Biological Control of Streptomyces Species Causing Common Scabs in Potato Tubers in the Yaqui Valley, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Isolation
2.2. Molecular Identification and Phylogenetic Analysis
2.3. Pathogenicity and Biocontrol Tests
2.4. Biocontrol of the Common Scabs and Increase in Potato Yield by Beneficial Strains under Commercial Field Conditions
3. Results
3.1. Sampling and Isolation of Streptomyces
3.2. Molecular Identification and Phylogenetic Analysis
3.3. Pathogenicity and Biocontrol Assays
3.4. Biocontrol and Growth Promotion Trials on Potatoes under Commercial Field Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campos, H.; Ortiz, O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-28682-8. [Google Scholar]
- SIAP, Servicio de Iinformación Agroalimentaria y Pescquera. Anuario Estadístico de La Produccion Agrícola: Papa. 2022. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 18 June 2024).
- Ibarra-Villarreal, A.L.; Villarreal-Delgado, M.F.; Parra-Cota, F.I.; Yepez, E.A.; Guzmán, C.; Gutierrez-Coronado, M.A.; Valdez, L.C.; Saint-Pierre, C.; de los Santos-Villalobos, S. Effect of a Native Bacterial Consortium on Growth, Yield, and Grain Quality of Durum Wheat (Triticum Turgidum L. subsp. durum) under Different Nitrogen Rates in the Yaqui Valley, Mexico. Plant Signal. Behav. 2023, 18, 2219837. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Martínez, A.C.; Figueroa-Brambila, K.M.; Escalante-Beltrán, A.; López-Montoya, N.D.; Valenzuela-Ruíz, V.; Parra-Cota, F.I.; Estrada Alvarado, M.I.; de los Santos-Villalobos, S. Biological Control Mechanisms of Bacillus cabrialesii subsp. tritici TSO2T against Fusarium languescens, the Causal Agent of Wilt in Jalapeño Peppers. Horticulturae 2023, 9, 964. [Google Scholar] [CrossRef]
- Kobayashi, Y.O.; Kobayashi, A.; Maeda, M.; Someya, N.; Takenaka, S. Biological Control of Potato Scab and Antibiosis by Antagonistic Streptomyces sp. WoRs-501. J. Gen. Plant Pathol. 2015, 81, 439–448. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, C.; Hao, J.J.; Li, Y.C.; Li, D.Z.; Zhang, D.M.; Xing, X.; Liang, Y. A Novel Streptomyces sp. Strain PBSH9 for Controlling Potato Common Scab Caused by Streptomyces galilaeus. Plant Dis. 2020, 104, 1986–1993. [Google Scholar] [CrossRef]
- Labeda, D.P.; Goodfellow, M.; Brown, R.; Ward, A.C.; Lanoot, B.; Vanncanneyt, M.; Swings, J.; Kim, S.B.; Liu, Z.; Chun, J.; et al. Phylogenetic Study of the Species within the Family Streptomycetaceae. Antonie Van Leeuwenhoek 2012, 101, 73–104. [Google Scholar] [CrossRef]
- Sarwar, A.; Latif, Z.; Zhang, S.; Zhu, J.; Zechel, D.L.; Bechthold, A. Biological Control of Potato Common Scab With Rare Isatropolone C Compound Produced by Plant Growth Promoting Streptomyces A1RT. Front. Microbiol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Dos Lopes, M.J.S.; Dias-Filho, M.B.; Gurgel, E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021, 5, 1–13. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Pepe, O. Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. Front. Plant Sci. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- de los Santos-Villalobos, S.; Díaz-Rodríguez, A.M.; Ávila-Mascareño, M.F.; Martínez-Vidales, A.D.; Parra-Cota, F.I. Colmena: A Culture Collection of Native Microorganisms for Harnessing the Agro-Biotechnological Potential in Soils and Contributing to Food Security. Diversity 2021, 13, 337. [Google Scholar] [CrossRef]
- García-Montelongo, A.M.; Montoya-Martínez, A.C.; Morales-Sandoval, P.H.; Parra-Cota, F.I.; de los Santos-Villalobos, S. Beneficial Microorganisms as a Sustainable Alternative for Mitigating Biotic Stresses in Crops. Stresses 2023, 3, 210–228. [Google Scholar] [CrossRef]
- Dees, M.W.; Sletten, A.; Hermansen, A. Isolation and Characterization of Streptomyces Species from Potato Common Scab Lesions in Norway. Plant Pathol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Wanner, L.A. Field Isolates of Streptomyces Differ in Pathogenicity and Virulence on Radish. Plant Dis. 2004, 88, 785–796. [Google Scholar] [CrossRef]
- Kumar, V.; Bharti, A.; Gusain, O.; Bisht, G.S. Scanning Electron Microscopy of Streptomyces without Use of Any Chemical Fixatives. Scanning 2011, 33, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Loria, R.; Bukhalid, R.A.; Fry, B.A.; King, R.R. Plant Pathogenicity in the Genus Streptomyces. Plant Dis. 1997, 81, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Yepes-García, J.; Caicedo-Montoya, C.; Pinilla, L.; Toro, L.F.; Ríos-Estepa, R. Morphological Differentiation of Streptomyces clavuligerus Exposed to Diverse Environmental Conditions and Its Relationship with Clavulanic Acid Biosynthesis. Processes 2020, 8, 1038. [Google Scholar] [CrossRef]
- Lerat, S.; Forest, M.; Lauzier, A.; Grondin, G.; Lacelle, S.; Beaulieu, C. Potato Suberin Induces Differentiation and Secondary Metabolism in the Genus Streptomyces. Microbes Environ. 2012, 27, 36–42. [Google Scholar] [CrossRef]
- Raeder, U.; Broda, P. Rapid Preparation of DNA from Filamentous Fungi. Appl. Microbiol. 1985, 1, 17–20. [Google Scholar] [CrossRef]
- Lapaz, M.I.; Huguet-Tapia, J.C.; Siri, M.I.; Verdier, E.; Loria, R.; Pianzzola, M.J. Genotypic and Phenotypic Characterization of Streptomyces Species Causing Potato Common Scab in Uruguay. Plant Dis. 2017, 101, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. Sea View Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef]
- Vaidya, G.; Lohman, D.J.; Meier, R. Cladistics Multi-Gene Datasets with Character Set and Codon Information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace Aware Data Structure for Phylogenomic Unference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- de los Santos-Villalobos, S.; Valenzuela-Ruiz, V.; Montoya-Martínez, A.C.; Parra-Cota, F.I.; Santoyo, G.; Larsen, J. Bacillus cabrialesii subsp. cabrialesii subsp. nov. and Bacillus cabrialesii subsp. tritici subsp. nov., Plant Growth-Promoting Bacteria and Biological Control Agents Isolated from Wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. Int. J. Syst. Evol. Microbiol. 2023, 73, 005779. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Padilla, J.; Chaparro-Encinas, L.A.; Robles-Montoya, R.I.; de los Santos-Villalobos, S. Growth Promotion on Wheat (TriticumtTurgidum L. subsp. durum) by Co-Inoculation of Native Bacillus Strains Isolated from the Yaqui Valley, Mexico. Nov. Sci. 2020, 12, 127. [Google Scholar] [CrossRef]
- Valenzuela-Aragon, B.; Parra-Cota, F.I.; Santoyo, G.; Arellano-Wattenbarger, G.L.; de los Santos-Villalobos, S. Plant-Assisted Selection: A Promising Alternative for in vivo Identification of Wheat (Triticum turgidum L. subsp. durum) Growth Promoting Bacteria. Plant Soil 2018, 435, 367–384. [Google Scholar] [CrossRef]
- Valenzuela-Ruiz, V.; Parra-Cota, F.I.; Santoyo, G.; De los Santos-Villalobos, S. Potential Biocontrol Mechanisms of Bacillus sp. TSO2 against Bipolaris sorokiniana, Spot Blotch in Wheat. Rev. Mex. Fitopatol. Mex. J. Phytopathol. 2022, 40, 230–239. [Google Scholar] [CrossRef]
- Villa-Rodríguez, E.; Parra-Cota, F.; Castro-Longoria, E.; López-Cervantes, J.; de los Santos-Villalobos, S. Bacillus subtilis TE3: A Promising Biological Control Agent against Bipolaris sorokiniana, the Causal Agent of Spot Blotch in Wheat (Triticum turgidum L. subsp. durum). Biol. Control 2019, 132, 135–143. [Google Scholar] [CrossRef]
- Villa-Rodriguez, E.; Moreno-Ulloa, A.; Castro-Longoria, E.; Parra-Cota, F.I.; de los Santos-Villalobos, S. Integrated Omics Approaches for Deciphering Antifungal Metabolites Produced by a Novel Bacillus Species, B. cabrialesii TE3T, against the Spot Blotch Disease of Wheat (Triticum turgidum L. subsp. durum). Microb. Res. 2021, 251, 126826. [Google Scholar] [CrossRef]
- de los Santos Villalobos, S.; Robles, R.I.; Parra Cota, F.I.; Larsen, J.; Lozano, P.; Tiedje, J.M. Bacillus cabrialesii sp. nov., an Endophytic Plant Growth Promoting Bacterium Isolated from Wheat (Triticum turgidum subsp. durum) in the Yaqui Valley, Mexico. Int. J. Syst. Evol. Microbiol. 2019, 69, 3939–3945. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Ruiz, V.; Robles-Montoya, R.I.; Parra-Cota, F.I.; Santoyo, G.; del Carmen Orozco-Mosqueda, M.; Rodríguez-Ramírez, R.; de los Santos-Villalobos, S. Draft Genome Sequence of Bacillus paralicheniformis TRQ65, a Biological Control Agent and Plant Growth-Promoting Bacterium Isolated from Wheat (Triticum turgidum subsp. durum) Rhizosphere in the Yaqui Valley, Mexico. 3 Biotech 2019, 9, 1–7. [Google Scholar] [CrossRef]
- de los Santos Villalobos, S.; Félix Pablos, C.M.; Ruiz, V.V.; Parra Cota, F.I. Bacillus mexicanus sp. nov., a Biological Control Bacterium Isolated from the Common Bean (Phaseolus vulgaris L.) Crop in Sinaloa, Mexico. Int. J. Syst. Evol. Microbiol. 2023, 73, 10. [Google Scholar] [CrossRef]
- Morales-Sandoval, P.H.; Valenzuela-Ruíz, V.; Santoyo, G.; Hyder, S.; Mitra, D.; Zelaya-Molina, L.X.; Ávila-Alistac, N.; Parra-Cota, F.I.; de los Santos-Villalobos, S. Draft Genome of a Biological Control Agent against Bipolaris sorokiniana, the Causal Phytopathogen of Spot Blotch in Wheat (Triticum turgidum L. subsp. durum): Bacillus inaquosorum TSO22. Open Agric. 2024, 9, 20220309. [Google Scholar] [CrossRef]
- Santos-Cervantes, M.E.; Felix-Gastelum, R.; Herrera-Rodríguez, G.; Espinoza-Mancillas, M.G.; Mora-Romero, A.G.; Leyva-López, N.E. Characterization, Pathogenicity and Chemical Control of Streptomyces acidiscabies Associated to Potato Common Scab. Am. J. Potato Res. 2017, 94, 14–25. [Google Scholar] [CrossRef]
- Wanner, L.A.; Kirk, W.W. Streptomyces—from Basic Microbiology to Role as a Plant Pathogen. Am. J. Potato Res. 2015, 92, 236–242. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-Aree, W.; Manzanera, M. Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. Plants 2021, 10, 2325. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Weisberg, A.J.; Chang, J.H.; Clarke, C.R. Streptomyces caniscabiei np. nov., Which Causes Potato Common Scab and is Distributed across the World. Int. J. Syst. Evol. Microbiol. 2022, 72, 005225. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. Physiol. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents against Plant Diseases: Relevance beyond Efficacy. Front. Plant Sci. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bolivar-Anillo, H.J.; González-Rodríguez, V.E.; Cantoral, J.M.; García-Sánchez, D.; Collado, I.G.; Garrido, C. Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis Cinerea. Biology 2021, 10, 492. [Google Scholar] [CrossRef]
- Gu, X.; Zeng, Q.; Wang, Y.; Li, J.; Zhao, Y.; Li, Y.; Wang, Q. Comprehensive Genomic Analysis of Bacillus subtilis 9407 Reveals Its Biocontrol Potential against Bacterial Fruit Blotch. Phytopathol. Res. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Su, Y.; Meng, Z.; Zhang, J.; Zheng, L.; Miao, S.; Qin, D.; Ruan, Y.; Wu, Y.; Xiong, L.; et al. Biocontrol of Bacterial Wilt Disease in Tomato Using Bacillus subtilis Strain R31. Front. Microbiol. 2023, 14, 1281381. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 2004, 134, 307–319. [Google Scholar] [CrossRef]
- Cavaglieri, L.; Orlando, J.; Rodríguez, M.I.; Chulze, S.; Etcheverry, M. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the Maize Root Level. Res. Microbiol. 2005, 156, 748–754. [Google Scholar] [CrossRef]
- Kumbar, B.; Mahmood, R.; Nagesha, S.N.; Nagaraja, M.S.; Prashant, D.G.; Kerima, O.Z.; Karosiya, A.; Chavan, M. Field Application of Bacillus subtilis Isolates for Controlling Late Blight Disease of Potato Caused by Phytophthora infestans. Biocatal. Agric. Biotechnol. 2019, 22, 101366. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhao, D.L.; Shen, L.L.; Jing, C.L.; Zhang, C.S. Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. In Role of Rhizospheric Microbes in Soil; Meena, V.S., Ed.; Springer: Singapore, 2018; pp. 225–250. ISBN 978-981-10-8401-0. [Google Scholar]
- Nagórska, K.; Bikowski, M.; Obuchowski, M. Multicellular Behaviour and Production of a Wide Variety of Toxic Substances Support Usage of Bacillus subtilis as a Powerful Biocontrol Agent. Acta Biochim. Pol. 2007, 54, 495–508. [Google Scholar] [CrossRef]
- Sarwar, A.; Latif, Z.; Zhang, S.; Hao, J.; Bechthold, A. A Potential Biocontrol Agent Streptomyces violaceusniger AC12AB for Managing Potato Common Scab. Front. Microbiol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaiman, T.; Khan, A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef]
- Belda, E.; Sekowska, A.; Le Fèvre, F.; Morgat, A.; Mornico, D.; Ouzounis, C.; Vallenet, D.; Médigue, C.; Danchin, A. An Updated Metabolic View of the Bacillus subtilis 168 Genome. Microbiology 2013, 159, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Kiesewalter, H.T.; Lozano-Andrade, C.N.; Wibowo, M.; Strube, M.L.; Maróti, G.; Snyder, D.; Jørgensen, T.S.; Larsen, T.O.; Cooper, V.S.; Weber, T.; et al. Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tsai, C.-H.; Chen, P.-Y.; Wu, C.-Y.; Chang, Y.-L.; Yang, Y.-L.; Chen, Y.-L. Biological Control of Potato Common Scab by Bacillus amyloliquefaciens Ba01. PLoS ONE 2018, 13, e0196520. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.-Y.; Chen, Y.-H.; Lin, C.; Tsai, C.-H.; Yang, Y.-L.; Chen, Y.-L. Surfactin Secreted by Bacillus amyloliquefaciens Ba01 Is Required to Combat Streptomyces scabies Causing Potato Common Scab. Front. Plant Sci. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Q.; Peng, Z.; Zhang, J.; Li, J. Biocontrol Effect of Bacillus subtilis YPS-32 on Potato Common Scab and Its Complete Genome Sequence Analysis. J. Agric. Food Chem. 2022, 70, 5339–5348. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Wang, S.; Li, X.; Li, X.; Cai, J.; Zhao, L.; Wang, J.; Zeng, J.; Qin, Y.; Xiong, X.; et al. Biological Control of Potato Common Scab and Growth Promotion of Potato by Bacillus velezensis Y6. Front. Microbiol. 2023, 14, 1295107. [Google Scholar] [CrossRef]
- Blake, C.; Christensen, M.N.; Kovács, Á.T. Molecular Aspects of Plant Growth Promotion and Protection by Bacillus subtilis. Mol. Plant-Microbe Interact. 2021, 34, 15–25. [Google Scholar] [CrossRef]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus Solubilization by Bacillus Species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.A.; Medeiros, F.H.V.; Carvalho, S.P.; Guilherme, L.R.G.; Teixeira, W.D.; Zhang, H.; Paré, P.W. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3). Front. Plant Sci. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela Ruiz, V.; Santoyo, G.; Gómez Godínez, L.J.; Cira Chávez, L.A.; Parra Cota, F.I.; de los Santos Villalobos, S. Complete Genome Sequencing of Bacillus cabrialesii TE3T: A Plant Growth-Promoting and Biological Control Agent Isolated from Wheat (Triticum turgidum subsp. durum) in the Yaqui Valley. Curr. Res. Microb. Sci. 2023, 4, 100193. [Google Scholar] [CrossRef]
- Figueroa-Brambila, K.M.; Escalante-Beltrán, A.; Montoya-Martínez, A.C.; Díaz-Rodríguez, A.M.; López-Montoya, N.D.; Parra-Cota, F.I.; de los Santos-Villalobos, S. Bacillus cabrialesii: Five Years of Research on a Novel Species of Biological Control and Plant Growth-Promoting Bacteria. Plants 2023, 12, 2419. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Name | Sequence (5′-3′) | Amplicon Size (bp) | Reference |
---|---|---|---|---|
recA | recAPF | CCGCRCTCGCACAGATTGAACGSCAATTC | 913 | [20] |
recAPR | GCSAGGTCGGGGTTGTCCTTSAGGAAGTTGCG | |||
rpoB | SRPOF1 | TCGACCACTTCGGCAACCGC | 352 | |
SRPOR1 | TCGATCGGGCACATGCGGCC |
Reference Streptomyces Strain | Accession Number | Location | Year of Isolation | Isolation Source |
---|---|---|---|---|
Streptomyces acidiscabies NRRL B-16521 | GCA_020010905.1 | Unknown | Unknown | Potato tuber |
Streptomyces bottropensis ATCC 25435 | GCA_000383595.1 | North America | Unknown | Forest soil |
Streptomyces caniscabiei ID03-3A | GCA_014852565.2 | USA | 2003 | Potato tuber |
Streptomyces caniscabiei ND05-13A | GCA_014930415.1 | USA | 2005 | Potato tuber |
Streptomyces caniscabiei NRRL B-24093 | GCA_002155765.1 | Egypt | 1999 | Potato |
Streptomyces caniscabiei NRRL B-2801 | GCA_002155725.1 | USA | 1961 | Russet Burbank potato |
Streptomyces europaeiscabiei NRRL B-24443 | GCA_000988945.1 | France | 1998 | Potato |
Streptomyces griseiscabiei NRRL B-2795 | GCA_020010925.1 | USA | 1961 | Potato tuber |
Streptomyces griseorubiginosus NBC 00586 | GCA_036345135.1 | Denmark | 2017 | Soil |
Streptomyces neyagawaensis NRRL B-3092 | GCA_001418645.1 | Japan | 1963 | Unknown |
Streptomyces niveiscabiei NRRL B-24457 | GCA_001419795.1 | South Korea | 2005 | Potato |
Streptomyces phaeolivaceus GY16 | GCA_009184865.1 | China | 2018 | Broussonetia papyrifera |
Streptomyces purpureus KA281 | GCA_000384175.1 | USA | Unknown | Soil with decomposing organic matter |
Streptomyces scabies NRRL B-16523 | GCA_001005405.1 | USA | 1984 | Scabby potato |
Streptomyces stelliscabiei NRRL B-24447 | GCA_001008135.1 | France | 1998 | Potato |
Streptomyces turgidiscabies ATCC 700248 | GCA_033794965.1 | Japan | 1991 | Potato |
Nocardiopsis dassonvillei NCTC10488 | GCA_900638215.1 | Unknown | 1953 | Unknown |
Streptomyces Isolate | recA Partial Gene BLASTn NCBI a | Similarity (%) | rpoB Partial Gene BLASTn NCBI a | Similarity (%) |
---|---|---|---|---|
PRV23 | Streptomyces caniscabiei strain ID03-3A | 100 | Streptomyces caniscabiei strain ID03-3A | 100 |
PRV28 | Streptomyces caniscabiei strain ID03-3A | 100 | Streptomyces caniscabiei strain ID03-3A | 99.35 |
PEP11 | Streptomyces caniscabiei strain ID03-3A | 100 | Streptomyces purpureus strain ATCC 21405 | 99.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Martínez, A.C.; Chávez-Luzanía, R.A.; Olguín-Martínez, A.I.; Ruíz-Castrejón, A.; Moreno-Cárdenas, J.D.; Esquivel-Chávez, F.; Parra-Cota, F.I.; de los Santos-Villalobos, S. Biological Control of Streptomyces Species Causing Common Scabs in Potato Tubers in the Yaqui Valley, Mexico. Horticulturae 2024, 10, 865. https://doi.org/10.3390/horticulturae10080865
Montoya-Martínez AC, Chávez-Luzanía RA, Olguín-Martínez AI, Ruíz-Castrejón A, Moreno-Cárdenas JD, Esquivel-Chávez F, Parra-Cota FI, de los Santos-Villalobos S. Biological Control of Streptomyces Species Causing Common Scabs in Potato Tubers in the Yaqui Valley, Mexico. Horticulturae. 2024; 10(8):865. https://doi.org/10.3390/horticulturae10080865
Chicago/Turabian StyleMontoya-Martínez, Amelia C., Roel Alejandro Chávez-Luzanía, Ana Isabel Olguín-Martínez, Abraham Ruíz-Castrejón, Jesús Daniel Moreno-Cárdenas, Fabiola Esquivel-Chávez, Fannie I. Parra-Cota, and Sergio de los Santos-Villalobos. 2024. "Biological Control of Streptomyces Species Causing Common Scabs in Potato Tubers in the Yaqui Valley, Mexico" Horticulturae 10, no. 8: 865. https://doi.org/10.3390/horticulturae10080865