Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Previous Issue
Volume 10, June
 
 

Int. J. Neonatal Screen., Volume 10, Issue 3 (September 2024) – 14 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 234 KiB  
Article
Continuity of Operations in Newborn Screening: Lessons Learned from Three Incidents
by M. Christine Dorley, Elizabeth Bair, Patricia Ryland, Amanda D. Ingram, Emily Reeves, Kara J. Levinson, Ona O. Adair, Jenny F. Meredith and Susanne Crowe
Int. J. Neonatal Screen. 2024, 10(3), 55; https://doi.org/10.3390/ijns10030055 - 1 Aug 2024
Viewed by 314
Abstract
Three incidents that impacted two US newborn screening (NBS) programs highlight the importance of contingency planning for the continuity of operations (COOP). Other NBS programs may benefit from the experience of these state programs for their own contingency planning efforts. Through after-action reviews [...] Read more.
Three incidents that impacted two US newborn screening (NBS) programs highlight the importance of contingency planning for the continuity of operations (COOP). Other NBS programs may benefit from the experience of these state programs for their own contingency planning efforts. Through after-action reviews conducted post-incident, crucial elements for the successful management of an incident were identified. We detailed the strengths, weaknesses, improvements needed, and future actions that will assist in preparing for other incidents as lessons learned. Full article
10 pages, 1527 KiB  
Article
A Five-Year Review of Newborn Screening for Spinal Muscular Atrophy in the State of Utah: Lessons Learned
by Kristen N. Wong, Melissa McIntyre, Sabina Cook, Kim Hart, Amelia Wilson, Sarah Moldt, Andreas Rohrwasser and Russell J. Butterfield
Int. J. Neonatal Screen. 2024, 10(3), 54; https://doi.org/10.3390/ijns10030054 - 22 Jul 2024
Viewed by 667
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive condition characterized by alpha motor neuron degeneration in the spinal cord anterior horn. Clinical symptoms manifest in the first weeks to months of life in the most severe cases, resulting in progressive symmetrical weakness and [...] Read more.
Spinal muscular atrophy (SMA) is an autosomal recessive condition characterized by alpha motor neuron degeneration in the spinal cord anterior horn. Clinical symptoms manifest in the first weeks to months of life in the most severe cases, resulting in progressive symmetrical weakness and atrophy of the proximal voluntary muscles. Approximately 95% of SMA patients present with homozygous deletion of the SMN1 gene. With multiple available therapies preventing symptom development and slowing disease progression, newborn screening for SMA is essential to identify at-risk individuals. From 2018 to 2023, a total of 239,844 infants were screened. 13 positive screens were confirmed to have SMA. An additional case was determined to be a false positive. We are not aware of any false-negative cases. All patients were seen promptly, with diagnosis confirmed within 1 week of the initial clinical visit. Patients were treated with nusinersen or onasemnogene abeparvovec. Treated patients with two copies of SMN2 are meeting important developmental milestones inconsistent with the natural history of type 1 SMA. Patients with 3–4 copies of SMN2 follow normal developmental timelines. Newborn screening is an effective tool for the early identification and treatment of patients with SMA. Presymptomatic treatment dramatically shifts the natural history of SMA, with most patients meeting appropriate developmental milestones. Patients with two copies of SMN2 identified through newborn screening constitute a neurogenetic emergency. Due to the complexities of follow-up, a multidisciplinary team, including close communication with the newborn screening program, is required to facilitate timely diagnosis and treatment. Full article
(This article belongs to the Special Issue Newborn Screening for SMA—State of the Art)
Show Figures

Figure 1

7 pages, 398 KiB  
Case Report
Biochemical Pattern of Methylmalonyl-CoA Epimerase Deficiency Identified in Newborn Screening: A Case Report
by Evelina Maines, Roberto Franceschi, Francesca Rivieri, Giovanni Piccoli, Björn Schulte, Jessica Hoffmann, Andrea Bordugo, Giulia Rodella, Francesca Teofoli, Monica Vincenzi, Massimo Soffiati and Marta Camilot
Int. J. Neonatal Screen. 2024, 10(3), 53; https://doi.org/10.3390/ijns10030053 - 18 Jul 2024
Viewed by 380
Abstract
Methylmalonyl-CoA epimerase enzyme (MCEE) is responsible for catalyzing the isomeric conversion between D- and L-methylmalonyl-CoA, an intermediate along the conversion of propionyl-CoA to succinyl-CoA. A dedicated test for MCEE deficiency is not included in the newborn screening (NBS) panels but it can be [...] Read more.
Methylmalonyl-CoA epimerase enzyme (MCEE) is responsible for catalyzing the isomeric conversion between D- and L-methylmalonyl-CoA, an intermediate along the conversion of propionyl-CoA to succinyl-CoA. A dedicated test for MCEE deficiency is not included in the newborn screening (NBS) panels but it can be incidentally identified when investigating methylmalonic acidemia and propionic acidemia. Here, we report for the first time the biochemical description of a case detected by NBS. The NBS results showed increased levels of propionylcarnitine (C3) and 2-methylcitric acid (MCA), while methylmalonic acid (MMA) and homocysteine (Hcy) were within the reference limits. Confirmatory analyses revealed altered levels of metabolites, including MCA and MMA, suggesting a block in the propionate degradation pathway. The analysis of methylmalonic pathway genes by next-generation sequencing (NGS) allowed the identification of the known homozygous nonsense variation c.139C>T (p.R47X) in exon 2 of the MCE gene. Conclusions: Elevated concentrations of C3 with a slight increase in MCA and normal MMA and Hcy during NBS should prompt the consideration of MCEE deficiency in differential diagnosis. Increased MMA levels may be negligible at NBS as they may reach relevant values beyond the first days of life and thus could be identified only in confirmatory analyses. Full article
Show Figures

Figure 1

11 pages, 677 KiB  
Article
Impact of Lowering TSH Cut-Off on Neonatal Screening for Congenital Hypothyroidism in Minas Gerais, Brazil
by Nathalia Teixeira Palla Braga, Jáderson Mateus Vilela Antunes, Enrico Antônio Colosimo, Vera Maria Alves Dias, José Nélio Januário and Ivani Novato Silva
Int. J. Neonatal Screen. 2024, 10(3), 52; https://doi.org/10.3390/ijns10030052 - 18 Jul 2024
Viewed by 423
Abstract
A higher incidence of primary congenital hypothyroidism (CH) has been related to increased sensitivity in neonatal screening tests. The benefit of treatment in mild cases remains a topic of debate. We evaluated the impact of reducing the blood-spot TSH cut-off (b-TSH) from 10 [...] Read more.
A higher incidence of primary congenital hypothyroidism (CH) has been related to increased sensitivity in neonatal screening tests. The benefit of treatment in mild cases remains a topic of debate. We evaluated the impact of reducing the blood-spot TSH cut-off (b-TSH) from 10 (Group 2) to 6 mIU/L (Group 1) in a public neonatal screening program. During the study period, 40% of 123 newborns with CH (n = 162,729; incidence = 1:1323) had b-TSH between 6 and 10 mIU/L. Group 1 patients had fewer clinical signs (p = 0.02), lower serum TSH (p < 0.01), and higher free T4 (p < 0.01) compared to those in Group 2 at diagnosis. Reducing the b-TSH cut-off from 10 to 6 mIU/L increased screening sensitivity, allowing a third of diagnoses, mainly mild cases, not being missed. However, when evaluating the performances of b-TSH cut-offs (6, 7, 8, 9, and 10 mIU/L), the lower values were associated with low positive predictive values (PPVs) and unacceptable increased recall rates (0.57%) for a public health care program. A proposed strategy is to adopt a higher b-TSH cut-off in the first sample and a lower one in the subsequent samples from the same child, which yields a greater number of diagnoses with an acceptable PPV. Full article
(This article belongs to the Special Issue Newborn Screening for Congenital Hypothyroidism)
Show Figures

Figure 1

10 pages, 2508 KiB  
Article
CDC’s Laboratory Activities to Support Newborn Screening for Spinal Muscular Atrophy
by Francis K. Lee, Christopher Greene, Kristina Mercer, Jennifer Taylor, Golriz Yazdanpanah, Robert Vogt, Rachel Lee, Carla Cuthbert and Suzanne Cordovado
Int. J. Neonatal Screen. 2024, 10(3), 51; https://doi.org/10.3390/ijns10030051 - 17 Jul 2024
Viewed by 473
Abstract
Spinal muscular atrophy (SMA) was added to the HHS Secretary’s Recommended Uniform Screening Panel for newborn screening (NBS) in 2018, enabling early diagnosis and treatment of impacted infants to prevent irreversible motor neuron damage. In anticipation of supporting SMA newborn screening, scientists at [...] Read more.
Spinal muscular atrophy (SMA) was added to the HHS Secretary’s Recommended Uniform Screening Panel for newborn screening (NBS) in 2018, enabling early diagnosis and treatment of impacted infants to prevent irreversible motor neuron damage. In anticipation of supporting SMA newborn screening, scientists at the U.S. Centers for Disease Control and Prevention (CDC) have worked towards building resources for public health laboratories in four phases since 2013. In Phase 1, CDC established a real-time PCR assay, which uses a locked nucleic acid probe to attain the needed specificity, to detect SMN1 exon 7. In Phase 2, we developed quality assurance dried blood spot materials made with transduced lymphoblast cell lines established from de-identified SMA patients, carriers, and unaffected donors. In 2021, CDC implemented Phase 3, a proficiency testing program, that now supports 115 NBS labs around the world. We are currently completing Phase 4, which includes the implementation of an external SMA quality control material program. Also, during this time, CDC has provided individual technical assistance to NBS programs and bench training to NBS scientists during our annual molecular workshop. These CDC-led activities have contributed to the rapid and full implementation of SMA screening in all 50 U.S. states as of February 2024. Full article
(This article belongs to the Special Issue Newborn Screening for SMA—State of the Art)
Show Figures

Figure 1

9 pages, 1103 KiB  
Article
One-Year Pilot Study Results of Newborn Screening for Spinal Muscular Atrophy in the Republic of Croatia
by Darija Šimić, Ana Šarić, Ana Škaričić, Ivan Lehman, Branka Bunoza, Ivana Rako and Ksenija Fumić
Int. J. Neonatal Screen. 2024, 10(3), 50; https://doi.org/10.3390/ijns10030050 - 16 Jul 2024
Viewed by 398
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular and neurodegenerative disease caused by the homozygous deletion of SMN1 exon 7 in 95% of cases. The prognosis for SMA patients has improved with the development of disease-modifying therapies, all of which are available in Croatia. [...] Read more.
Spinal muscular atrophy (SMA) is a neuromuscular and neurodegenerative disease caused by the homozygous deletion of SMN1 exon 7 in 95% of cases. The prognosis for SMA patients has improved with the development of disease-modifying therapies, all of which are available in Croatia. The best treatment outcomes occur when therapy is applied before symptoms appear, making newborn screening (NBS) for SMA a crucial factor. Since SMA NBS is the first genetic test performed in our laboratory, for successful implementation of the program, we had to overcome logistical and organizational issues. Herein, we present the results of the SMA NBS during the one-year pilot project in Croatia and verify the suitability of the Targeted qPCR SMA assay for SMA NBS. The pilot project started on 1 March 2023 in the Department for Laboratory Diagnostics of the University Hospital Center Zagreb. A total of 32,655 newborns were tested. Five SMA patients were detected, and their diagnoses were confirmed by the multiplex ligation-dependent probe amplification (MLPA) assay. There have been no false positive or false negative results, to our knowledge so far. The incidence of SMA determined during the pilot study is consistent with the SMA incidence data from other European countries. Full article
(This article belongs to the Special Issue Newborn Screening for SMA—State of the Art)
Show Figures

Figure 1

33 pages, 772 KiB  
Systematic Review
Systematic Review of Newborn Screening Programmes for Spinal Muscular Atrophy
by Katy Cooper, Gamze Nalbant, Anthea Sutton, Sue Harnan, Praveen Thokala, Jim Chilcott, Alisdair McNeill and Alice Bessey
Int. J. Neonatal Screen. 2024, 10(3), 49; https://doi.org/10.3390/ijns10030049 - 15 Jul 2024
Viewed by 538
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder causing the degeneration of motor neurons in the spinal cord. Recent studies suggest greater effectiveness of treatment in the presymptomatic stage. This systematic review synthesises findings from 37 studies (and 3 overviews) of newborn [...] Read more.
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder causing the degeneration of motor neurons in the spinal cord. Recent studies suggest greater effectiveness of treatment in the presymptomatic stage. This systematic review synthesises findings from 37 studies (and 3 overviews) of newborn screening for SMA published up to November 2023 across 17 countries to understand the methodologies used; test accuracy performance; and timing, logistics and feasibility of screening. All studies screened for the homozygous deletion of SMN1 exon 7. Most (28 studies) used RT-PCR as the initial test on dried blood spots (DBSs), while nine studies also reported second-tier tests on DBSs for screen-positive cases. Babies testing positive on DBSs were referred for confirmatory testing via a range of methods. Observed SMA birth prevalence ranged from 1 in 4000 to 1 in 20,000. Most studies reported no false-negative or false-positive cases (therefore had a sensitivity and specificity of 100%). Five studies reported either one or two false-negative cases each (total of six cases; three compound heterozygotes and three due to system errors), although some false-negatives may have been missed due to lack of follow-up of negative results. Eleven studies reported false-positive cases, some being heterozygous carriers or potentially related to heparin use. Time to testing and treatment varied between studies. In conclusion, several countries have implemented newborn screening for SMA in the last 5 years using a variety of methods. Implementation considerations include processes for timely initial and confirmatory testing, partnerships between screening and neuromuscular centres, and timely treatment initiation. Full article
(This article belongs to the Special Issue Newborn Screening for SMA—State of the Art)
Show Figures

Figure 1

9 pages, 201 KiB  
Article
Discordant Prenatal Cell-Free DNA Screening vs. Diagnostic Results of Sex Chromosome Aneuploidies: Implications for Newborn Screening and Genetic Counseling
by Susan Howell, Shanlee M. Davis, Billie Carstens, Mary Haag, Judith L. Ross and Nicole R. Tartaglia
Int. J. Neonatal Screen. 2024, 10(3), 48; https://doi.org/10.3390/ijns10030048 - 10 Jul 2024
Viewed by 382
Abstract
Sex chromosome aneuploidies (SCAs) collectively occur in 1 in 500 livebirths, and diagnoses in the neonatal period are increasing with advancements in prenatal and early genetic testing. Inevitably, SCA will be identified on either routine prenatal or newborn screening in the near future. [...] Read more.
Sex chromosome aneuploidies (SCAs) collectively occur in 1 in 500 livebirths, and diagnoses in the neonatal period are increasing with advancements in prenatal and early genetic testing. Inevitably, SCA will be identified on either routine prenatal or newborn screening in the near future. Tetrasomy SCAs are rare, manifesting more significant phenotypes compared to trisomies. Prenatal cell-free DNA (cfDNA) screening has been demonstrated to have relatively poor positive predictive values (PPV) in SCAs, directing genetic counseling discussions towards false-positive likelihood rather than thoroughly addressing all possible outcomes and phenotypes, respectively. The eXtraordinarY Babies study is a natural history study of children prenatally identified with SCAs, and it developed a longitudinal data resource and common data elements with the Newborn Screening Translational Research Network (NBSTRN). A review of cfDNA and diagnostic reports from participants identified a higher than anticipated rate of discordance. The aims of this project are to (1) compare our findings to outcomes from a regional clinical cytogenetic laboratory and (2) describe discordant outcomes from both samples. Twenty-one (10%), and seven (8.3%) cases were found to be discordant between cfDNA (result or indication reported to lab) and diagnosis for the Babies Study and regional laboratory, respectively. Discordant results represented six distinct discordance categories when comparing cfDNA to diagnostic results, with the largest groups being Trisomy cfDNA vs. Tetrasomy diagnosis (66.7% of discordance in eXtraordinarY Babies study) and Mosaicism (57.1% in regional laboratory). Traditional genetic counseling for SCA-related cfDNA results is inadequate given a high degree of discordance that jeopardizes the accuracy of the information discussed and informed decision making following prenatal genetic counseling. Full article
10 pages, 403 KiB  
Article
Counting Conditions on Newborn Bloodspot Screening Panels in Australia and New Zealand
by Natasha Heather, Ronda F. Greaves, Kaustuv Bhattacharya, Lawrence Greed, James Pitt, Carol Wai-Kwan Siu, Mark de Hora, Ricky Price, Enzo Ranieri, Tiffany Wotton and Dianne Webster
Int. J. Neonatal Screen. 2024, 10(3), 47; https://doi.org/10.3390/ijns10030047 - 5 Jul 2024
Viewed by 592
Abstract
A greater number of screened conditions is often considered to equate to better screening, whereas it may be due to conditions being counted differently. This manuscript describes a harmonised Australasian approach to listing target conditions found on bloodspot screening panels. Operational definitions for [...] Read more.
A greater number of screened conditions is often considered to equate to better screening, whereas it may be due to conditions being counted differently. This manuscript describes a harmonised Australasian approach to listing target conditions found on bloodspot screening panels. Operational definitions for target disorders and incidental findings were developed and applied to disorder lists. A gap analysis was performed between five, state-based Australian newborn screening programme disorder lists and the single national New Zealand and state-level Californian versions. Screening panels were found to be broadly similar. Gap analysis with Californian data reflected differences in jurisdictional approval (for example, haemoglobinopathies and lysosomal disorders not being recommended in Australasia). Differences amongst Australasian panels reflected varied the timeframes recommended in order to implement newly approved disorders, as well as decisions to remove previously screened disorders. A harmonised approach to disorder counting is essential to performing valid comparisons of newborn bloodspot screening panels. Full article
Show Figures

Figure 1

15 pages, 1056 KiB  
Article
Evaluation of the Newborn Screening Pilot for Sickle Cell Disease in Suriname Using the Non-Adoption, Abandonment, Scale-Up, Spread, and Sustainability (NASSS) Framework
by Ming-Jan Tang, Jimmy Roosblad, John Codrington, Marjolein Peters, Aartie Toekoen, Patrick F. van Rheenen and Amadu Juliana
Int. J. Neonatal Screen. 2024, 10(3), 46; https://doi.org/10.3390/ijns10030046 - 4 Jul 2024
Viewed by 632
Abstract
The early detection of sickle cell disease (SCD) is vital to reduce mortality among affected children. Suriname currently lacks a newborn screening programme (NSP) for SCD. We performed a pilot programme to evaluate the scalability of such an initiative. Dried blood spots were [...] Read more.
The early detection of sickle cell disease (SCD) is vital to reduce mortality among affected children. Suriname currently lacks a newborn screening programme (NSP) for SCD. We performed a pilot programme to evaluate the scalability of such an initiative. Dried blood spots were collected from five birth centres and subjected to electrophoresis analysis. The programme scalability was evaluated using the non-adoption, abandonment, scale-up, spread, and sustainability framework. Challenges across six domains (illness, technology, value proposition, adopter system, organisation, and societal system), were categorised hierarchically as simple 😊, complicated 😐, or complex 😢. It has been proven that implementing programmes with mainly complicated challenges is difficult and those in mainly complex areas may be unachievable. SCD was detected in 33 of 5185 (0.64%) successfully screened newborns. Most of the domains were classified as simple or complicated. Disease detection and technology suitability for screening in Suriname were confirmed, with favourable parental acceptance. Only minor routine adjustment was required from the medical staff for programme implementation. Complex challenges included a reliance on external suppliers for technical maintenance, ensuring timely access to specialised paediatric care for affected newborns, and securing sustainable financial funding. Scaling up is challenging but feasible, particularly with a targeted focus on identified complex challenges. Full article
Show Figures

Figure 1

21 pages, 3597 KiB  
Article
Exploring the Cost-Effectiveness of Newborn Screening for Metachromatic Leukodystrophy (MLD) in the UK
by Karen Bean, Simon A. Jones, Anupam Chakrapani, Suresh Vijay, Teresa Wu, Heather Church, Charlotte Chanson, Andrew Olaye, Beckley Miller, Ivar Jensen and Francis Pang
Int. J. Neonatal Screen. 2024, 10(3), 45; https://doi.org/10.3390/ijns10030045 - 26 Jun 2024
Viewed by 1712
Abstract
Metachromatic leukodystrophy (MLD) is a fatal inherited lysosomal storage disease that can be detected through newborn bloodspot screening. The feasibility of the screening assay and the clinical rationale for screening for MLD have been previously demonstrated, so the aim of this study is [...] Read more.
Metachromatic leukodystrophy (MLD) is a fatal inherited lysosomal storage disease that can be detected through newborn bloodspot screening. The feasibility of the screening assay and the clinical rationale for screening for MLD have been previously demonstrated, so the aim of this study is to determine whether the addition of screening for MLD to the routine newborn screening program in the UK is a cost-effective use of National Health Service (NHS) resources. A health economic analysis from the perspective of the NHS and Personal Social Services was developed based on a decision-tree framework for each MLD subtype using long-term outcomes derived from a previously presented partitioned survival and Markov economic model. Modelling inputs for parameters related to epidemiology, test characteristics, screening and treatment costs were based on data from three major UK specialist MLD hospitals, structured expert opinion and published literature. Lifetime costs and quality-adjusted life years (QALYs) were discounted at 1.5% to account for time preference. Uncertainty associated with the parameter inputs was explored using sensitivity analyses. This health economic analysis demonstrates that newborn screening for MLD is a cost-effective use of NHS resources using a willingness-to-pay threshold appropriate to the severity of the disease; and supports the inclusion of MLD into the routine newborn screening programme in the UK. Full article
Show Figures

Figure 1

11 pages, 867 KiB  
Review
One Size Does Not Fit All: A Multifaceted Approach to Educate Families about Newborn Screening
by Marianna H. Raia, Molly M. Lynch, Alyson C. Ward, Jill A. Brown, Natasha F. Bonhomme and Vicki L. Hunting
Int. J. Neonatal Screen. 2024, 10(3), 44; https://doi.org/10.3390/ijns10030044 - 26 Jun 2024
Viewed by 1188
Abstract
All families deserve access to readily available, accurate, and relevant information to help them navigate the newborn screening system. Current practices, limited resources, and a siloed newborn screening system create numerous challenges for both providers and families to implement educational opportunities to engage [...] Read more.
All families deserve access to readily available, accurate, and relevant information to help them navigate the newborn screening system. Current practices, limited resources, and a siloed newborn screening system create numerous challenges for both providers and families to implement educational opportunities to engage families in ways that meet their needs with relevant and meaningful approaches. Engaging families in newborn screening, especially those from historically underserved communities, is necessary to increase knowledge and confidence which leads to overall improved outcomes for families. This article describes three strategies that the Navigate Newborn Screening Program developed, tested, and implemented in the United States, including online learning modules, a prenatal education pilot program, and social media awareness campaign, as well as the extent to which they were successful in reaching and educating families about newborn screening. Using quality improvement methods and evidence-driven approaches, each of these three strategies demonstrate promising practices for advancing awareness, knowledge, and self-efficacy for families navigating the newborn screening system—particularly families in medically underserved and underrepresented communities. A model for bidirectional engagement of families is outlined to support scaling and implementing promising educational efforts for both providers and families in the newborn screening system. Full article
Show Figures

Figure 1

8 pages, 189 KiB  
Opinion
Charting the Course: Towards a Comprehensive Newborn Screening Program in India
by Seema Kapoor, Amit Kumar Gupta and B. K. Thelma
Int. J. Neonatal Screen. 2024, 10(3), 43; https://doi.org/10.3390/ijns10030043 - 24 Jun 2024
Viewed by 570
Abstract
Integrating health interventions in a growing economy like India, with a birth cohort of 27 million/year, one-fifth of all childbirths, and approximately one-third of neonatal deaths globally, is a challenge. While mortality statistics are vital, intact survival and early preventive healthcare, such as [...] Read more.
Integrating health interventions in a growing economy like India, with a birth cohort of 27 million/year, one-fifth of all childbirths, and approximately one-third of neonatal deaths globally, is a challenge. While mortality statistics are vital, intact survival and early preventive healthcare, such as newborn screening (NBS), are paramount. The appalling lack of information about the precise burden of metabolic errors at the state/national level or a mandated program encouraged a feasibility study of NBS in a prospective newborn cohort recruited in Delhi State (November 2014–April 2017) using a public–private partnership mode. The major determinants for effective implementation of universal NBS at the national level and limitations encountered are discussed in this report. Data to generate the ‘core’ panel for screening, sustained training of healthcare personnel, dissemination of the power of NBS to ensure neonatal/societal health to the public, and a ‘national policy’ emerge as priorities in a developing country. Full article
18 pages, 673 KiB  
Review
The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges
by Alex J. Ashenden, Ayesha Chowdhury, Lucy T. Anastasi, Khoa Lam, Tomas Rozek, Enzo Ranieri, Carol Wai-Kwan Siu, Jovanka King, Emilie Mas and Karin S. Kassahn
Int. J. Neonatal Screen. 2024, 10(3), 42; https://doi.org/10.3390/ijns10030042 - 21 Jun 2024
Viewed by 761
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven [...] Read more.
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop