Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 

Preparation, Structure and Characterization of Polymer/Cement Composites—3rd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 25 December 2024 | Viewed by 2940

Special Issue Editors

School of Materials Science and Engineering, Chang’an University, Nan’er Huan Road Xi’an, Xi’an 710064, China
Interests: application of polymers in civil engineering materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, China
Interests: solid waste utilization; green construction technology; functional pavement materials; asphalt modifying technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of polymer/cement composites and the intensive research on the relationship between the structure and properties of materials, more polymer/cement composites are being widely utilized, and research on polymer/cement composites has become an important area in China and worldwide. Compared with common cement composites, polymers can significantly improve the tensile strength, flexural strength, flexibility, compactness, and durability of cement composites. Polymer/cement composites also have good chemical corrosion resistance, permeability resistance, low-temperature crack resistance, etc. Meanwhile, the functional groups of polymers react with the hydration products of cement composites through ionic bonds or coordination bonds. Some atoms and molecules of polymers can also interact with inorganic compounds through hydrogen bonds and van der Waals forces. New methods, such as artificial intelligence and big data analysis, have also widened the research field. The construction of polymer/cement composites in the current context is still a critical challenge for researchers and technologists.

Recognizing the importance of theory and simulation in understanding the properties of polymer/cement composites across various scales and under a variety of conditions, this Special Issue, entitled “Preparation, Structure and Performance Characterization of Polymer/Cement Composites—3rd Edition,” invites contributions that address aspects of polymer/cement composites systems such as the formulation of new constitutive modelling, studies on the mechanical properties of polymer/cement composites, the development of multi-scale research to address more complicated systems, novel theoretical developments and simulations that advance our knowledge of polymer/cement composites, new computing methods for polymer/cement composites, approaches for predicting material composition and morphology in polymer/cement composites, etc. This list is only indicative and by no means exhaustive; any original theoretical or simulation studies or review articles on the role of polymer/cement composites are welcome.

Dr. Bowen Guan
Dr. Xiaolong Sun
Dr. Chunli Wu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer
  • cementitious composites
  • recycled materials
  • smart additives
  • structure characterization
  • multiscale performance evaluation
  • numerical modeling
  • durability
  • regeneration and sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 18540 KiB  
Article
Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2
by Nan Zhang, Xichen Wang, Pei Sun, Nanxiang Zheng and Aodi Sun
Polymers 2024, 16(19), 2850; https://doi.org/10.3390/polym16192850 - 9 Oct 2024
Abstract
In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers [...] Read more.
In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers were assessed for their oil absorption, thermal stability, and hydrophobicity. The asphalt mortar was evaluated for three key indicators: rutting resistance, deformation resistance, and durability at high temperatures. The microscopic morphology and modification mechanisms of the fibers were also studied. The results showed that modification with NaOH increased fiber porosity and surface roughness, while KH570 and its hydrolysis products enabled nano-SiO2 grafting onto the fibers, improving their adsorption to asphalt. The NaOH-KH570-nano-SiO2 ternary-composite-modified bamboo bark fiber (NKSBF) demonstrated superior hydrophobicity, oil absorption, and thermal stability at the asphalt mixing temperature. Among the modified fibers, asphalt mortar containing 3% NKSBF showed the best performance based on three key indicators, increased the shear strength by 96.4% and the softening point by 7.1% compared to the base asphalt, and increased the ductility by 1% compared to lignin fiber asphalt mortar. The incorporation of 3% bamboo bark fibers improved the rutting resistance, deformation resistance, and durability of short-term-aged asphalt mortar, with NKSBF showing the most significant improvement. Full article
16 pages, 5591 KiB  
Article
Effects of C-S-H Seed Prepared by Wet Grinding on the Properties of Cement Containing Large Amounts of Silica Fume
by Shiheng Wang, Peng Zhao, Yaogang Tian and Jianan Liu
Polymers 2024, 16(19), 2769; https://doi.org/10.3390/polym16192769 - 30 Sep 2024
Abstract
This study aimed to utilize the hydration characteristics of cement through wet grinding techniques to efficiently and conveniently prepare a stable C-S-H seed suspension, providing key parameters and a scientific basis for their large-scale production, which ensures the stability of the C-S-H suspension [...] Read more.
This study aimed to utilize the hydration characteristics of cement through wet grinding techniques to efficiently and conveniently prepare a stable C-S-H seed suspension, providing key parameters and a scientific basis for their large-scale production, which ensures the stability of the C-S-H suspension during production, transportation, and application. This preparation aimed to mitigate the adverse effects of high-volume silica fume on the early mechanical properties of high-performance cement concrete. The properties of C-S-H seed were characterized in detail by SEM, XRD, and TD. In the concrete performance test, silica fume was used to replace part of the cement, and different contents of C-S-H seed were added to test its effect on the compressive strength of concrete, with XRD and SEM used to analyze the performance differences. The results show that the particle size and hydration degree of cement no longer developed after 90 min of wet grinding. Polycarboxylate ether (PCE) superplasticizer can increase the fluidity of the crystal C-S-H seed suspension when the content exceeds 1.5%. When the content of PCE exceeded 2%, the C-S-H seed suspension precipitated. Adding 5% C-S-H seed can increase the compressive strength of cement concrete by 10% under the condition of reducing the amount of cement and increasing the amount of silica fume. And Ca(OH)2 (CH) was produced by cement hydration consumed by silica fumes to generate C-S-H gel, by which the concrete became denser with more strength. However, when the amount of C-S-H seed exceeded 7%, the compressive strength of the concrete decreased. Full article
Show Figures

Figure 1

14 pages, 7121 KiB  
Article
Recognition and Characterization of Nanoscale Phases: Modulus Mapping of Asphalt Film in Pavement Mixture Cores
by Ming Wang, Yuxuan Wang, Jingxuan Guo, Chengwei Xing, Lingyun Zou and Shuaituan Tian
Polymers 2024, 16(17), 2537; https://doi.org/10.3390/polym16172537 - 7 Sep 2024
Abstract
The objective of this study is to recognize and characterize the nanoscale phase modulus mapping of the asphalt film in pavement mixture cores using atomic force microscopy quantitative nanomechanical technology. The pavement core samples from the upper and middle layers of four highways [...] Read more.
The objective of this study is to recognize and characterize the nanoscale phase modulus mapping of the asphalt film in pavement mixture cores using atomic force microscopy quantitative nanomechanical technology. The pavement core samples from the upper and middle layers of four highways and laboratory samples were taken as the research object. The phase modulus–macro property correlation of recovered asphalt was analyzed using mathematical statistics. The results showed that the pavement core samples had more significant multi-phase and diversified phase characteristics compared to lab samples. This indicated that the asphalt in the pavement core had an obvious phase separation phenomenon due to aging. The phase modulus of each sample was distributed across a relatively wide numerical range, and there were also many numerical points with large fluctuations. Especially for the mixture sample containing SBS (Styrene-Butadiene-Styrene)-modified asphalt, the phase modulus distribution mappings presented a multi-peak phenomenon. Hence, considering the distribution characteristics of the data, the box plot method was introduced. Compared with quantified results from laboratory samples, the phase modulus of SBS-modified asphalt increased by 0.96 times, 1.18 times and 1.15 times, and that of base asphalt increased by 0.59 times, 0.56 times, 0.42 times, 1.24 times and 0.39 times, respectively. This indicates that the aging degree of asphalt in the upper layer was generally greater than that of the asphalt in the middle layer and that there was an aging gradient in the direction of pavement depth. All points were within the 95% confidence band in terms of correlation fitting, indicating a better fitting effect between phase modulus and complex shear modulus, as well as between phase modulus and penetration. This research provides innovative ideas for future multi-scale numerical simulation and cross-scale performance model development of asphalt binders. Full article
Show Figures

Figure 1

13 pages, 6209 KiB  
Article
The Changes in the Inner-Structure and Mechanical Strength of the Composite Cement Materials and Silica-Carbon Nanotube-Nylon 66 Electrospun Nanofibers
by Tri N. M. Nguyen, Huy Q. Nguyen and Jung J. Kim
Polymers 2024, 16(17), 2475; https://doi.org/10.3390/polym16172475 - 30 Aug 2024
Viewed by 331
Abstract
This study presents the feasibility of improving some selected mechanical strengths and the inner-structural analyses of cement matrix by electrospun nanofibers containing nylon 66, nanosilica, and carbon nanotube. The hybrid electrospun nanofibers were fabricated and mixed into ordinary Portland cement. From the mechanical [...] Read more.
This study presents the feasibility of improving some selected mechanical strengths and the inner-structural analyses of cement matrix by electrospun nanofibers containing nylon 66, nanosilica, and carbon nanotube. The hybrid electrospun nanofibers were fabricated and mixed into ordinary Portland cement. From the mechanical strength test results, the hybrid nanofibers have shown their role in improving the tensile, compressive, and toughness behavior of the mixed cement material. The improvements of 62%, 38%, and 69%, respectively, were observed compared to those of the control paste. The novelty of the surface and inner structure of the hybrid fibers, as well as the modified cement matrix, were observed by the scanned images from electron microscopes. Besides, the additional pozzolanic reaction between the generated calcium hydroxide and the attached silica was clarified thanks to the results of energy dispersive spectroscopy, X-ray diffraction, and thermal gravimetric analysis. Finally, the consistency between mechanical strength results and inner-structure analyses showed the potential of the proposed fiber to improve cement-based materials. Full article
Show Figures

Figure 1

17 pages, 3802 KiB  
Article
Effects of Silicone Rubber on Rheological Properties and Aging Characteristics of Asphalt Binder
by Maoqing Li, Zichen Gao, Zewen He, Jiachen Ma, Wenhui Zhao, Shihao Dang and Chenhao Wei
Polymers 2024, 16(13), 1903; https://doi.org/10.3390/polym16131903 - 2 Jul 2024
Viewed by 733
Abstract
Silicone rubber (SR) is a kind of polymer insulation material with excellent performance. With the service life of silicone rubber products reaching the limit, how to dispose of waste silicone rubber is an urgent problem to be solved. In this paper, silicone rubber-modified [...] Read more.
Silicone rubber (SR) is a kind of polymer insulation material with excellent performance. With the service life of silicone rubber products reaching the limit, how to dispose of waste silicone rubber is an urgent problem to be solved. In this paper, silicone rubber-modified asphalt binder (SRMA) was prepared by SR and 90# base asphalt binder. The simulated short-term aging and long-term aging tests of SRMA were carried out using the thin film oven aging test (TFOT) and pressure aging vessel test (PAV). The rotary viscosity test and dynamic shear rheological test (DSR) were applied to the rheological properties of SRMA before and after aging. The degradation degree and chemical composition changes of SR were explored by the toluene insoluble matter test, Fourier transform infrared spectroscopy (FTIR), and a Fluorescence microscope (FM). The results demonstrate that SR can significantly affect the aging resistance, fatigue life, and high-temperature stability of SRMA. As the content of SR rose, the elastic component in SRMA increased, leading to a nice performance in stability at high temperatures and fatigue resistance. However, excessive content (14%wt and 16%wt) had a negative influence on the performance of SRMA. So, the optimal content was speculated to be between 12% and 14%. Furthermore, SR and asphalt binder would be aged and degraded together in the aging process, and this phenomenon was more obvious during long-term aging. Full article
Show Figures

Figure 1

Back to TopTop