Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 

Bioactive Compounds in Plants—2nd Edition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 2188

Special Issue Editors


E-Mail Website
Guest Editor
Plant Biology Department, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
Interests: Elicitation, plant in vitro cultures, specialized metabolism, plant defense responses, plant by-products, biostimulants
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Plant Biology Department, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
Interests: Elicitation, plant in vitro cultures, specialized metabolism, plant defense responses, plant by-products, biostimulants
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant bioactive compounds comprise valuable plant components with diverse functions, acting as the defense mechanisms of plants under stress situations. Moreover, the high added value of these bioactive compounds is based on their enormous pharmaceutical interest since some of them possess biological properties relevant for human health such as antioxidant, antimicrobial, and anticancer activities. The great biological importance of these compounds contradicts their small quantities found in plants, making their extraction a very expensive process. Moreover, many of these compounds have not been completely characterized, and achieving their high extraction yields has not been accomplished yet. The aim of this Special Issue is to gather original research papers, along with review articles, focusing on the recent advances in the field of plant bioactive compounds. This Special Issue of Plants will cover a wide variety of topics, including extraction and identification techniques, bioactivity assays, molecular approaches, and biotechnological strategies to obtain bioactive compounds from plants.

Dr. Sabater-Jara Ana Belén
Dr. Lorena Almagro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • specialized metabolism
  • plant defense responses
  • plant by-products
  • biostimulants
  • biological activity
  • extraction and identification methods

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3980 KiB  
Article
Seed Treatment with Cold Plasma and Electromagnetic Field: Changes in Antioxidant Capacity of Seedlings in Different Picea abies (L.) H. Karst Half-Sib Families
by Ieva Čėsnienė, Vytautas Čėsna, Diana Miškelytė, Vitalij Novickij, Vida Mildažienė and Vaida Sirgedaitė-Šėžienė
Plants 2024, 13(15), 2021; https://doi.org/10.3390/plants13152021 - 23 Jul 2024
Viewed by 725
Abstract
In the context of climate change, methods to improve the resistance of coniferous trees to biotic and abiotic stress are in great demand. The common plant response to exposure to vastly different stressors is the generation of reactive oxygen species (ROS) followed by [...] Read more.
In the context of climate change, methods to improve the resistance of coniferous trees to biotic and abiotic stress are in great demand. The common plant response to exposure to vastly different stressors is the generation of reactive oxygen species (ROS) followed by activation of the defensive antioxidant system. We aimed to evaluate whether seed treatment with physical stressors can activate the activity of antioxidant enzymes and radical scavenging activity in young Picea abies (L.) H. Karst seedlings. For this, we applied seed treatment with cold plasma (CP) and electromagnetic field (EMF) and compared the response in ten different half-sib families of Norway spruce. The impact of the treatments with CP (1 min—CP1; 2 min—CP2) and EMF (2 min) on one-year-old and two-year-old P. abies seedlings was determined by the emergence rate, parameters of growth, and spectrophotometric assessment of antioxidant capacity (enzyme activity; DPPH and ABTS scavenging) in needles. The results indicated that the impact of seed treatment is strongly dependent on the genetic family. In the 577 half-sib family, the activity of antioxidant enzymes catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX), and glutathione reductase (GR) increased after EMF-treatment in one-year-old seedlings, while similar effects in 477 half-sib family were induced by CP2 treatment. In two-year-old seedlings, CP1-treatment increased CAT, APX, POX, GR, SOD, DPPH, and ABTS activity in the 457 half-sib family. However, no significant impact of the treatment with CP1 was determined in one-year-old seedlings in this family. The application of novel technologies and the consideration of the combinatory impact of genetic and physical factors could have the potential to improve the accumulation of compounds that play an essential role in the defense mechanisms of P. abies. Nevertheless, for different resistance and responses to stressors of plants, their genetic properties play an essential role. A comprehensive analysis of interactions among the stress factors (CP and EMF), genetic properties, and changes induced in the antioxidant system can be of importance both for the practical application of seed treatment in forestry and for understanding fundamental adaptation mechanisms in conifers. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants—2nd Edition)
Show Figures

Figure 1

20 pages, 2214 KiB  
Article
Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity
by Oleh Koshovyi, Mykola Komisarenko, Tatyana Osolodchenko, Andrey Komissarenko, Reet Mändar, Siiri Kõljalg, Jyrki Heinämäki and Ain Raal
Plants 2024, 13(6), 754; https://doi.org/10.3390/plants13060754 - 7 Mar 2024
Viewed by 1068
Abstract
The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was [...] Read more.
The pharmaceutical industry usually utilizes either hydrophobic or hydrophilic substances extracted from raw plant materials to prepare a final product. However, the waste products from the plant material still contain biologically active components with the opposite solubility. The aim of this study was to enhance the comprehensive usability of plant materials by developing a new no-waste extraction method for eucalypt leaves and by investigating the phytochemical and pharmacological properties of eucalypt extracts and their 3D-printed dosage forms. The present extraction method enabled us to prepare both hydrophobic soft extracts and hydrophilic (aqueous) dry extracts. We identified a total of 28 terpenes in the hydrophobic soft extract. In the hydrophilic dry extract, a total of 57 substances were identified, and 26 of them were successfully isolated. The eucalypt extracts studied showed significant antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans, Corynebacterium diphtheriae gravis, and Corynebacterium diphtheriae mitis. The anti-inflammatory activity of the dry extract was studied using a formalin-induced-edema model in mice. The maximum anti-exudative effect of the dry extract was 61.5% at a dose of 20 mg/kg. Composite gels of polyethylene oxide (PEO) and eucalypt extract were developed, and the key process parameters for semi-solid extrusion (SSE) 3D printing of such gels were verified. The SSE 3D-printed preparations of novel synergistically acting eucalypt extracts could have uses in antimicrobial and anti-inflammatory medicinal applications. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants—2nd Edition)
Show Figures

Figure 1

Back to TopTop