Bronger, T.; Bauer, F. PyVISA: The Python Instrumentation Package. J. Open Source Softw. 2023, 8, 5304. [Google Scholar] [CrossRef]
- Liu, G.; Lu, Z.; Liu, J.; Poole, P.J.; Mao, Y.; Zeb, K.; Xie, X.; Vachon, M.; Barrios, P.; Song, C.; et al. Monolithic InAs/InP Quantum Dash Mode-Locked Lasers for Millimeter-Wave-Over-Fiber Mobile Fronthaul Systems. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 1900110. [Google Scholar] [CrossRef]
- Noweir, M.; Zhou, Q.; Kwan, A.; Valivarthi, R.; Helaoui, M.; Tittel, W.; Ghannouchi, F.M. Digitally Linearized Radio-Over Fiber Transmitter Architecture for Cloud Radio Access Network’s Downlink. IEEE Trans. Microw. Theory Technol. 2018, 66, 3564–3574. [Google Scholar] [CrossRef]
Bias Current (mA) | Peak Gain Wavelength (nm) | 3 dB Bandwidth (nm) |
---|---|---|
150 | 1530.4 | 51.8 |
200 | 1518.8 | 52.2 |
250 | 1513.4 | 54.8 |
300 | 1513.4 | 56.8 |
350 | 1510.0 | 59.0 |
400 | 1507.6 | 62.8 |
Temperature (°C) | Peak Gain Wavelength (nm) | 3 dB Bandwidth (nm) |
---|---|---|
15 | 1501.4 | 54.8 |
20 | 1507.8 | 55.6 |
25 | 1515.6 | 57.8 |
30 | 1514.6 | 58.4 |
35 | 1519.2 | 59.2 |
40 | 1526.2 | 59.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Mao, Y.; Song, C.; Lu, Z.; Poole, P.J.; Liu, J.; Toreja, M.; Qi, Y.; Liu, G.; Poitras, D.; et al. Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems. Photonics 2024, 11, 826. https://doi.org/10.3390/photonics11090826
Xie X, Mao Y, Song C, Lu Z, Poole PJ, Liu J, Toreja M, Qi Y, Liu G, Poitras D, et al. Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems. Photonics. 2024; 11(9):826. https://doi.org/10.3390/photonics11090826
Chicago/Turabian StyleXie, Xiaoran, Youxin Mao, Chunying Song, Zhenguo Lu, Philip J. Poole, Jiaren Liu, Mia Toreja, Yang Qi, Guocheng Liu, Daniel Poitras, and et al. 2024. "Quantum-Dash Semiconductor Optical Amplifier for Millimeter-Wave over Fibre Wireless Fronthaul Systems" Photonics 11, no. 9: 826. https://doi.org/10.3390/photonics11090826