Microencapsulation Efficiency of DCOIT Biocide in the TPM/SiO2 System and a Study of Their Acute Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Method for Studying Surface and Interfacial Tension Using a PAT-1 Tensiometer
2.2. Dynamic Light Scattering Method for Determining the Size of Microcapsules
2.3. A Method for Measuring the Electrokinetic Zeta Potential
2.4. Scanning Electron Microscope
2.5. EDAX Electron Dispersion Spectroscopy Method for Capsule Composition Analysis
2.6. Acute Toxicity
3. Results and Discussion
3.1. Investigation of Polymerization Parameters of Microcapsules
3.2. Polymerization Duration
3.3. Acute Toxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Heting, H.; Jingyi, C.; Yange, Y. Progress in Marine Antifouling Coatings: Current Status and Prospects. Coatings 2023, 13, 1893. [Google Scholar] [CrossRef]
- Issayeva, A.; Sharipova, A.; Aidarova, S.; Madybekova, G.; Katona, K.; Turganbay, S.; Miller, R. A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies. Colloids Interfaces 2024, 8, 31. [Google Scholar] [CrossRef]
- Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5, 65–77. [Google Scholar] [PubMed] [PubMed Central]
- Trojer, M.; Evenäs, L.; Bergek, J.; Nyden, M.; Blanck, H.; Holmberg, K. Use of microcapsules as controlled release devices for coatings. Adv. Colloid Interface Sci. 2015, 222, 18–43. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Bechtold, M.; Valério, A.; Ulson de Souza, A.; De Oliveira, D.; Franco, C.V.; Serafim, R.; Guelli, U.; Souza, S.M.A. Synthesis and application of silver nanoparticles as biocidal agent in polyurethane coating. J. Coat. Technol. Res. 2020, 17, 613–620. [Google Scholar] [CrossRef]
- Sakkas, V.A.; Konstantinou, I.K.; Lambropoulou, D.A.; Albanis, T.A. Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece. Environ. Sci. Pollut. Res. 2002, 9, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, Y.; Wang, W.; Qian, P.Y. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere 2015, 119, 1075–1083. [Google Scholar] [CrossRef]
- Figueiredo, J.; Oliveira, T.; Ferreira, V.; Sushkova, A.; Silva, S.; Carneiro, D.; Cardoso, D.N.; Gonçalves, S.F.; Maia, F.; Rocha, C.; et al. Toxicity of innovative anti-fouling nano-based solutions to marine species. Environ. Sci. Nano 2019, 6, 1418–1429. [Google Scholar] [CrossRef]
- Chen, L.; Lam, J.C.W. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern. J. Environ. Sci. 2017, 61, 68–79. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. 4,5-Dichloro-2-Octyl-2H-Isothiazol-3-One. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.058.930 (accessed on 27 October 2020).
- Geiger, T.; Delavy, P.; Hany, R.; Schleuniger, J.; Zinn, M. Encapsulated Zosteric Acid Embedded in Poly [3-hydroxyalkanoate] Coatings—Protection against Biofouling. Polym. Bull. 2004, 52, 65–72. [Google Scholar] [CrossRef]
- Hart, R.L.; Virgallito, D.R.; Work, D.E. Microencapsulation of Biocides and Antifoulingagents. U.S. Patent 7,938,897, 10 May 2011. [Google Scholar]
- Szabó, T.; Molnár-Nagy, L.; Bognár, J.; Nyikos, L.; Telegdi, J. Self-healing microcapsules and slow release microspheres in paints. Prog. Org. Coat. 2011, 72, 52–57. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, X.; Schenderlein, M.; Borisova, D.; Cao, R.; Möhwald, H.; Shchukin, D. Self-healing and antifouling multifunctional coatings based on pH and sulfide ion sensitive nanocontainers. Adv. Funct. Mater. 2013, 23, 3307–3314. [Google Scholar] [CrossRef]
- Avelelas, F.; Martins, R.; Oliveira, T.; Maia, F.; Malheiro, E.; Soares, A.M.V.M.; Loureiro, S.; Tedim, J. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species. Mar. Biotechnol. 2017, 19, 164–174. [Google Scholar] [CrossRef]
- Maia, F.; Silva, A.P.; Fernandes, S.; Cunha, A.; Almeida, A.; Tedim, J.; Zheludkevich, M.L.; Ferreira, M.G.S. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 2015, 270, 150–157. [Google Scholar] [CrossRef]
- Arpanaei, A.; Fu, Q.; Singh, T. Nanotechnology approaches towards biodeterioration-resistant wood: A review. J. Bioresour. Bioprod. 2024, 9, 3–26. [Google Scholar] [CrossRef]
- Taghavi Kalajahi, S.; Misra, A.; Koerdt, A. REVIEW article. Nanotechnology to mitigate microbiologically influenced corrosion (MIC). Front. Nanotechnol. 2024, 6, 1340352. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, R.; Anand, J.; Gupta, R.; Gupta, A.; Pant, K.; Dohare, S.; Tiwari, P.; Kesari, K.; Krishnan, S.; et al. Nanotechnology-Based Solutions for Antibiofouling Applications: An Overview. ACS Appl. Nano Mater. 2023, 6, 14. [Google Scholar] [CrossRef]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.; Borges, F.; Garrido, J. Isothiazolinone Biocides: Chemistry, Biological, and Toxicity Profiles. Molecules 2020, 25, 991. [Google Scholar] [CrossRef] [PubMed]
- McClements, D. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Pilar-Izquierdo, M.C.; López-Fouz, M.; Ortega, N.; Busto, M.D. Immobilization of Rhodococcus by encapsulation and entrapment: A green solution to bitter citrus by-products. Methods Protoc. 2023, 107, 6377–6388. [Google Scholar] [CrossRef] [PubMed]
- Aidarova, S.B.; Sharipova, A.A.; Issayeva, A.B.; Mutaliyeva, B.Z.; Tleuova, A.B.; Grigoriev, D.O.; Kudasova, D.; Dzhakasheva, M.; Miller, R. Synthesis of submicrocontainers with “green” biocide and study of their antimicrobial activity. Colloids Interfaces 2018, 2, 67. [Google Scholar] [CrossRef]
- Loglio, G.; Pandolfini, P.; Miller, R.; Makievski, A.V.; Ravera, F.; Ferrari, M.; Liggieri, L. Drop and Bubble Shape Analysis as Tool for Dilational Rheology Studies of Interfacial Layers. In Novel Methods to Study Interfacial Layers; Studies in Interface Science; Möbius, D., Miller, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 11, pp. 439–484. ISBN 0-444-50948-8. [Google Scholar]
- Rodriguez-Loya, J.; Lerma, M.; Gardea-Torresdey, J.L. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2024, 15, 24. [Google Scholar] [CrossRef]
- Rosenberg, M.; Kopelman, I.J.; Talmon, Y. A Scanning Electron Microscopy Study of Microencapsulation. J. Food Sci. 2006, 50, 139–144. [Google Scholar] [CrossRef]
- Sarecka-Hujar, B.; Balwierz, R.; Ostrozka-Cieslik, A.; Dyja, R.; Lukowiec, D.; Jankowski, A. Scanning electron microscopy and X-ray energy dispersive spectroscopy—Useful tools in the analysis of pharmaceutical products. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 931, 012008. [Google Scholar] [CrossRef]
- Order of Acting Minister of Health of the Republic of Kazakhstan Dated February 4, 2021 No. DSM-15 of the Republic of Kazakhstan. Available online: https://adilet.zan.kz/rus/docs/V2100022167 (accessed on 9 February 2021).
- Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. Effect of Nanoparticles on the Interfacial Properties of Liquid/Liquid and Liquid/Air Surface Layers. J. Phys. Chem. B 2006, 110, 19543–19551. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y.; Chen, H.; Wang, P.; Xie, Z.; Yao, Y.; Yan, Y.; Zhang, J. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 2013, 1052, 50–56. [Google Scholar] [CrossRef]
- Tleuova, A.; Aidarova, S.; Sharipova, A.; Bekturganova, N.; Schenderlein, M.; Grigoriev, D. Using profile analysis tensiometry for monitoring auto-oscillations caused by the hydrolysis of 3-(trimethoxysilyl)propyl methacrylate when contacting water. Colloids Surf. A 2016, 505, 18–22. [Google Scholar] [CrossRef]
№ of Sample | Capsules After Emulsification | Capsules After Polymerization | ||
---|---|---|---|---|
Size, nm | Zeta Potential, mV | Size, nm | Zeta Potential, mV | |
1 | 145.8 | −37.7 | 120.0 | −50.7 |
2 | 143.9 | −37.3 | 120.5 | −48.8 |
3 | 148.6 | −35.2 | 121.9 | −51.0 |
The average value | 146 ± 1.0 | −36.7 ± 1.0 | 120.8 ± 1.0 | −50.2 ± 1.0 |
The Content of DCOIT in the Oil Phase, % | ||||||||
---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | ||||||
Size, nm | PDI | Zeta Potential, mV | Size, nm | PDI | Zeta Potential, mV | Size, nm | PDI | Zeta Potential, mV |
138.8 | 0.102 | −56.1 | 150.0 | 0.127 | −52.2 | 145.8 | 0.085 | −50.8 |
Time, Hour | Size, nm | Zeta Potential, mV |
---|---|---|
12 | 95 | −53.0 |
20 | 96 | −43.1 |
24 | 111 | −36.5 |
36 | 122 | −38.2 |
48 | 146 | −37.3 |
Visual Characteristics | |||
---|---|---|---|
Duration of Polymerization | |||
5 min | 10 min | 20 min | 30 min |
Emulsions polymerized within 5 min deteriorated over time and were unstable | Emulsions polymerized for 10 min deteriorated over time and were unstable | The formed capsules were evenly dispersed in the volume of the emulsion. Stable in time | There was a “thickening” of the emulsion during polymerization; after shaking, the structure was restored |
Group Number | Experimental Group of Mice | Average Weight of Mice, g | ||
---|---|---|---|---|
Before Oral Administration | After 1 Week | After 2 Weeks | ||
1 | Using microcapsule with biocide | 20.52 ± 0.48 | 22.84 ± 0.62 | 24.46 ± 0.34 |
2 | Using microcapsule without biocide | 21.15 ± 0.51 | 23.32 ± 0.55 | 25.54 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issayeva, A.; Aidarova, S.; Madybekova, G.; Turganbay, S.; Babayev, A.; Issakhov, M.; Sharipova, A.; Miller, R.; Mutaliyeva, B. Microencapsulation Efficiency of DCOIT Biocide in the TPM/SiO2 System and a Study of Their Acute Toxicity. Colloids Interfaces 2025, 9, 2. https://doi.org/10.3390/colloids9010002
Issayeva A, Aidarova S, Madybekova G, Turganbay S, Babayev A, Issakhov M, Sharipova A, Miller R, Mutaliyeva B. Microencapsulation Efficiency of DCOIT Biocide in the TPM/SiO2 System and a Study of Their Acute Toxicity. Colloids and Interfaces. 2025; 9(1):2. https://doi.org/10.3390/colloids9010002
Chicago/Turabian StyleIssayeva, Assem, Saule Aidarova, Galiya Madybekova, Seitzhan Turganbay, Alpamys Babayev, Miras Issakhov, Altynay Sharipova, Reinhard Miller, and Botagoz Mutaliyeva. 2025. "Microencapsulation Efficiency of DCOIT Biocide in the TPM/SiO2 System and a Study of Their Acute Toxicity" Colloids and Interfaces 9, no. 1: 2. https://doi.org/10.3390/colloids9010002
APA StyleIssayeva, A., Aidarova, S., Madybekova, G., Turganbay, S., Babayev, A., Issakhov, M., Sharipova, A., Miller, R., & Mutaliyeva, B. (2025). Microencapsulation Efficiency of DCOIT Biocide in the TPM/SiO2 System and a Study of Their Acute Toxicity. Colloids and Interfaces, 9(1), 2. https://doi.org/10.3390/colloids9010002