Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 

Advances in Application Effects and Mechanisms of Fertilizer Products

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Soil and Plant Nutrition".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 2199

Special Issue Editors


E-Mail Website
Guest Editor
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
Interests: soil fertility; soil nutrient cycling; controlled-release fertilizer; nitrogen fertilizer
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Efficient Utilization of Arid and Semi–Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: fertilizer; fertilization; plant nutrition; urea; phosphorus fertilizer; biostimulant; biofortification; plant-based food; agrochemical; soil health; soil fertility
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fertilizers have been widely used to maximize both the quantity and quality of agricultural products. The excessive input and improper application of fertilizers, however, not only result in the wastage of valuable fertilizer resources and intangible assets but also contribute to environmental pollution and ecological imbalance. Since the establishment of mineral nutrition in the 1840s by Justus von Liebig, fertilizer products have continuously updated and upgraded to enhance the efficiency of fertilizer nutrient and application services. These innovations include coated fertilizers, controlled-release fertilizer, nano fertilizers, value-added fertilizers, smart fertilizers, biostimulants, and fertilizer additives. In addition, new fertilizer products have also been developed to meet the requirements in application technologies like fertilizer sprayers, spraying drones, no-tillage sowing-fertilizing machines, and integrated drip irrigation systems for water and fertilizer management. The latest advancements in the application and underlying mechanism of new fertilizer products present significant potential for optimizing the efficiency and sustainability of fertilizers for humans.

The bottom line: Better fertilizer, bigger harvest, more profits.

Dr. Wenhai Mi
Dr. Meng Xu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fertilizer
  • fertilizer effect
  • fertilizer tool
  • fertilizer sprayer
  • fertilizer use efficiency
  • fertilization
  • urea
  • ammonium phosphate
  • compound fertilizer
  • foliar fertilizer
  • value-added fertilizer
  • biostimulant
  • nano fertilizer
  • modified fertilizer
  • smart fertilizer

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1239 KiB  
Article
Optimizing Slow-Release Fertilizer Rate for Crop and Soil Productivity in Kimchi Cabbage Cropping Systems in the Highlands of Gangwon Province
by Mavis Badu Brempong, Yangmin X. Kim, Gye-Ryeong Bak and Jeong-Tae Lee
Agronomy 2024, 14(7), 1428; https://doi.org/10.3390/agronomy14071428 - 30 Jun 2024
Abstract
Slow-release fertilizer (SRF) improves Kimchi cabbage (KC) productivity in the Highlands of Gangwon Province in South Korea; however, optimum rates for the region are not established. This study investigated the optimum and most economical rate of SRF that maximizes KC yield, nutrient uptake [...] Read more.
Slow-release fertilizer (SRF) improves Kimchi cabbage (KC) productivity in the Highlands of Gangwon Province in South Korea; however, optimum rates for the region are not established. This study investigated the optimum and most economical rate of SRF that maximizes KC yield, nutrient uptake and nitrogen use efficiency (NUE) and enhances soil quality in two experiments at the Highland Agriculture Research Institute. Post-harvest soil N (mg kg−1), P2O5 (mg kg−1), K, Ca and Mg (cmolc kg−1), pH (1:5), electrical conductivity (EC; dSm−1) and organic matter (OM; g kg−1) were measured to assess soil quality. Added net returns (ANR) of treatments were evaluated. Recommended N rate (238 kg ha−1) for KC production was the basis for treatment applications. Treatments included no fertilizer control (‘nf’), full N recommendation SRF (SF1), ½ N recommendation SRF (SF0.5), double N recommendation SRF (SF2) and full N recommendation conventional fast fertilizer (FF). Results showed that SF0.5, SF1 and SF2 influenced the highest KC marketable yield in both experiments (66–74 and 42–66 Mg ha−1, respectively). SRF rates between 0.5 and 1 times the N recommendation produced the highest possible linear increases in marketable yield; and the most economical, with ANR > KRW 83 million ha−1 in the first experiment and > KRW 22 million ha−1 in the second. Crop N, P, K, Ca and Mg uptakes were highest among the three SRF rates in both experiments. SF0.5 influenced the highest (91%) NUE in the first experiment; however, it left 8 mg kg−1 N by the end of this experiment compared to the start-up 27.2 mg kg−1 N. Thus, nutrient mining occurred. Soil N increased between 23 and 135 mg kg−1 by SF 1 and 2 in both experiments. Soil EC spiked to 0.6 dSm−1 from the initial level of 0.2 dSm−1 by SF2 in the first experiment. Soil pH, P2O5, K, Ca and Mg levels post-harvest were comparable among treatments in both experiments. SF0.5, 1 and 2 increased soil OM by 7–16% above pre-experimental levels in the second experiment. In conclusion, SRF rates between 0.5 and 1 for KC produced the maximum corresponding KC yield and were the most economical. SRF rates ≤ 0.5 pose risks of nutrient mining, which could jeopardise native soil fertility. SF1 and 2 improved some soil quality indices (N and OM). However, SF2 potentiates risks of soil salinity and large P losses, and it is less economical. Therefore, for holistic sustainability of the cropping system, the optimum SRF rate should lie between 0.5 and 1 N recommendation. Full article
(This article belongs to the Special Issue Advances in Application Effects and Mechanisms of Fertilizer Products)
16 pages, 4746 KiB  
Article
The Impact of Different Phosphorus Fertilizers Varieties on Yield under Wheat–Maize Rotation Conditions
by Chutao Liang, Xiaoqi Liu, Jialong Lv, Funian Zhao and Qiang Yu
Agronomy 2024, 14(6), 1317; https://doi.org/10.3390/agronomy14061317 - 18 Jun 2024
Viewed by 502
Abstract
The global phosphate (P) rock shortage has become a significant challenge. Furthermore, the misalignment between crops, soil, and P usage exacerbates P rock wastage in agriculture. The distinctions among various types of phosphorus fertilizers influence the phosphorus cycle, which subsequently impacts biomass, the [...] Read more.
The global phosphate (P) rock shortage has become a significant challenge. Furthermore, the misalignment between crops, soil, and P usage exacerbates P rock wastage in agriculture. The distinctions among various types of phosphorus fertilizers influence the phosphorus cycle, which subsequently impacts biomass, the number of grains per ear, the weight of a thousand grains, and, ultimately, the overall yield. In a four-year field experiment conducted from 2017 to 2021, we assessed the impact of various P fertilizer types on crop yield in a continuous wheat–maize rotation system. Prior to planting the crops, P fertilizers were applied as base fertilizers at a rate of 115 kg P2O5 ha−1 during the wheat season and 90 kg P2O5 ha−1 during the maize season. Additionally, nitrogen (N) was applied at rates of 120 kg ha−1 for wheat and 180 kg ha−1 for maize. The P fertilizers used included ammonium dihydrogen phosphate, ammonium polyphosphate, calcium–magnesia phosphate, ammonium phosphate, and calcium superphosphate. Urea was used as the N fertilizer with a split application—60% at planting and 40% at the jointing stage for wheat or the V12 (twelve leaf collar) stage for maize. The results showed that different P fertilizers increased the average yield of wheat and maize by 21.2–38.0% and 9.9–16.3%, respectively. It was found that ammonium polyphosphate, calcium superphosphate, and monoammonium phosphate were more suitable for application in a summer maize–winter wheat rotation system on loess soil. Full article
(This article belongs to the Special Issue Advances in Application Effects and Mechanisms of Fertilizer Products)
Show Figures

Figure 1

14 pages, 2423 KiB  
Article
Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment
by Min Liu, Meng Xu, Liang Yuan, Shuiqin Zhang, Yanting Li and Bingqiang Zhao
Agronomy 2024, 14(1), 223; https://doi.org/10.3390/agronomy14010223 - 20 Jan 2024
Viewed by 955
Abstract
Due to its broad yield-increasing effect and low cost, humic acid urea (HAU) has become one of the leading modified fertilizers worldwide. The fertisphere is the primary space where urea (U) granules participate in the soil nitrogen cycle, forming a nutrient concentration gradient [...] Read more.
Due to its broad yield-increasing effect and low cost, humic acid urea (HAU) has become one of the leading modified fertilizers worldwide. The fertisphere is the primary space where urea (U) granules participate in the soil nitrogen cycle, forming a nutrient concentration gradient centered on the point of fertilization. The closer the circle layers to the urea granule in the fertisphere, the higher the nitrogen concentration. However, HAU in this microregion remains poorly understood. The differences in the transformation process from the inside to outside circle layers of the U and HAU fertispheres were simulated and studied using soil incubation experiments under 20, 10, 2, 1, and 0.2 g kg−1 nitrogen inputs. The 20 and 10 g kg−1 inputs represent the layers closest to the urea granule. Within the first seven days, HAU treatment showed higher concentrations of soil ammonia-N content than U treatment within the two layers closest to the fertilizer core, while exhibiting lower concentrations under the farthest two layers. Under 2 g kg−1 nitrogen input, the nitrate nitrogen under the HAU treatment was significantly higher than that in the U treatment, indicating a higher nitrification rate. During the 42-day incubation period, soil mineral nitrogen content under the HAU treatment was higher than that for the U treatment in the two closest circles. On the 42nd day, the residual urea-N under the HAU treatment was significantly higher than that for the U treatment when the nitrogen input was higher than 1 g kg−1. The effect of higher fertilizer preservation and supply capacity of HAU in Fluvo-aquic soil was achieved by changing the urease activity and nitrification rate in fertisphere ranges closer to the fertilizer core. An improved understanding of the high-efficiency mechanism of HAU in the fertisphere process will contribute to the development of new-generation high-efficiency urea products. Full article
(This article belongs to the Special Issue Advances in Application Effects and Mechanisms of Fertilizer Products)
Show Figures

Figure 1

Back to TopTop