Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (36,816)

Search Parameters:
Keywords = nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 836 KiB  
Article
Fine-Tuning the Physicochemical Properties of Poly(lactic Acid) Nanoparticles for the Controlled Release of the BET Inhibitor JQ1: Influence of PVA Concentration
by Nedjla Kedjar, Eleonora Iannuzzi, Martin Kreuzer, Carlos Alonso-Moreno and Carmen Moya-Lopez
Polymers 2025, 17(1), 123; https://doi.org/10.3390/polym17010123 - 6 Jan 2025
Abstract
The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of [...] Read more.
The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy. PLA nanoparticles (NPs) were subsequently formulated, and the effects of key parameters—including PLA molecular weight, organic phase concentration, and surfactant concentration—on particle size, polydispersity index (PDI), and encapsulation efficiency were systematically investigated. PLA molecular weight and organic phase concentration mainly influenced the NPs size whilst the thermodynamic state of the NPs was unaffected by these two parameters. The surfactant concentration is correlated to the encapsulation efficacy of JQ1 as well as the release profile, suggesting the potential tool that the variation of these parameters represent for customizing the release of JQ1 according to specific needs. Full article
17 pages, 10738 KiB  
Article
Exploring Surface-Driven Mechanisms for Low-Temperature Sintering of Nanoscale Copper
by Jingyan Li, Zixian Song, Zhichao Liu, Xianli Xie, Penghui Guan and Yiying Zhu
Appl. Sci. 2025, 15(1), 476; https://doi.org/10.3390/app15010476 - 6 Jan 2025
Abstract
As the density of electronic packaging continues to rise, traditional soldering techniques encounter significant challenges, leading to copper–copper direct bonding as a new high-density connection method. The high melting point of copper presents difficulties for direct diffusion bonding under standard conditions, thus making [...] Read more.
As the density of electronic packaging continues to rise, traditional soldering techniques encounter significant challenges, leading to copper–copper direct bonding as a new high-density connection method. The high melting point of copper presents difficulties for direct diffusion bonding under standard conditions, thus making low-temperature copper–copper bonding a focal point of research. In this study, we examine the sintering process at various temperatures by constructing models with multiple nanoparticles and sintering them under different conditions. Our findings indicate that 600 K is a crucial temperature for direct copper–copper sintering. Below this threshold, sintering predominantly depends on structural adjustments driven by residual stresses and particle contact. Conversely, at temperatures of 600 K and above, the activation of rapid surface atomic motion enables further structural adjustments between nanoparticles, leading to a marked decrease in porosity. Mechanical testing of the sintered samples corroborated the structural changes at different temperatures, demonstrating that the surface dynamic motion of atoms inherent in low-temperature sintering mechanisms significantly affects the mechanical properties of nanomaterials. These findings have important implications for developing high-performance materials that align with the evolving requirements of modern electronic devices. Full article
23 pages, 1508 KiB  
Review
Advances in Pure Drug Self-Assembled Nanosystems: A Novel Strategy for Combined Cancer Therapy
by Runyan Niu, Xuexue Liu, Xian Yang, Xiao Du, Siliang Wang, Xiaolong Ma, Shaoping Yin, Lihua Shao and Jinping Zhang
Pharmaceutics 2025, 17(1), 68; https://doi.org/10.3390/pharmaceutics17010068 - 6 Jan 2025
Abstract
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems [...] Read more.
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production. This innovative approach presents new opportunities to enhance both the safety and therapeutic efficacy of cancer treatments. This review comprehensively explores recent progress in the application of PDANSs for cancer therapy. It begins by detailing the self-assembly mechanisms and fundamental principles underlying PDANS formation. The discussion then advances to strategies for assembling single pure drug nanoparticles, as well as the co-assembly of multiple drugs. Subsequently, the review addresses the therapeutic potential of PDANSs in combination treatment modalities, encompassing diagnostic and therapeutic applications. These include combinations of chemotherapeutic agents, phototherapeutic approaches, the integration of chemotherapy with phototherapy, and the synergistic use of immunotherapy with other treatment methods. Finally, the review highlights the potential of PDANSs in advancing tumor therapy and their prospects for clinical application, providing key insights for future research aimed at optimizing this technology and broadening its utility in cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
20 pages, 5169 KiB  
Article
Novel Drug Delivery Particles Can Provide Dual Effects on Cancer “Theranostics” in Boron Neutron Capture Therapy
by Abdul Basith Fithroni, Haruki Inoue, Shengli Zhou, Taufik Fatwa Nur Hakim, Takashi Tada, Minoru Suzuki, Yoshinori Sakurai, Manabu Ishimoto, Naoyuki Yamada, Rani Sauriasari, Wolfgang A. G. Sauerwein, Kazunori Watanabe, Takashi Ohtsuki and Eiji Matsuura
Cells 2025, 14(1), 60; https://doi.org/10.3390/cells14010060 - 6 Jan 2025
Abstract
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved [...] Read more.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome® nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”. Full article
20 pages, 2004 KiB  
Article
An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of Vicia faba
by May A. Al-Saleh, Hanan F. Al-Harbi, L. A. Al-Humaid and Manal A. Awad
Nanomaterials 2025, 15(1), 77; https://doi.org/10.3390/nano15010077 - 6 Jan 2025
Abstract
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition [...] Read more.
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.3–44.3%), 1,8-cineole (10.7–28.4%), and linalool (6.4–8.6%). The successful green synthesis of AgNPs was confirmed through various micro-spectroscopic techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV-Vis analysis showed a strong peak between 420 and 430 nm, indicating the presence of AgNPs. TEM imaging revealed that the synthesized cardamom–AgNPs were monodispersed, primarily spherical, and semi-uniform in shape, with minimal aggregation. EDS analysis further confirmed the composition of the nanoparticles, with cardamom–AgNPs comprising around 60.5% by weight. Cytotoxicity was evaluated by measuring the mitotic index (MI), and genotoxicity was assessed by observing chromosomal aberrations (CAs). The roots of Vicia faba were treated for 24 and 48 h with varying concentrations of ATCBRA pesticide (0.1%, 0.3%, 0.5%, and 0.7%), aqueous cardamom extract (3%, 4%, 5%, and 6%), and green-synthesized cardamom–AgNPs (12, 25, and 60 mg). The cytogenetic analysis of MI and CA in the meristematic root tips indicated an improvement in the evaluated parameters with the cardamom extract. However, a marked reduction in mitotic activity was observed with both ATCBRA and cardamom–AgNP treatments across both time points, highlighting potential cytotoxic and genotoxic effects. Full article
37 pages, 954 KiB  
Review
The Potential Application of Nanocarriers in Delivering Topical Antioxidants
by Zulfan Zazuli, Rika Hartati, Cornelia Rosasepti Rowa, Sukmadjaja Asyarie and Satrialdi
Pharmaceuticals 2025, 18(1), 56; https://doi.org/10.3390/ph18010056 - 6 Jan 2025
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, [...] Read more.
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy. Full article
17 pages, 2019 KiB  
Review
From Blood to Therapy: The Revolutionary Application of Platelets in Cancer-Targeted Drug Delivery
by Lijuan Xie, Fengxu Gan, Yun Hu, Yibin Zheng, Junshan Lan, Yuting Liu, Xiaofang Zhou, Jianyu Zheng, Xing Zhou and Jie Lou
J. Funct. Biomater. 2025, 16(1), 15; https://doi.org/10.3390/jfb16010015 - 6 Jan 2025
Abstract
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems [...] Read more.
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems utilize nanoparticles shielded and directed by platelet membrane coatings for efficient drug delivery. This review highlights the role of platelets in cancer therapy, summarizes the advancements in platelet-based drug delivery systems, and discusses their integration with other cancer treatments. Additionally, it addresses the limitations and challenges of platelet-mediated drug delivery, offering insights into future developments in this innovative field. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Drug Delivery)
Show Figures

Figure 1

18 pages, 5139 KiB  
Article
Preparation of pH-Responsive Tanshinone IIA-Loaded Calcium Alginate Nanoparticles and Their Anticancer Mechanisms
by Tianying Ren, Jing Wang, Yingxin Ma, Yichen Huang, Somy Yoon, Lijun Mu, Ru Li, Xuekun Wang, Lina Zhang, Pan Li and Lusha Ji
Pharmaceutics 2025, 17(1), 66; https://doi.org/10.3390/pharmaceutics17010066 - 6 Jan 2025
Abstract
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: [...] Read more.
Background: Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of Salvia miltiorrhiza Bunge (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. Methods: To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility. We also prepared nanoparticles with pH-responsive properties to explore their potential for controlled drug delivery. The physicochemical properties of Tan IIA/CA nanoparticles were evaluated, including their size, stability, and release profile. We also utilized RNA sequencing to further investigate the underlying anticancer mechanisms of Tan IIA/CA nanoparticles. Results: The Tan IIA/CA nanoparticles demonstrated enhanced solubility and exhibited potent anticancer activity in vitro. Additionally, the nanoparticles showed promising pH-responsive behavior, which is beneficial for controlled release applications. Further investigation into the molecular mechanisms revealed that the anticancer effects of Tan IIA/CA were mediated through apoptosis, ferroptosis, and autophagy pathways. Conclusions: This study confirms the anticancer potential and mechanisms of Tan IIA, while also presenting an innovative approach to enhance the solubility of this poorly soluble compound. The use of CA-based nanoparticles could be a valuable strategy for improving the therapeutic efficacy of Tan IIA in cancer treatment. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

13 pages, 1561 KiB  
Article
p54-Fc-Labeled Gold Nanoparticle-Based Lateral Flow Strip-Assisted Portable Devices for Rapid and Quantitative Point-of-Care Detection of ASFV Antibodies
by Yang Yang, Yuhao Li, Ziyang Wang, Minglong Tong, Pengcheng Zhu, Juanxian Deng, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Zhongren Zhou, Yafeng Qiu, Zhiyong Ma and Jianchao Wei
Biosensors 2025, 15(1), 25; https://doi.org/10.3390/bios15010025 - 6 Jan 2025
Abstract
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter [...] Read more.
In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle. p54 is an important structural protein of African swine fever, and an ideal protein for serotype diagnosis. Gold nanoparticles are attached to the ASFV p54-Fc fusion protein, and the ASFV-specific antigen p54 and Staphylococcus aureus protein A (SPA) are labeled on a nitrocellulose membrane, at positions T and C, respectively. We developed a SPA double sandwich IC test strip, and assessed its feasibility using ASFV p54 and p54-Fc fusion proteins as antigens. ASFV p54 and p54-Fc fusion proteins were expressed and purified. A sandwich cross-flow detection method for p54, which is the primary structural protein of ASFV, was established, using colloidal gold conjugation. Our method can detect ASFV antibodies in field serum samples in about 15 min using a portable colloidal gold detector, demonstrating high specificity and sensitivity (1:320), and the coincidence rate was 98% using a commercial ELISA kit. The dilution of the serum sample can be determined by substituting the absorbance (T-line) interpreted by portable devices into the calibration curve function formula of an African swine fever virus standard serum. In summary, our method is rapid, cost-effective, precise, and highly selective. Additionally, it introduces a new approach for constructing IC test strips using SPA protein without antibody preparation, making it a reliable on-site antibody test for ASFV. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensing—2nd Edition)
Show Figures

Figure 1

14 pages, 4767 KiB  
Article
Experimental Assessment of Magnetic Nanofluid Injection in High-Salinity and Heavy-Crude-Saturated Sandstone: Mitigation of Formation Damage
by Jimena Lizeth Gómez-Delgado, Nelson Gutierrez-Niño, Luis Felipe Carrillo-Moreno, Raúl Andres Martínez-López, Nicolás Santos-Santos and Enrique Mejía-Ospino
Energies 2025, 18(1), 212; https://doi.org/10.3390/en18010212 - 6 Jan 2025
Abstract
The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently demonstrated that these nanoparticles have significant [...] Read more.
The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently demonstrated that these nanoparticles have significant potential for formation damage, a critical limitation that substantially constrains their potential field implementation. This research addresses a critical challenge in EOR: developing magnetic graphene oxide nanoparticles (MGONs) that can traverse rock formations without causing formation damage. MGONs were synthesized and stabilized in formation brine with a high total dissolved solids (TDS) content with a xanthan gum polymer. Two coreflooding experiments were conducted on sandstone cores. The first experiment on high-permeability sandstone (843 mD) showed no formation damage; instead, permeability increased to 935 mD after MGON injection. Irreducible water saturation (Swirr) and residual oil saturation (Sor) were 25.1% and 31.5%, respectively. The second experiment on lower-permeability rock (231.3 mD) evaluated nanoparticle retention. The results showed that 0.09511 mg of MGONs was adsorbed per gram of rock under dynamic conditions. Iron concentration in effluents stabilized after 3 pore volumes, indicating steady-state adsorption. The successful synthesis, stability in high-TDS brine, favorable interfacial properties, and positive effects observed in coreflooding experiments collectively highlight MGONs’ potential as a viable solution for enhancing oil recovery in challenging reservoirs, without causing formation damage. Full article
(This article belongs to the Special Issue Failure and Multiphysical Fields in Geo-Energy)
Show Figures

Figure 1

6 pages, 1208 KiB  
Short Note
2-((Diphenylmethylene)amino)ethyl N-(Cyclohexyl)carbamate
by Bailey N. Baxter, Mary Helene Marmande, Alyssa M. Albers, Manisha R. Gangasani, Hao N. Le, Omar E. Molokhia, Juanita Monteiro-Pai, Kyndall V. Ransom and David C. Forbes
Molbank 2025, 2025(1), M1947; https://doi.org/10.3390/M1947 - 6 Jan 2025
Viewed by 71
Abstract
Lipid-like nanoparticles (LLNPs) have been shown to be an effective encapsulation and delivery tool for therapeutic molecules. While the preclinical development of lipid nanoparticle formulations has been of paramount importance, next-generation LLNPs present an opportunity of enhanced biocompatibility. With the change in amido [...] Read more.
Lipid-like nanoparticles (LLNPs) have been shown to be an effective encapsulation and delivery tool for therapeutic molecules. While the preclinical development of lipid nanoparticle formulations has been of paramount importance, next-generation LLNPs present an opportunity of enhanced biocompatibility. With the change in amido functionality as part of the core backbone, our target, carbamate functionality within the LLNP core scaffold, was realized upon reaction of a protected amino alcohol onto the isocyanate generated in situ via a Curtius rearrangement. The single-step assembly of carbamate functionality starting from cyclohexane carboxylic acid in the presence of diphenylphosphoryl azide (DPPA) exceeds the metrics set forth for the rapid installment and enhanced biodegradability of next-generation lipid-like nanoparticles. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

28 pages, 6624 KiB  
Review
Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review
by Adil Farooq Wali, Jayachithra Ramakrishna Pillai, Sirajunisa Talath, Pooja Shivappa, Sathvik Belagodu Sridhar, Mohamed El-Tanani, Imran Rashid Rangraz, Omnia Ibrahim Mohamed and Nawar Nezar Alaani
Curr. Issues Mol. Biol. 2025, 47(1), 30; https://doi.org/10.3390/cimb47010030 - 6 Jan 2025
Viewed by 78
Abstract
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of [...] Read more.
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds’ sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management. Full article
(This article belongs to the Special Issue Phytochemicals and Cancer, 2nd Edition)
Show Figures

Figure 1

16 pages, 11088 KiB  
Article
Thermal Performance Analysis of Nanofluids for Heat Dissipation Based on Fluent
by Junqiang Xu, Zemin Shang and Shan Qing
Energies 2025, 18(1), 204; https://doi.org/10.3390/en18010204 - 6 Jan 2025
Viewed by 215
Abstract
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its [...] Read more.
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its high thermal conductivity, Fe3O4-H2O offers potential for further optimization by combining thermal and magnetic properties, and Al2O3-H2O exhibits strong chemical stability, making it suitable for a wide range of applications. These three nanofluids are representative in terms of particle dispersibility, thermal conductivity, and physical properties, providing a comprehensive perspective on the impact of nanofluids on microchannel heat exchangers. This study investigates the heat transfer performance and flow characteristics of various types and volume fractions of nanofluids in microchannel heat exchangers. The results reveal that with increasing flow rates, the convective heat transfer coefficient and Nusselt number of nanofluids exhibit an approximately linear growth trend, primarily attributed to the turbulence enhancement effect caused by higher flow rates. Among the tested nanofluids, CuO-H2O demonstrates the best performance, achieving a 4.89% improvement in the heat transfer coefficient and a 1.64% increase in the Nusselt number compared to pure water. Moreover, CuO-H2O nanofluid significantly reduces wall temperatures, showcasing its superior thermal management capabilities. In comparison, the performance of Al2O3-H2O and Fe3O4-H2O nanofluids is slightly inferior. In terms of flow characteristics, the pressure drop and friction factor of nanofluids exhibit nonlinear variations with increasing flow rates. High-concentration CuO-H2O nanofluid shows a substantial pressure drop, with an increase of 7.33% compared to pure water, but its friction factor remains relatively low and stabilizes at higher flow rates. Additionally, increasing the nanoparticle volume fraction enhances the convective heat transfer performance; however, excessively high concentrations may suppress heat transfer efficiency due to increased viscosity, leading to a decrease in the Nusselt number. Overall, CuO-H2O nanofluid exhibits excellent thermal conductivity and flow optimization potential, making it a promising candidate for efficient thermal management in MCHEs. However, its application at high concentrations may face challenges related to increased flow resistance. These findings provide valuable theoretical support and optimization directions for the development of advanced thermal management technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

30 pages, 10187 KiB  
Article
Characterization of Electrospun PAN Polymer Nanocomposite Membranes for CO2/N2 Separation
by Dirar Aletan and Jacob Muthu
J. Compos. Sci. 2025, 9(1), 21; https://doi.org/10.3390/jcs9010021 - 6 Jan 2025
Viewed by 177
Abstract
The focus of this study was to enhance the CO2 capture capabilities of polyacrylonitrile (PAN) nanocomposite membranes by reinforcing them with multi-walled carbon nanotubes (MWCNT) and silica (SiO2). These nanocomposite membranes were created using electrospinning technology, which produced nonwoven nanofiber [...] Read more.
The focus of this study was to enhance the CO2 capture capabilities of polyacrylonitrile (PAN) nanocomposite membranes by reinforcing them with multi-walled carbon nanotubes (MWCNT) and silica (SiO2). These nanocomposite membranes were created using electrospinning technology, which produced nonwoven nanofiber membranes. The nanoparticles were functionalized using Gum Arabic (GA) to improve the distribution and prevent agglomeration. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analysis were conducted to examine the functionalization of nanoparticles and their morphological structures. The membranes were experimentally characterized to obtain the CO2 absorption properties and also to evaluate CO2/N2 permeation properties compared to pure PAN membranes. The results showed that higher nanoparticle concentrations increased CO2 permeability while maintaining stable N2 permeability, ensuring favorable CO2/N2 selectivity ratios. The 4 wt.% MWCNTs nanocomposite membrane achieved the best CO2/N2 separation with a CO2 permeability of 289.4 Barrer and a selectivity of 6.3, while the 7 wt.% SiO2 nanocomposite membrane reached a CO2 permeability of 325 Barrer and a selectivity of 7. These findings indicate significant improvements in CO2 permeability and selectivity for the nanocomposite membranes compared to pure PAN membranes. The Maxwell mathematical model has been used to validate the experimental results. The experimental results of the CO2 separation properties of the nanocomposite membranes exceeded the predicted values by the mathematical models. This might be due to the well-dispersed nanoparticles and functional groups. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

17 pages, 9958 KiB  
Article
Spinorphin Molecules as Opportunities for Incorporation into Spinorphin@AuNPs Conjugate Systems for Potential Sustained Targeted Delivery to the Brain
by Stela Georgieva, Petar Todorov and Jana Tchekalarova
Pharmaceuticals 2025, 18(1), 53; https://doi.org/10.3390/ph18010053 - 5 Jan 2025
Viewed by 430
Abstract
Background: This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of [...] Read more.
Background: This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Methods: Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV–Vis spectrophotometry were employed to elucidate the structure–activity correlations of the peptide@nano AuNP systems. Results: The zeta potential values for all the Rh-S@AuNPs demonstrate that the samples are electrically stable and resistant to flocculation and coagulation. The absorption of energy quanta from UV–Vis radiation by the novel nanopeptide systems does not substantially influence the distinctive signal of AuNPs, which is situated at around 531 nm. The FTIR measurements indicate the signals associated with the unique functional groups of the peptides, whereas circular dichroism verifies the synthesis of the conjugated nanocomposites of the spinorphin@AuNP type. An analysis of the SEM and TEM data revealed that most AuNPs have a spherical morphology, with an average diameter of around 21.92 ± 6.89 nm. The results of the in vivo studies showed promising findings regarding the anticonvulsant properties of the nanocompounds, especially the Rh-S@AuNP formulation. Conclusions: All the nanocompounds tested demonstrated the ability to reduce generalized tonic–clonic seizures. This suggests that these formulations may effectively target the underlying neuronal hyperexcitability. In addition, the prepared Rh-S@AuNP formulations also showed anticonvulsant activity in the maximal electroshock test performed in mice, which was evident after systemic (intraperitoneal) administration. The study’s findings indicate that conjugates can be synthesized via a straightforward process, rendering them potential therapeutic agents with biological activity. Full article
(This article belongs to the Special Issue Peptide Drug Conjugates and Their Applications)
Show Figures

Figure 1

Back to TopTop