Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology
Abstract
:Highlights
- What are the main findings?
- A new framework, Nature-Positive Smart Cities in a Socio-Technical-Ecological System (STES), has been proposed.
- Findings from the literature highlight the potential of smart technologies to enhance ecosystem services and biodiversity in urban green spaces.
- What is the implication of the main finding?
- This study supports a shift towards urban planning that prioritises biodiversity and addresses environmental challenges.
- This study calls for policy interventions and further research to integrate ecological considerations into urban planning and design.
Abstract
1. Introduction
2. From Design with Nature to Nature-Positive Smart Cities
2.1. Historical Evolution of Nature in Urban Planning and Design
2.2. The Rise of Nature-Based Solutions (NBS)
2.3. Nature-Positive Cities and Urban Development
- “Commit to act to the benefit of nature and leave it in a better state than it was before, both within and beyond their own city boundaries” [55] (p. 15).
- “Translate this commitment into formal objectives and clear science-based targets tailored to their context, ideally detailed in a nature strategy that also addresses the required enablers” [55] (p. 15).
- “Implement actions to deliver on set targets, and monitor and report on their impact” [55] (p. 15).
2.4. Technological Nature and the Concept of Nature 4.0
2.5. Smart Urban Forests and Smart Parks
2.6. The Need for a Comprehensive Framework for Nature-Positive Smart Cities
2.7. The Socio-Technical-Ecological System (STES) Framework
2.8. Integrating Resilience into Smart Urban Ecological Design
3. Conclusions and Recommendations
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, C.; Ripple, W.J.; Newsome, T.; Barnard, P.; Beamer, K.; Behl, A.; Bowen, J.; Cooney, M.; Crist, E.; Field, C.; et al. Earth at Risk: An Urgent Call to End the Age of Destruction and Forge a Just and Sustainable Future. PNAS Nexus 2024, 3, pgae106. [Google Scholar] [CrossRef] [PubMed]
- Zipperer, W.C.; Northrop, R.; Andreu, M. Urban Development and Environmental Degradation. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Steffen, W.; Crutzen, P.J.; Mcneill, J.R. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature? Ambio 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Mann, M.E.; Oreskes, N.; Lenton, T.M.; Rahmstorf, S.; Newsome, T.M.; Xu, C.; et al. The 2024 State of the Climate Report: Perilous Times on Planet Earth. Bioscience 2024, 74, 812–824. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect Decline in the Anthropocene: Death by a Thousand Cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A.; et al. Scientists’ Warning to Humanity on Insect Extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Zalasiewicz, J.; Adeney Thomas, J.; Waters, C.N.; Turner, S.; Head, M.J. The Meaning of the Anthropocene: Why It Matters Even without a Formal Geological Definition. Nature 2024, 632, 980–984. [Google Scholar] [CrossRef]
- Seddon, N.; Mace, G.M.; Naeem, S.; Tobias, J.A.; Pigot, A.L.; Cavanagh, R.; Mouillot, D.; Vause, J.; Walpole, M. Biodiversity in the Anthropocene: Prospects and Policy. Proc. R. Soc. B Biol. Sci. 2016, 283, 20162094. [Google Scholar] [CrossRef]
- Owens, A.C.S.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light Pollution Is a Driver of Insect Declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Kehoe, R.; Frago, E.; Sanders, D. Cascading Extinctions as a Hidden Driver of Insect Decline. Ecol. Entomol. 2021, 46, 743–756. [Google Scholar] [CrossRef]
- Nath, R.; Singh, H.; Mukherjee, S. Insect Pollinators Decline: An Emerging Concern of Anthropocene Epoch. J. Apic. Res. 2023, 62, 23–38. [Google Scholar] [CrossRef]
- New, T.R. Causes of Concern: The Main Threats to Insects. In Insect Conservation in Australia: Why and How; Springer Nature: Cham, Switzerland, 2024; pp. 33–68. [Google Scholar]
- Roy, H.E.; Martinou, A.F.; Pocock, M.J.O.; Werenkraut, V.; Roy, D.B. The Global Reach of Citizen Science for Monitoring Insects. One Earth 2024, 7, 552–557. [Google Scholar] [CrossRef]
- Fanin, N.; Gundale, M.J.; Farrell, M.; Ciobanu, M.; Baldock, J.A.; Nilsson, M.-C.; Kardol, P.; Wardle, D.A. Consistent Effects of Biodiversity Loss on Multifunctionality across Contrasting Ecosystems. Nat. Ecol. Evol. 2017, 2, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Uwingabire, Z.; Gallai, N. Impacts of Degraded Pollination Ecosystem Services on Global Food Security and Nutrition. Ecol. Econ. 2024, 217, 108068. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.; Zhang, P.; Liu, M.; Zhang, Y. Relationship and Driving Factors between Urbanization and Natural Ecosystem Health in China. Ecol. Indic. 2023, 147, 109972. [Google Scholar] [CrossRef]
- Guariguata, L.; Hickey, G.M.; Murphy, M.M.; Guell, C.; Iese, V.; Morrissey, K.; Duvivier, P.; Herberg, S.; Kiran, S.; Unwin, N. Understanding the Links between Human Health, Ecosystem Health, and Food Systems in Small Island Developing States Using Stakeholder-Informed Causal Loop Diagrams. PLOS Glob. Public Health 2023, 3, e0001988. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Urban Sustainability: Integrating Ecology in City Design and Planning. In Sustainable Human--Nature Relations: Environmental Scholarship, Economic Evaluation, Urban Strategies; Cirella, G.T., Ed.; Springer: Singapore, 2020; pp. 187–204. ISBN 978-981-15-3049-4. [Google Scholar]
- Russo, A. Renaturing for Urban Wellbeing: A Socioecological Perspective on Green Space Quality, Accessibility, and Inclusivity. Sustainability 2024, 16, 5751. [Google Scholar] [CrossRef]
- Hagan, S. Ecological Urbanism: The Nature of the City, 1st ed.; Routledge: London, UK, 2014; ISBN 0415506670. [Google Scholar]
- Russo, A.; Cirella, G.T. Edible Urbanism 5.0. Palgrave Commun. 2019, 5, 163. [Google Scholar] [CrossRef]
- Farr, D. Sustainable Urbanism: Urban Design With Nature; Wiley: Hoboken, NJ, USA, 2012; ISBN 1118174518. [Google Scholar]
- Heymans, A.; Breadsell, J.; Morrison, G.; Byrne, J.; Eon, C. Ecological Urban Planning and Design: A Systematic Literature Review. Sustainability 2019, 11, 3723. [Google Scholar] [CrossRef]
- Duvall, P.; Lennon, M.; Scott, M. The ‘Natures’ of Planning: Evolving Conceptualizations of Nature as Expressed in Urban Planning Theory and Practice. Eur. Plan. Stud. 2018, 26, 480–501. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; American Museum of Natural History: New York, NY, USA, 1969. [Google Scholar]
- Yang, B.; Li, S. Design with Nature: Ian McHarg’s Ecological Wisdom as Actionable and Practical Knowledge. Landsc. Urban Plan. 2016, 155, 21–32. [Google Scholar] [CrossRef]
- Kummitha, R.K.R.; Crutzen, N. How Do We Understand Smart Cities? An Evolutionary Perspective. Cities 2017, 67, 43–52. [Google Scholar] [CrossRef]
- Cugurullo, F.; Caprotti, F.; Cook, M.; Karvonen, A.; MᶜGuirk, P.; Marvin, S. The Rise of AI Urbanism in Post-Smart Cities: A Critical Commentary on Urban Artificial Intelligence. Urban Stud. 2024, 61, 1168–1182. [Google Scholar] [CrossRef]
- Herath, H.M.K.K.M.B.; Mittal, M. Adoption of Artificial Intelligence in Smart Cities: A Comprehensive Review. Int. J. Inf. Manag. Data Insights 2022, 2, 100076. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Feizizadeh, B.; Ghamari, H. Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends. Sustainability 2021, 13, 7140. [Google Scholar] [CrossRef]
- Gubareva, R.; Lopes, R.P. Literature Review on the Smart City Resources Analysis with Big Data Methodologies. SN Comput. Sci. 2024, 5, 152. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart City Based on Digital Twins. Comput. Urban Sci. 2021, 1, 4. [Google Scholar] [CrossRef]
- Luque-Ayala, A.; Marvin, S. Developing a Critical Understanding of Smart Urbanism? Urban Stud. 2015, 52, 2105–2116. [Google Scholar] [CrossRef]
- Anthopoulos, L.G. Understanding the Smart City Domain: A Literature Review. In Transforming City Governments for Successful Smart Cities. Public Administration and Information Technology; Rodríguez-Bolívar, M., Ed.; Springer: Cham, Switzerland, 2015; Volume 8, pp. 9–21. [Google Scholar]
- Wolniak, R.; Stecuła, K. Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities 2024, 7, 1346–1389. [Google Scholar] [CrossRef]
- De Guimarães, J.C.F.; Severo, E.A.; Felix Júnior, L.A.; Da Costa, W.P.L.B.; Salmoria, F.T. Governance and Quality of Life in Smart Cities: Towards Sustainable Development Goals. J. Clean. Prod. 2020, 253, 119926. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Bibri, S.E.; Khavarian-Garmsir, A.R. Smart Cities and Sustainable Development Goals (SDGs): A Systematic Literature Review of Co-Benefits and Trade-Offs. Cities 2024, 146, 104659. [Google Scholar] [CrossRef]
- Blasi, S.; Ganzaroli, A.; De Noni, I. Smartening Sustainable Development in Cities: Strengthening the Theoretical Linkage between Smart Cities and SDGs. Sustain. Cities Soc. 2022, 80, 103793. [Google Scholar] [CrossRef]
- Gazzeh, K. Ranking Sustainable Smart City Indicators Using Combined Content Analysis and Analytic Hierarchy Process Techniques. Smart Cities 2023, 6, 2883–2909. [Google Scholar] [CrossRef]
- Hollands, R.G. Will the Real Smart City Please Stand up? Intelligent, Progressive or Entrepreneurial? In The Routledge Companion to Smart Cities; Willis, K.S., Aurigi, A., Eds.; Routledge: London, UK, 2020. [Google Scholar]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Giffinger, R.; Kramar, H. Benchmarking, Profiling, and Ranking of Cities: The “European Smart Cities” Approach. In Performance Metrics for Sustainable Cities; Albert, S., Pandey, M., Eds.; Routledge: London, UK, 2021. [Google Scholar]
- Wang, M.; Zhou, T. Does Smart City Implementation Improve the Subjective Quality of Life? Evidence from China. Technol. Soc. 2023, 72, 102161. [Google Scholar] [CrossRef]
- Colding, J.; Barthel, S. An Urban Ecology Critique on the “Smart City” Model. J. Clean. Prod. 2017, 164, 95–101. [Google Scholar] [CrossRef]
- Veloso, Á.; Fonseca, F.; Ramos, R. Insights from Smart City Initiatives for Urban Sustainability and Contemporary Urbanism. Smart Cities 2024, 7, 3188–3209. [Google Scholar] [CrossRef]
- Obringer, R.; Nateghi, R. What Makes a City ‘Smart’ in the Anthropocene? A Critical Review of Smart Cities under Climate Change. Sustain. Cities Soc. 2021, 75, 103278. [Google Scholar] [CrossRef]
- Javidroozi, V.; Carter, C.; Grace, M.; Shah, H. Smart, Sustainable, Green Cities: A State-of-the-Art Review. Sustainability 2023, 15, 5353. [Google Scholar] [CrossRef]
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How Smart Growth and Green Infrastructure Can Mutually Support Each Other—A Conceptual Framework for Compact and Green Cities. Ecol. Indic. 2019, 96, 10–22. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Biophilic Cities: Planning for Sustainable and Smart Urban Environments. In Smart Cities Movement in BRICS; Aijaz, R., Ed.; Observer Research Foundation and Global Policy Journal: New Delhi, India, 2017; pp. 153–159. ISBN 978-81-86818-29-9. [Google Scholar]
- Gazzola, P.; Del Campo, A.G.; Onyango, V. Going Green vs Going Smart for Sustainable Development: Quo Vadis? J. Clean. Prod. 2019, 214, 881–892. [Google Scholar] [CrossRef]
- Reyers, B.; Selig, E.R. Global Targets That Reveal the Social–Ecological Interdependencies of Sustainable Development. Nat. Ecol. Evol. 2020, 4, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Patterson, W.R. Ecological Degradation. In The Palgrave Encyclopedia of Global Security Studies; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–8. [Google Scholar]
- Niemelä, J. Ecology and Urban Planning. Biodivers. Conserv. 1999, 8, 119–131. [Google Scholar] [CrossRef]
- World Economic Forum. Nature Positive: Guidelines for the Transition in Cities; World Economic Forum: Cologny, Switzerland; Geneva, Switzerland, 2024. [Google Scholar]
- Thomas, H.; Chung, Y.F.; Maron, M.; Rhodes, J.R.; Simmonds, J.S.; Ward, M.S.; Williams, B.A. Achieving “Nature Positive” Requires Net Gain Legislation. Science (1979) 2024, 386, 383–385. [Google Scholar] [CrossRef]
- Hui, C.X.; Dan, G.; Alamri, S.; Toghraie, D. Greening Smart Cities: An Investigation of the Integration of Urban Natural Resources and Smart City Technologies for Promoting Environmental Sustainability. Sustain. Cities Soc. 2023, 99, 104985. [Google Scholar] [CrossRef]
- Świątek, L. From Industry 4.0 to Nature 4.0—Sustainable Infrastructure Evolution by Design BT—Advances in Human Factors, Sustainable Urban Planning and Infrastructure; Charytonowicz, J., Falcão, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 438–447. [Google Scholar]
- Liu, H.-Y.; Jay, M.; Chen, X. The Role of Nature-Based Solutions for Improving Environmental Quality, Health and Well-Being. Sustainability 2021, 13, 10950. [Google Scholar] [CrossRef]
- Brown, C.; Grant, M. Biodiversity and Human Health: What Role for Nature in Healthy Urban Planning? Built Environ. 2005, 31, 326–338. [Google Scholar] [CrossRef]
- MacKinnon, K.; Sobrevila, C.; Hickey, V. Biodiversity, Climate Change, and Adaptation: Nature-Based Solutions from the World Bank Portfolio; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Societal Challenges; IUCN: Gland, Switzerland, 2016; ISBN 9782831718125. [Google Scholar]
- Berg, M.; Spray, C.J.; Blom, A.; Slinger, J.H.; Stancanelli, L.M.; Snoek, Y.; Schielen, R.M.J. Assessing the IUCN Global Standard as a Framework for Nature-Based Solutions in River Flood Management Applications. Sci. Total Environ. 2024, 950, 175269. [Google Scholar] [CrossRef]
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions: First Editions, 1st ed.; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2020; ISBN 978-2-8317-2058-6. [Google Scholar]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Short, C.; Clarke, L.; Carnelli, F.; Uttley, C.; Smith, B. Capturing the Multiple Benefits Associated with Nature-based Solutions: Lessons from a Natural Flood Management Project in the Cotswolds, UK. Land. Degrad. Dev. 2019, 30, 241–252. [Google Scholar] [CrossRef]
- Spano, G.; Dadvand, P.; Sanesi, G. Editorial: The Benefits of Nature-Based Solutions to Psychological Health. Front. Psychol. 2021, 12, 646627. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Olsson, P.; Boke-Olén, N.; Hedlund, K. Scaling up Nature-Based Solutions for Climate-Change Adaptation: Potential and Benefits in Three European Cities. Urban For. Urban Green. 2022, 67, 127450. [Google Scholar] [CrossRef]
- Booth, H.; Milner-Gulland, E.J.; McCormick, N.; Starkey, M. Operationalizing Transformative Change for Business in the Context of Nature Positive. One Earth 2024, 7, 1235–1249. [Google Scholar] [CrossRef]
- White, T.B.; Bromwich, T.; Bang, A.; Bennun, L.; Bull, J.; Clark, M.; Milner-Gulland, E.J.; Prescott, G.W.; Starkey, M.; zu Ermgassen, S.O.S.E.; et al. The “Nature-Positive” Journey for Business: A Conceptual Research Agenda to Guide Contributions to Societal Biodiversity Goals. One Earth 2024, 7, 1373–1386. [Google Scholar] [CrossRef]
- Rizzi, D. Design Brief 1 “Recommendations for Biodiversity-Positive Design with Nature-Based Solutions (NBS)” Drafted by ICLEI Europe for NetworkNature (H2020 Project No. 887396); ICLEI Europe: Freiburg, Germany, 2023. [Google Scholar]
- Birkeland, J. Nature Positive: Interrogating Sustainable Design Frameworks for Their Potential to Deliver Eco-Positive Outcomes. Urban Sci. 2022, 6, 35. [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P.; Hes, D.; Bennett, J.; Taylor, M.; Johnstone, R. Nature-Positive Design and Development: A Case Study on Regenerating Black Cockatoo Habitat in Urban Developments in Perth, Australia. Urban Sci. 2022, 6, 47. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Oke, C.; Barnett, G.; Bekessy, S.; Bush, J.; Fitzsimons, J.; Ignatieva, M.; Kendal, D.; Kingsley, J.; Mumaw, L.; et al. A Transformative Mission for Prioritising Nature in Australian Cities. Ambio 2022, 51, 1433–1445. [Google Scholar] [CrossRef]
- Hewlett, B.; Elderkin, S.; King, R. Nature-Positive Infrastructure—Habitat Connectivity Structures, a Call to Arms. Proc. Inst. Civ. Eng.—Civ. Eng. 2024, 177, 89–98. [Google Scholar] [CrossRef]
- Zeuss, D.; Bald, L.; Gottwald, J.; Becker, M.; Bellafkir, H.; Bendix, J.; Bengel, P.; Beumer, L.T.; Brandl, R.; Brändle, M.; et al. Nature 4.0: A Networked Sensor System for Integrated Biodiversity Monitoring. Glob. Chang. Biol. 2024, 30, e17056. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J. From Smart Urban Forests to Edible Cities: New Approaches in Urban Planning and Design. Urban Plan. 2022, 7, 131–134. [Google Scholar] [CrossRef]
- UCLA Luskin Center. SMART Parks: A Toolkit; UCLA Luskin Center: Los Angeles, CA, USA, 2019. [Google Scholar]
- Nitoslawski, S.A.; Galle, N.J.; Van Den Bosch, C.K.; Steenberg, J.W.N. Smarter Ecosystems for Smarter Cities? A Review of Trends, Technologies, and Turning Points for Smart Urban Forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Prebble, S.; McLean, J.; Houston, D. Smart Urban Forests: An Overview of More-than-Human and More-than-Real Urban Forest Management in Australian Cities. Digit. Geogr. Soc. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Srinurak, N.; Wonglangka, W.; Sukwai, J. Smart Urban Forest Initiative: Nature-Based Solution and People-Centered Approach for Tree Management in Chiang Mai, Thailand. Sustainability 2024, 16, 11078. [Google Scholar] [CrossRef]
- Aragani, V.M.; Maroju, P.K. Future of Blue-Green Cities Emerging Trends and Innovations in ICloud Infrastructure. In Integrating Blue-Green Infrastructure into Urban Development; IGI Global: Hershey, PA, USA, 2024; pp. 223–244. [Google Scholar]
- Prodanovic, V.; Bach, P.M.; Stojkovic, M. Urban Nature-Based Solutions Planning for Biodiversity Outcomes: Human, Ecological, and Artificial Intelligence Perspectives. Urban Ecosyst. 2024, 27, 1795–1806. [Google Scholar] [CrossRef]
- Rohde, F.; Wagner, J.; Meyer, A.; Reinhard, P.; Voss, M.; Petschow, U.; Mollen, A. Broadening the Perspective for Sustainable Artificial Intelligence: Sustainability Criteria and Indicators for Artificial Intelligence Systems. Curr. Opin. Environ. Sustain. 2024, 66, 101411. [Google Scholar] [CrossRef]
- Ahlborg, H.; Ruiz-Mercado, I.; Molander, S.; Masera, O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability 2019, 11, 2009. [Google Scholar] [CrossRef]
- Xiu, N.; Ignatieva, M.; van den Bosch, C.K.; Chai, Y.; Wang, F.; Cui, T.; Yang, F. A Socio-Ecological Perspective of Urban Green Networks: The Stockholm Case. Urban Ecosyst. 2017, 20, 729–742. [Google Scholar] [CrossRef]
- Joo, H.E.; Clark, J.A.G.; Kremer, P.; Aronson, M.F.J. Socio-Environmental Drivers of Human-Nature Interactions in Urban Green Spaces. Urban Ecosyst. 2024, 27, 2397–2413. [Google Scholar] [CrossRef]
- Egerer, M.; Annighöfer, P.; Arzberger, S.; Burger, S.; Hecher, Y.; Knill, V.; Probst, B.; Suda, M. Urban Oases: The Social-Ecological Importance of Small Urban Green Spaces. Ecosyst. People 2024, 20, 2315991. [Google Scholar] [CrossRef]
- Hunter, A.J.; Luck, G.W. Defining and Measuring the Social-Ecological Quality of Urban Greenspace: A Semi-Systematic Review. Urban Ecosyst. 2015, 18, 1139–1163. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef] [PubMed]
- Atiqul Haq, S.M.; Islam, M.N.; Siddhanta, A.; Ahmed, K.J.; Chowdhury, M.T.A. Public Perceptions of Urban Green Spaces: Convergences and Divergences. Front. Sustain. Cities 2021, 3, 755313. [Google Scholar] [CrossRef]
- Nobles, E.C.; Moore, K. Barriers to Equitable Greening in Urban Environmental Policies. J. Environ. Policy Plan. 2024, 26, 388–401. [Google Scholar] [CrossRef]
- Hosseini, F.; Sajadzadeh, H.; Aram, F.; Mosavi, A. The Impact of Local Green Spaces of Historically and Culturally Valuable Residential Areas on Place Attachment. Land 2021, 10, 351. [Google Scholar] [CrossRef]
- Therias, A.; Rafiee, A. City Digital Twins for Urban Resilience. Int. J. Digit. Earth 2023, 16, 4164–4190. [Google Scholar] [CrossRef]
- Wei, S.; Cheng, S. An Artificial Intelligence Approach for Identifying Efficient Urban Forest Indicators on Ecosystem Service Assessment. Front. Environ. Sci. 2022, 10, 994389. [Google Scholar] [CrossRef]
- Steiner, F.; Simmons, M.; Gallagher, M.; Ranganathan, J.; Robertson, C. The Ecological Imperative for Environmental Design and Planning. Front. Ecol. Environ. 2013, 11, 355–361. [Google Scholar] [CrossRef]
- Chau, W.Y.; Wang, Y.-H.; Chiu, S.W.; Tan, P.S.; Leung, M.L.; Lui, H.L.; Wu, J.; Lau, Y.M. AI-IoT Integrated Framework for Tree Tilt Monitoring: A Case Study on Tree Failure in Hong Kong. Agric. For. Meteorol. 2023, 341, 109678. [Google Scholar] [CrossRef]
- Gonzalez, L.; Montes, G.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Huang, T.-H.; Verma, H.; Mauri, A.; Nourbakhsh, I.; Bozzon, A. Empowering Local Communities Using Artificial Intelligence. Patterns 2022, 3, 100449. [Google Scholar] [CrossRef]
- Russo, A.; Andreucci, M.B. Raising Healthy Children: Promoting the Multiple Benefits of Green Open Spaces through Biophilic Design. Sustainability 2023, 15, 1982. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Xie, G.; Yang, Q.; Russo, A.; Khalilnezhad, M.R. Socio-Cultural Appropriateness of the Use of Historic Persian Gardens for Modern Urban Edible Gardens. Land 2021, 11, 38. [Google Scholar] [CrossRef]
- Barthel, S.; Parker, J.; Ernstson, H. Food and Green Space in Cities: A Resilience Lens on Gardens and Urban Environmental Movements. Urban Stud. 2015, 52, 1321–1338. [Google Scholar] [CrossRef]
- Walsh, L.E.; Mead, B.R.; Hardman, C.A.; Evans, D.; Liu, L.; Falagán, N.; Kourmpetli, S.; Davies, J. Potential of Urban Green Spaces for Supporting Horticultural Production: A National Scale Analysis. Environ. Res. Lett. 2022, 17, 014052. [Google Scholar] [CrossRef]
- Crossley, A.J.; Russo, A. Has the Pandemic Altered Public Perception of How Local Green Spaces Affect Quality of Life in the United Kingdom? Sustainability 2022, 14, 7946. [Google Scholar] [CrossRef]
- Sikorska, D.; Wojnowska-Heciak, M.; Heciak, J.; Bukowska, J.; Łaszkiewicz, E.; Hopkins, R.J.; Sikorski, P. Rethinking Urban Green Spaces for Urban Resilience. Do Green Spaces Need Adaptation to Meet Public Post-COVID Expectations? Urban For. Urban Green. 2023, 80, 127838. [Google Scholar] [CrossRef]
- Shimpo, N. Community Garden Management for Resilient Cities: A Case Study in Suburban Tokyo during the COVID-19 Pandemic. Landsc. Urban Plan. 2024, 251, 105148. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; David, A.; Li, W.; Fookes, C.; Bibri, S.E.; Ye, X. Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World Implementations. Smart Cities 2024, 7, 1576–1625. [Google Scholar] [CrossRef]
- Rambhia, M.; Volk, R.; Rismanchi, B.; Winter, S.; Schultmann, F. Prioritizing Urban Green Spaces in Resource Constrained Scenarios. Resour. Environ. Sustain. 2024, 16, 100150. [Google Scholar] [CrossRef]
- Mell, I. ‘But Who’s Going to Pay for It?’ Contemporary Approaches to Green Infrastructure Financing, Development and Governance in London, UK. J. Environ. Policy Plan. 2021, 23, 628–645. [Google Scholar] [CrossRef]
- Limb, B.J.; Quinn, J.C.; Johnson, A.; Sowby, R.B.; Thomas, E. The Potential of Carbon Markets to Accelerate Green Infrastructure Based Water Quality Trading. Commun. Earth Environ. 2024, 5, 185. [Google Scholar] [CrossRef]
- zu Ermgassen, S.O.S.E.; Löfqvist, S. Financing Ecosystem Restoration. Curr. Biol. 2024, 34, R412–R417. [Google Scholar] [CrossRef] [PubMed]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Hanna, E.; Comín, F.A. Urban Green Infrastructure and Sustainable Development: A Review. Sustainability 2021, 13, 11498. [Google Scholar] [CrossRef]
- Growe, A.; Freytag, T. Image and Implementation of Sustainable Urban Development: Showcase Projects and Other Projects in Freiburg, Heidelberg and Tübingen, Germany. Raumforsch. Und Raumordn.|Spat. Res. Plan. 2019, 77, 457–474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, A. Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology. Smart Cities 2025, 8, 26. https://doi.org/10.3390/smartcities8010026
Russo A. Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology. Smart Cities. 2025; 8(1):26. https://doi.org/10.3390/smartcities8010026
Chicago/Turabian StyleRusso, Alessio. 2025. "Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology" Smart Cities 8, no. 1: 26. https://doi.org/10.3390/smartcities8010026
APA StyleRusso, A. (2025). Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology. Smart Cities, 8(1), 26. https://doi.org/10.3390/smartcities8010026