Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape
Abstract
:1. Introduction
- Investigate the concentration-dependent effects of PS microplastics on the morphological, physiological and biochemical growth characteristics of wheat.
- Determine the phytotoxic relevance of different shapes of PS microplastics for wheat at different concentrations.
2. Materials and Methods
2.1. Microplastic Materials
2.2. Soil Sampling and Preparation
2.3. Experimental Design
2.4. Growth Morphology Parameters
2.5. Oxidative Stress Indicators
2.6. Photosynthetic Pigments
2.7. Leaf Gas Exchange Parameters
2.8. Statistical Analysis
3. Results
3.1. Microplastic Characterization
3.2. Morphological and Root Growth Response to PS Microplastics
3.3. Plant Oxidative Stress Response to PS Microplastics
3.4. Effects of PS Microplastics on Chlorophyll Pigmentation and Photosynthetic Rate
3.5. Response of Leaf Gaseous Exchange to PS Microplastics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sridharan, S.; Kumar, M.; Bolan, N.S.; Singh, L.; Kumar, S.; Kumar, R.; You, S. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services? Environ. Res. 2021, 198, 111243. [Google Scholar] [CrossRef] [PubMed]
- Bamigboye, O.; Alfred, M.O.; Bayode, A.A.; Unuabonah, E.I.; Omorogie, M.O. The growing threats and mitigation of environmental microplastics. Environ. Chem. Ecotoxicol. 2024, 6, 259–268. [Google Scholar] [CrossRef]
- Citterich, F.; Giudice, A.L.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef]
- Luo, D.; Wang, Z.; Liao, Z.; Chen, G.; Ji, X.; Sang, Y.; Qu, L.; Chen, Z.; Wang, Z.; Dahlgren, R.A.; et al. Airborne microplastics in urban, rural and wildland environments on the Tibetan Plateau. J. Hazard. Mater. 2024, 465, 133177. [Google Scholar] [CrossRef]
- Pilapitiya, P.N.T.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Andrady, A.L.; Duarte, A.C.; Rocha-Santos, T. A One Health perspective of the impacts of microplastics on animal, human and environmental health. Sci. Total Environ. 2021, 777, 146094. [Google Scholar] [CrossRef]
- Sun, H.; Ai, L.; Wu, X.; Dai, Y.; Jiang, C.; Chen, X.; Song, Y.; Ma, J.; Yang, H. Effects of microplastic pollution on agricultural soil and crops based on a global meta-analysis. Land Degrad. Dev. 2024, 35, 551–567. [Google Scholar] [CrossRef]
- Wu, J.Y.; Gao, J.M.; Pei, Y.Z.; Luo, K.Y.; Yang, W.H.; Wu, J.C.; Yue, X.H.; Wen, J.; Luo, Y. Microplastics in agricultural soils: A comprehensive perspective on occurrence, environmental behaviors and effects. Chem. Eng. J. 2024, 489, 151328. [Google Scholar] [CrossRef]
- Cusworth, S.J.; Davies, W.J.; McAinsh, M.R.; Gregory, A.S.; Storkey, J.; Stevens, C.J. Agricultural fertilisers contribute substantially to microplastic concentrations in UK soils. Commun. Earth Environ. 2024, 5, 7. [Google Scholar] [CrossRef]
- Dogra, K.; Kumar, M.; Bahukhandi, K.D.; Zang, J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. J. Contam. Hydrol. 2024, 266, 104398. [Google Scholar] [CrossRef]
- Hoang, V.H.; Nguyen, M.K.; Hoang, T.D.; Ha, M.C.; Huyen, N.T.T.; Bui, V.K.H.; Pham, M.T.; Nguyen, C.M.; Chang, S.W.; Nguyen, D.D. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. Sci. Total Environ. 2024, 950, 175276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic stress in plants: Effects on plant growth and their remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Li, H.; Liu, P.; Zhang, Z.; Ouyang, Z.; Guo, X. Review of the toxic effect of microplastics on terrestrial and aquatic plants. Sci. Total Environ. 2021, 791, 148333. [Google Scholar] [CrossRef]
- Feng, T.; Wei, Z.; Agathokleous, E.; Zhang, B. Effect of microplastics on soil greenhouse gas emissions in agroecosystems: Does it depend upon microplastic shape and soil type? Sci. Total Environ. 2024, 912, 169278. [Google Scholar] [CrossRef]
- Maity, S.; Guchhait, R.; Sarkar, M.B.; Pramanick, K. Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: A review. Plant Cell. Environ. 2022, 45, 011–1028. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Yuan, C.; Zhai, K.; Xia, W.; Duan, Y.; Zhao, B.; Chu, J.; Yao, X. Brassinolide as potential rescue agent for Pinellia ternata grown under microplastic condition: Insights into their modulatory role on photosynthesis, redox homeostasis, and AsA-GSH cycling. J. Hazard. Mater. 2024, 470, 134116. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Tao, M.; Lv, T.; Li, F.; Yu, D.; Liu, C. Mechanistic insight into the impact of polystyrene microparticle on submerged plant during asexual propagules germination to seedling: Internalization in functional organs and alterations of physiological phenotypes. J. Hazard. Mater. 2024, 469, 133929. [Google Scholar] [CrossRef]
- Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut. 2020, 262, 114297. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Guo, S.; Mu, L.; Sun, S.; Hou, X.; Yao, M.; Hu, X. Concurrence of microplastics and heat waves reduces rice yields and disturbs the agroecosystem nitrogen cycle. J. Hazard. Mater. 2023, 452, 131340. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xu, X.; Guo, L.; Yuzuak, S.; Lu, Y. Physiological and biochemical effects of polystyrene micro/nano plastics on Arabidopsis thaliana. J. Hazard. Mater. 2024, 469, 133861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, M.; Zhu, Y.; Li, H.; Zhang, Y.; Wang, G.; Chen, X.; Zhang, W.; Wang, H.; Wang, Y.; et al. Impact of microplastic particle size on physiological and biochemical properties and rhizosphere metabolism of Zea mays L.: Comparison in different soil types. Sci. Total Environ. 2024, 908, 168219. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Ruley, A.T.; Sharma, N.C.; Sahi, S.V. Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol. Biochem. 2004, 42, 899–906. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–130. [Google Scholar]
- Heath, R.; Packer, L. Photoperoxidation in isolated chloroplasts of fatty acid peroxidation chlorophyll. Arch. Biochem. Biophisics. 1968, 126, 189–198. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Long, S.P.; Farage, P.K.; Garcia, R.L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 1996, 47, 1629–1642. [Google Scholar] [CrossRef]
- Hendriks, P.W.; Gurusinghe, S.; Weston, P.A.; Ryan, P.R.; Delhaize, E.; Weston, L.A.; Rebetzke, G.J. Introgression of early shoot vigour in wheat modifies root systems, increases competitiveness and provides options for integrated weed management. Plant Soil. 2024, 16, 1–20. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Graf, M.; Greenfield, L.M.; Reay, M.K.; Bargiela, R.; Williams, G.B.; Onyije, C.; Lloyd, C.E.; Bull, I.D.; Evershed, R.P.; Golyshin, P.N.; et al. Increasing concentration of pure micro-and macro-LDPE and PP plastic negatively affect crop biomass, nutrient cycling, and microbial biomass. J. Hazard. Mater. 2023, 458, 131932. [Google Scholar] [CrossRef]
- Benson, N.U.; Agboola, O.D.; Fred-Ahmadu, O.H.; De-la-Torre, G.E.; Oluwalana, A.; Williams, A.B. Micro (nano) plastics prevalence, food web interactions, and toxicity assessment in aquatic organisms: A review. Front. Mar. Sci. 2022, 9, 851281. [Google Scholar] [CrossRef]
- Fojt, J.; Denková, P.; Brtnický, M.; Holatko, J.; Řezáčová, V.; Pecina, V.; Kučerík, J. Influence of poly-3-hydroxybutyrate micro-bioplastics and polyethylene terephthalate microplastics on the soil organic matter structure and soil water properties. Environ. Sci. Technol. 2022, 56, 10732–10742. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef]
- Nuamzanei, C.U.; Sk, S.; Kumar, N.; Borah, B.; Chikkaputtaiah, C.; Saikia, R.; Phukan, T. Impact of polyvinyl chloride (PVC) microplastic on growth, photosynthesis and nutrient uptake of Solanum lycopersicum L. (Tomato). Environ. Pollut. 2024, 349, 123994. [Google Scholar] [CrossRef]
- Li, H.; Dong, S.; Chen, H.; Wang, Q.; Zhang, Y.; Wang, Y.; Wang, G. Deficit irrigation of reclaimed water relieves oat drought stress while controlling the risk of PAEs pollution in microplastics-polluted soil. J. Environ. Manag. 2024, 366, 121621. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, J.; Wang, Y.; Du, J.; Zhang, J.; Luisi, B.F.; Liang, W. Broad-spectrum chemicals block ROS detoxification to prevent plant fungal invasion. Curr. Biol. 2022, 32, 3886–3897. [Google Scholar] [CrossRef]
- Kimura, S.; Waszczak, C.; Hunter, K.; Wrzaczek, M. Bound by fate: The role of reactive oxygen species in receptor-like kinase signaling. Plant Cell. 2017, 29, 638–654. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, H.; Zhou, J.M.; Smith, S.M.; Li, J. Malate circulation: Linking chloroplast metabolism to mitochondrial ROS. Trends Plant Sci. 2020, 25, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, J.; Yin, K.; Liu, Z.; Zhang, Y.; Deng, C.; Liu, J.; Zhang, Y.; Hou, S.; Zhang, H.; et al. Populus euphratica phospholipase Dδ increases salt tolerance by regulating K+/Na+ and ROS homeostasis in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 4911. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Bae, H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. Plant Physiol. Biochem. 2023, 203, 108032. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zeng, Y.; Zhou, G. The influence of microplastics on the toxic effects and biodegradation of bisphenol A in the microalgae Chlorella pyrenoidosa. Aquat. Ecol. 2022, 56, 1287. [Google Scholar] [CrossRef]
- Xie, H.; Wei, C.; Wang, W.; Chen, R.; Cui, L.; Wang, L.; Chen, D.; Yu, Y.L.; Li, B.; Li, Y.F. Screening the phytotoxicity of micro/nanoplastics through non-targeted metallomics with synchrotron radiation X-ray fluorescence and deep learning: Taking micro/nano polyethylene terephthalate as an example. J. Hazard. Mater. 2024, 463, 132886. [Google Scholar] [CrossRef]
- Li, X.; Chu, Z.; Feng, C.; Song, P.; Yang, T.; Zhou, L.; Zhao, X.; Chai, X.; Xing, J.; Chen, S.; et al. Unveiling the molecular mechanisms of size-dependent effect of polystyrene micro/nano-plastics on Chlamydomonas reinhardtii through proteomic profiling. Chemosphere 2024, 358, 142220. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Wang, X.; Men, S.; Zeb, A.; Wang, Q.; Wang, J.; Li, J.; Zheng, Z.; et al. Toxicity mechanisms of nanoplastics on crop growth, interference of phyllosphere microbes, and evidence for foliar penetration and translocation. Environ. Sci. Technol. 2023, 58, 1010–1021. [Google Scholar] [CrossRef]
- Guzman-Tordecilla, M.; Pacheco-Bustos, C.; Coronado-Posada, N.; Pedrosa-Gomes, M.; Martinez-Burgos, W.J.; Mejía-Marchena, R.; Zorman-Marques, R. Exploring the ecotoxicological impact of meropenem on Lemna minor: Growth, photosynthetic activity, and oxidative stress. Environ. Res. 2024, 258, 119409. [Google Scholar] [CrossRef]
- Dietz, K.J.; Turkan, I.; Krieger-Liszkay, A. Redox-and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 2016, 171, 1541–1550. [Google Scholar] [CrossRef]
- Li, R.; Tu, C.; Li, L.; Wang, X.; Yang, J.; Feng, Y.; Zhu, X.; Fan, Q.; Luo, Y. Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology. J. Hazard. Mater. 2023, 456, 131675. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. As (III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere 2020, 239, 124792. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, X.; Hu, J.; Peng, J.; Qu, J. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environ. Pollut. 2020, 265, 114830. [Google Scholar] [CrossRef] [PubMed]
- Busch, F.A.; Ainsworth, E.A.; Amtmann, A.; Cavanagh, A.P.; Driever, S.M.; Ferguson, J.N.; Kromdijk, J.; Lawson, T.; Leakey, A.D.; Matthews, J.S.; et al. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ. 2024, 47, 3344–3364. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, F.; Song, X.; Zhu, K.; Lin, Q.; Zhang, J.; Ning, G. Single and composite damage mechanisms of soil polyethylene/polyvinyl chloride microplastics to the photosynthetic performance of soybean (Glycine max [L.] merr.). Front. Plant Sci. 2023, 13, 1100291. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Xu, Y.; Liu, Y.; Wang, S.; Wang, C.; Dong, Y.; Song, Z. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environ. Pollut. 2021, 268, 115870. [Google Scholar] [CrossRef]
- Urbina, M.A.; Correa, F.; Aburto, F.; Ferrio, J.P. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci. Total Environ. 2020, 741, 140216. [Google Scholar] [CrossRef]
- Ceccanti, C.; Davini, A.; Piccolo, E.L.; Lauria, G.; Rossi, V.; Castiglione, M.R.; Spanò, C.; Bottega, S.; Guidi, L.; Landi, M. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. J. Hazard. Mater. 2024, 470, 134164. [Google Scholar] [CrossRef]
Type | Shape | Color | Mean Size (µm) | Density (g/cm3) | Zeta Potential (mv) |
---|---|---|---|---|---|
PS | Powder | White | 5–7 | 0.95 | −35 |
PS | Bead | White | 5–10 | 1.05 | −40 |
PS | Fiber | White | 15–25 | 1.17 | −37 |
Plant Parameters | Plastic Shape (DF = 2) | Plastic Rate (DF = 3) | PS × PR (DF = 6) | |||
---|---|---|---|---|---|---|
MS | F-Value | MS | F-Value | MS | F-Value | |
Plant height (cm) | 274.43 | 25.06 *** | 3556.99 | 324.83 *** | 70.37 | 6.43 *** |
Fresh biomass (g pot−1) | 335.04 | 41.09 *** | 3166.01 | 388.27 *** | 82.70 | 10.14 *** |
Dry biomass (g pot−1) LAI (m2 m−2) | 352.78 0.01532 | 50.68 *** 10.78 *** | 3262.19 0.06885 | 468.64 *** 48.43 *** | 91.39 0.00206 | 13.13 *** 1.45 NS |
RL (cm) | 35.951 | 9.82 *** | 611.921 | 167.06 *** | 7.763 | 2.12 *** |
RFW (g) | 2.6889 | 12.50 *** | 42.0930 | 195.66 *** | 0.4109 | 1.91 NS |
SOD (Unit mg protein−1 min−1) | 23.890 | 10.30 *** | 608.409 | 262.24 *** | 7.816 | 3.37 NS |
POD (Unit mg protein−1 min−1) | 129.70 | 17.90 *** | 1655.64 | 228.48 *** | 39.15 | 5.40 *** |
CAT (Unit mg protein−1 min−1) | 69.728 | 25.21 *** | 829.480 | 299.92 *** | 12.591 | 4.55 *** |
MDA (mmol mg−1 protein) | 4.3011 | 84.68 *** | 30.5413 | 601.27 *** | 0.6271 | 12.34 *** |
Chl-a (mg g−1 FW) | 0.30508 | 38.52 *** | 1.22894 | 155.15 *** | 0.17323 | 21.87 *** |
Chl-b (mg g−1 FW) | 0.04444 | 10.65 *** | 0.56472 | 135.29 *** | 0.08432 | 20.20 *** |
Total Chl (mg g−1 FW) | 0.56451 | 27.74 *** | 3.43219 | 168.69 *** | 0.49059 | 24.11 *** |
NPR (µmol CO2 m−2 s−1) | 16.891 | 8.07 *** | 146.894 | 70.19 *** | 0.750 | 0.36 NS |
TR (mmol H2O m−2 s−1) | 0.58377 | 18.20 *** | 4.89884 | 152.70 *** | 0.09277 | 2.89 NS |
SC (µmol H2O m−2 s−1) | 0.01335 | 18.92 *** | 0.20735 | 293.83 *** | 0.00229 | 3.25 NS |
Intercellular CO2 concentration (µmol mol−1) | 821.6 | 80.68 *** | 14186.9 | 1393.21 *** | 214.0 | 21.02 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, K.; Yasmeen, T.; Attia, K.A.; Kimiko, I.; Arif, M.S. Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. Toxics 2025, 13, 57. https://doi.org/10.3390/toxics13010057
Riaz K, Yasmeen T, Attia KA, Kimiko I, Arif MS. Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. Toxics. 2025; 13(1):57. https://doi.org/10.3390/toxics13010057
Chicago/Turabian StyleRiaz, Komal, Tahira Yasmeen, Kotb A. Attia, Itoh Kimiko, and Muhammad Saleem Arif. 2025. "Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape" Toxics 13, no. 1: 57. https://doi.org/10.3390/toxics13010057
APA StyleRiaz, K., Yasmeen, T., Attia, K. A., Kimiko, I., & Arif, M. S. (2025). Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. Toxics, 13(1), 57. https://doi.org/10.3390/toxics13010057