Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
remotesensing-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10008 KiB  
Review
Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress
by Shuanggen Jin, Xuyang Meng, Gino Dardanelli and Yunlong Zhu
Remote Sens. 2024, 16(24), 4800; https://doi.org/10.3390/rs16244800 - 23 Dec 2024
Viewed by 720
Abstract
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have [...] Read more.
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth’s surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20–27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather. Full article
Show Figures

Graphical abstract

29 pages, 5124 KiB  
Review
Combination of Remote Sensing and Artificial Intelligence in Fruit Growing: Progress, Challenges, and Potential Applications
by Danielle Elis Garcia Furuya, Édson Luis Bolfe, Taya Cristo Parreiras, Jayme Garcia Arnal Barbedo, Thiago Teixeira Santos and Luciano Gebler
Remote Sens. 2024, 16(24), 4805; https://doi.org/10.3390/rs16244805 - 23 Dec 2024
Viewed by 794
Abstract
Fruit growing is important in the global agricultural economy, contributing significantly to food security, job creation, and rural development. With the advancement of technologies, mapping fruits using remote sensing and machine learning (ML) and deep learning (DL) techniques has become an essential tool [...] Read more.
Fruit growing is important in the global agricultural economy, contributing significantly to food security, job creation, and rural development. With the advancement of technologies, mapping fruits using remote sensing and machine learning (ML) and deep learning (DL) techniques has become an essential tool to optimize production, monitor crop health, and predict harvests with greater accuracy. This study was developed in four main stages. In the first stage, a comprehensive review of the existing literature was made from July 2018 (first article found) to June 2024, totaling 117 articles. In the second stage, a general analysis of the data obtained was made, such as the identification of the most studied fruits with the techniques of interest. In the third stage, a more in-depth analysis was made focusing on apples and grapes, with 27 and 30 articles, respectively. The analysis included the use of remote sensing (orbital and proximal) imagery and ML/DL algorithms to map crop areas, detect diseases, and monitor crop development, among other analyses. The fourth stage shows the data’s potential application in a Southern Brazilian region, known for apple and grape production. This study demonstrates how the integration of modern technologies can transform fruit farming, promoting more sustainable and efficient agriculture through remote sensing and artificial intelligence technologies. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

16 pages, 9121 KiB  
Technical Note
A Benchmark Dataset for Aircraft Detection in Optical Remote Sensing Imagery
by Jianming Hu, Xiyang Zhi, Bingxian Zhang, Tianjun Shi, Qi Cui and Xiaogang Sun
Remote Sens. 2024, 16(24), 4699; https://doi.org/10.3390/rs16244699 - 17 Dec 2024
Viewed by 583
Abstract
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research [...] Read more.
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research has been devoted to breaking through few-sample-driven aircraft detection technology, most algorithms still struggle to effectively solve the problems of missed target detection and false alarms caused by numerous environmental interferences in bird-eye optical remote sensing scenes. To further aircraft detection research, we have established a new dataset, Aircraft Detection in Complex Optical Scene (ADCOS), sourced from various platforms including Google Earth, Microsoft Map, Worldview-3, Pleiades, Ikonos, Orbview-3, and Jilin-1 satellites. It integrates 3903 meticulously chosen images of over 400 famous airports worldwide, containing 33,831 annotated instances employing the oriented bounding box (OBB) format. Notably, this dataset encompasses a wide range of various targets characteristics including multi-scale, multi-direction, multi-type, multi-state, and dense arrangement, along with complex relationships between targets and backgrounds like cluttered backgrounds, low contrast, shadows, and occlusion interference conditions. Furthermore, we evaluated nine representative detection algorithms on the ADCOS dataset, establishing a performance benchmark for subsequent algorithm optimization. The latest dataset will soon be available on the Github website. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

18 pages, 5411 KiB  
Article
Leveraging Neural Radiance Fields for Large-Scale 3D Reconstruction from Aerial Imagery
by Max Hermann, Hyovin Kwak, Boitumelo Ruf and Martin Weinmann
Remote Sens. 2024, 16(24), 4655; https://doi.org/10.3390/rs16244655 - 12 Dec 2024
Viewed by 816
Abstract
Since conventional photogrammetric approaches struggle with with low-texture, reflective, and transparent regions, this study explores the application of Neural Radiance Fields (NeRFs) for large-scale 3D reconstruction of outdoor scenes, since NeRF-based methods have recently shown very impressive results in these areas. We evaluate [...] Read more.
Since conventional photogrammetric approaches struggle with with low-texture, reflective, and transparent regions, this study explores the application of Neural Radiance Fields (NeRFs) for large-scale 3D reconstruction of outdoor scenes, since NeRF-based methods have recently shown very impressive results in these areas. We evaluate three approaches: Mega-NeRF, Block-NeRF, and Direct Voxel Grid Optimization, focusing on their accuracy and completeness compared to ground truth point clouds. In addition, we analyze the effects of using multiple sub-modules, estimating the visibility by an additional neural network and varying the density threshold for the extraction of the point cloud. For performance evaluation, we use benchmark datasets that correspond to the setting off standard flight campaigns and therefore typically have nadir camera perspective and relatively little image overlap, which can be challenging for NeRF-based approaches that are typically trained with significantly more images and varying camera angles. We show that despite lower quality compared to classic photogrammetric approaches, NeRF-based reconstructions provide visually convincing results in challenging areas. Furthermore, our study shows that in particular increasing the number of sub-modules and predicting the visibility using an additional neural network improves the quality of the resulting reconstructions significantly. Full article
Show Figures

Figure 1

39 pages, 28523 KiB  
Review
Identification of Landslide Precursors for Early Warning of Hazards with Remote Sensing
by Katarzyna Strząbała, Paweł Ćwiąkała and Edyta Puniach
Remote Sens. 2024, 16(15), 2781; https://doi.org/10.3390/rs16152781 - 30 Jul 2024
Cited by 2 | Viewed by 2761
Abstract
Landslides are a widely recognized phenomenon, causing huge economic and human losses worldwide. The detection of spatial and temporal landslide deformation, together with the acquisition of precursor information, is crucial for hazard prediction and landslide risk management. Advanced landslide monitoring systems based on [...] Read more.
Landslides are a widely recognized phenomenon, causing huge economic and human losses worldwide. The detection of spatial and temporal landslide deformation, together with the acquisition of precursor information, is crucial for hazard prediction and landslide risk management. Advanced landslide monitoring systems based on remote sensing techniques (RSTs) play a crucial role in risk management and provide important support for early warning systems (EWSs) at local and regional scales. The purpose of this article is to present a review of the current state of knowledge in the development of RSTs used for identifying landslide precursors, as well as detecting, monitoring, and predicting landslides. Almost 200 articles from 2010 to 2024 were analyzed, in which the authors utilized RSTs to detect potential precursors for early warning of hazards. The applications, challenges, and trends of RSTs, largely dependent on the type of landslide, deformation pattern, hazards posed by the landslide, and the size of the area of interest, were also discussed. Although the article indicates some limitations of the RSTs used so far, integrating different techniques and technological developments offers the opportunity to create reliable EWSs and improve existing ones. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Graphical abstract

31 pages, 11063 KiB  
Article
The Preparation Phase of the 2023 Kahramanmaraş (Turkey) Major Earthquakes from a Multidisciplinary and Comparative Perspective
by Gianfranco Cianchini, Massimo Calcara, Angelo De Santis, Alessandro Piscini, Serena D’Arcangelo, Cristiano Fidani, Dario Sabbagh, Martina Orlando, Loredana Perrone, Saioa A. Campuzano, Mariagrazia De Caro, Adriano Nardi and Maurizio Soldani
Remote Sens. 2024, 16(15), 2766; https://doi.org/10.3390/rs16152766 - 29 Jul 2024
Cited by 6 | Viewed by 1047
Abstract
On 6 February 2023, Turkey experienced its most powerful earthquake in over 80 years, with a moment magnitude (Mw) of 7.7. This was then followed by a second earthquake of Mw 7.6 just nine hours later. According to the lithosphere–atmosphere–ionosphere coupling (LAIC) models, [...] Read more.
On 6 February 2023, Turkey experienced its most powerful earthquake in over 80 years, with a moment magnitude (Mw) of 7.7. This was then followed by a second earthquake of Mw 7.6 just nine hours later. According to the lithosphere–atmosphere–ionosphere coupling (LAIC) models, such a significant seismic activity is expected to cause anomalies across various observables, from the Earth’s surface to the ionosphere. This multidisciplinary study investigates the preparatory phase of these two major earthquakes by identifying potential precursors across the lithosphere, atmosphere, and ionosphere. Our comprehensive analysis successfully identified and collected various anomalies, revealing that their cumulative occurrence follows an accelerating trend, either exponential or power-law. Most anomalies appeared to progress from the lithosphere upward through the atmosphere to the ionosphere, suggesting a sequential chain of processes across these geospheres. Notably, some anomalies deviated from this overall trend, manifesting as oscillating variations. We propose that these anomalies support a two-way coupling model preceding major earthquakes, highlighting the potential role of fluid chemistry in facilitating these processes. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Graphical abstract

16 pages, 3823 KiB  
Article
Remote Sensing of Chlorophyll-a and Water Quality over Inland Lakes: How to Alleviate Geo-Location Error and Temporal Discrepancy in Model Training
by Jongmin Park, Sami Khanal, Kaiguang Zhao and Kyuhyun Byun
Remote Sens. 2024, 16(15), 2761; https://doi.org/10.3390/rs16152761 - 29 Jul 2024
Cited by 4 | Viewed by 1786
Abstract
Harmful algal blooms (HABs) threaten lake ecosystems and public health. Early HAB detection is possible by monitoring chlorophyll-a (Chl-a) concentration. Ground-based Chl-a data have limited spatial and temporal coverage but can be geo-registered with temporally coincident satellite imagery to calibrate a remote sensing-based [...] Read more.
Harmful algal blooms (HABs) threaten lake ecosystems and public health. Early HAB detection is possible by monitoring chlorophyll-a (Chl-a) concentration. Ground-based Chl-a data have limited spatial and temporal coverage but can be geo-registered with temporally coincident satellite imagery to calibrate a remote sensing-based predictive model for regional mapping over time. When matching ground and satellite data, positional and temporal discrepancies are unavoidable due particularly to dynamic lake surfaces, thereby biasing the model calibration. This limitation has long been recognized but so far has not been addressed explicitly. To mitigate such effects of data mismatching, we proposed an Akaike Information Criterion (AIC)-like weighted regression algorithm that relies on an error-based heuristic to automatically favor “good” data points and downplay “bad” points. We evaluated the algorithm for estimating Chl-a over inland lakes in Ohio using Harmonized Landsat Sentinel-2. The AIC-like weighted regression estimates showed superior performance with an R2 of 0.91 and an error variance (σE2) of 0.29 μg/L, outperforming linear regression (R2 = 0.34, σE2 = 2.34 μg/L) and random forest (R2 = 0.82, σE2 = 0.92 μg/L). We also noticed the poorest performance occurred in the spring due to low reflectance variation in clear water and low Chl-a concentration. Our weighted regression scheme is adaptive and generically applicable. Future studies may adopt our scheme to tackle other remote sensing estimation problems (e.g., terrestrial applications) for alleviating the adverse effects of geolocation errors and temporal discrepancies. Full article
(This article belongs to the Special Issue Multi-Source Remote Sensing Data in Hydrology and Water Management)
Show Figures

Figure 1

21 pages, 12265 KiB  
Article
Remote Sensing for Restoration Change Monitoring in Tropical Peat Swamp Forests in Malaysia
by Chloe Brown, Sofie Sjögersten, Martha J. Ledger, Faizal Parish and Doreen Boyd
Remote Sens. 2024, 16(15), 2690; https://doi.org/10.3390/rs16152690 - 23 Jul 2024
Cited by 2 | Viewed by 1277
Abstract
Effective planning and management strategies for restoring and conserving tropical peat swamp ecosystems require accurate and timely estimates of aboveground biomass (AGB), especially when monitoring the impacts of restoration interventions. The aim of this research is to assess changes in AGB and evaluate [...] Read more.
Effective planning and management strategies for restoring and conserving tropical peat swamp ecosystems require accurate and timely estimates of aboveground biomass (AGB), especially when monitoring the impacts of restoration interventions. The aim of this research is to assess changes in AGB and evaluate the effectiveness of restoration efforts in the North Selangor Peat Swamp Forest (NSPSF), one of the largest remaining peat swamp forests in Peninsular Malaysia, using advanced remote sensing techniques. A Random Forest machine learning method was employed to upscale AGB estimates, derived from a ‘LiDAR AGB model’, to larger landscape-scale areas with Sentinel-2 spectral and textural variables. The time period under investigation (2015–2018) marked a concentrated phase of restoration and regeneration efforts in NSPSF. The results demonstrate an overall increase in tropical peat swamp AGB during these years, where the total amount of estimated AGB stored in NSPSF increased from 19.3 Tg in 2015 to an estimated 19.8 Tg in 2018. The research found that a tailored variable selection approach improved predictions of AGB, with optimised input variables (n = 62) and parameter adjustments producing a good plausible result (R2 = 0.80; RMSE = 55.2 Mg/ha). This paper concludes by emphasizing the importance of long-term studies (>5 years) for analyzing the success of tropical peat swamp restoration methods, with a potential for integrating remote sensing technology. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

53 pages, 21900 KiB  
Article
Multi-Tier Land Use and Land Cover Mapping Framework and Its Application in Urbanization Analysis in Three African Countries
by Shahriar Shah Heydari, Jody C. Vogeler, Orion S. E. Cardenas-Ritzert, Steven K. Filippelli, Melissa McHale and Melinda Laituri
Remote Sens. 2024, 16(14), 2677; https://doi.org/10.3390/rs16142677 - 22 Jul 2024
Cited by 2 | Viewed by 1269
Abstract
The population of Africa is expected to rise to 2.5 billion by 2050, with more than 80% of this increase concentrated in cities. Africa’s anticipated population growth has serious implications for urban resource utilization and management, necessitating multi-level monitoring efforts that can inform [...] Read more.
The population of Africa is expected to rise to 2.5 billion by 2050, with more than 80% of this increase concentrated in cities. Africa’s anticipated population growth has serious implications for urban resource utilization and management, necessitating multi-level monitoring efforts that can inform planning and decision-making. Commonly, broad extent (e.g., country level) urban change analyses only examine a homogenous “developed” or “built-up” area, which may not capture patterns influenced by the heterogeneity of landscape features within urban areas. Contrarily, studies examining landscape heterogeneity at a finer resolution are typically limited in spatial extent (e.g., single city level). The goal of this study was to develop and test a hierarchical integrated mapping framework using globally available Earth Observation data (e.g., Landsat, Sentinel-2, Sentinel-1, and nightlight imagery) and accessible methodologies to produce national-level land use (LU) and urban-level land cover (LC) map products which may support a range of global and local monitoring and planning initiatives. We test our multi-tier methodology across three rapidly urbanizing African countries for the 2016–2020 period: Ethiopia, Nigeria, and South Africa. The initial output of our methodology includes annual national land use maps (Tier 1) for the purpose of delineating the dynamic boundaries of individual urban areas and monitoring national LU change. To complement Tier 1 LU maps, we detailed urban heterogeneity through LC classifications within urban areas (Tier 2) delineated using Tier 1 LU maps. Based on country-optimized sets of selected features that leverage spatial/texture and temporal dimensions of available data, we obtained an overall map accuracy of between 65 and 80% for Tier 1 maps and between 60 and 80% for Tier 2 maps, dependent on the evaluation country, although with consistent performance across study years providing a solid foundation for monitoring changes. We demonstrate the potential applications for our products through various analyses, including urbanization-driven LU change, and examine LC urban patterns across the three African study countries. While our findings allude to general differences in urban patterns across national scales, further analyses are needed to better understand the complex drivers behind urban LC configurations and their change patterns across different countries, city sizes, and rates of urbanization. Our multi-tier mapping framework is a viable strategy for producing harmonious, multi-level LULC products in developing countries using publicly available data and methodologies, which can serve as a basis for a wide range of informative and insightful monitoring analyses. Full article
Show Figures

Graphical abstract

20 pages, 3406 KiB  
Article
Temporal Transferability of Tree Species Classification in Temperate Forests with Sentinel-2 Time Series
by Margot Verhulst, Stien Heremans, Matthew B. Blaschko and Ben Somers
Remote Sens. 2024, 16(14), 2653; https://doi.org/10.3390/rs16142653 - 20 Jul 2024
Cited by 1 | Viewed by 1425
Abstract
Detailed information on forest tree species is crucial to inform management and policy and support environmental and ecological research. Sentinel-2 imagery is useful for obtaining spatially explicit and frequent information on forest tree species due to its suitable spatial, spectral, and temporal resolutions. [...] Read more.
Detailed information on forest tree species is crucial to inform management and policy and support environmental and ecological research. Sentinel-2 imagery is useful for obtaining spatially explicit and frequent information on forest tree species due to its suitable spatial, spectral, and temporal resolutions. However, classification workflows often do not generalise well to time periods that are not seen by the model during the calibration phase. This study investigates the temporal transferability of dominant tree species classification. To this end, the Random Forest, Support Vector Machine, and Multilayer Perceptron algorithms were used to classify five tree species in Flanders (Belgium) with regularly spaced Sentinel-2 time series from 2018 to 2022. Cross-year single-year input scenarios were compared with same-year single-year input scenarios to quantify the temporal transferability of the five evaluated years. This resulted in a decrease in overall accuracy between 2.30 and 14.92 percentage points depending on the algorithm and evaluated year. Moreover, our results indicate that the cross-year classification performance could be improved by using multi-year training data, reducing the drop in overall accuracy. In some cases, gains in overall accuracy were even observed. This study highlights the importance of including interannual spectral variability during the training stage of tree species classification models to improve their ability to generalise in time. Full article
Show Figures

Figure 1

40 pages, 9898 KiB  
Article
Cell-Resolved PV Soiling Measurement Using Drone Images
by Peter Winkel, Stefan Wilbert, Marc Röger, Julian J. Krauth, Niels Algner, Bijan Nouri, Fabian Wolfertstetter, Jose Antonio Carballo, M. Carmen Alonso-Garcia, Jesus Polo, Aránzazu Fernández-García and Robert Pitz-Paal
Remote Sens. 2024, 16(14), 2617; https://doi.org/10.3390/rs16142617 - 17 Jul 2024
Cited by 3 | Viewed by 1219
Abstract
The maintenance of photovoltaic (PV) power plants is of central importance for their yield. To reach higher efficiencies in PV parks, it is helpful to detect soiling such as dust deposition and to apply this information to optimize cleaning strategies. Furthermore, a periodic [...] Read more.
The maintenance of photovoltaic (PV) power plants is of central importance for their yield. To reach higher efficiencies in PV parks, it is helpful to detect soiling such as dust deposition and to apply this information to optimize cleaning strategies. Furthermore, a periodic inspection of the PV modules with infrared (IR) imagery is of advantage to detect and potentially remove faulty PV modules. Soiling can be erroneously interpreted as PV module defects and hence spatially resolved soiling measurements can improve the results of IR-based PV inspection. So far, soiling measurements are mostly performed only locally in PV fields, thus not supporting the above-mentioned IR inspections. This study presents a method for measuring the soiling of PV modules at cell resolution using RGB images taken by aerial drones under sunny conditions. The increase in brightness observed for soiled cells under evaluation, compared to clean cells, is used to calculate the transmission loss of the soiling layer. Photos of a clean PV module and a soiled module for which the soiling loss is measured electrically are used to determine the relation between the brightness increase and the soiling loss. To achieve this, the irradiance at the time of the image acquisitions and the viewing geometry are considered. The measurement method has been validated with electrical measurements of the soiling loss yielding root mean square deviations in the 1% absolute range. The method has the potential to be applied to entire PV parks in the future. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

21 pages, 4551 KiB  
Article
Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model for Training Sample Shortage
by Jianhua Zhang, Shucheng You, Aixia Liu, Lijian Xie, Chenhao Huang, Xu Han, Penghan Li, Yixuan Wu and Jinsong Deng
Remote Sens. 2024, 16(14), 2553; https://doi.org/10.3390/rs16142553 - 12 Jul 2024
Cited by 6 | Viewed by 1143
Abstract
In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for [...] Read more.
In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for major crops in China, and the visual interpretation process is usually time-consuming and laborious. The sample size also makes it difficult to support the model to learn enough ground features, resulting in poor generalisation ability of the model, which in turn makes the model difficult to apply in fine extraction tasks of large-area crops. In this study, a method to establish a pseudo-label sample set based on the random forest algorithm to train a semantic segmentation model (U-Net) was proposed to perform winter wheat extraction. With the help of the GEE platform, Winter Wheat Canopy Index (WCI) indicators were employed in this method to initially extract winter wheat, and training samples (i.e., pseudo labels) were built for the semantic segmentation model through the iterative process of “generating random sample points—random forest model training—winter wheat extraction”; on this basis, the U-net model was trained with multi-time series remote sensing images; finally, the U-Net model was employed to obtain the spatial distribution map of winter wheat in Henan Province in 2022. The results illustrated that: (1) Pseudo-label data were constructed using the random forest model in typical regions, achieving an overall accuracy of 97.53% under validation with manual samples, proving that its accuracy meets the requirements for U-Net model training. (2) Utilizing the U-Net model, U-Net++ model, and random forest model constructed based on pseudo-label data for 2022, winter wheat mapping was conducted in Henan Province. The extraction accuracy of the three models is in the order of U-Net model > U-Net++ model > random forest model. (3) Using the U-Net model to predict the winter wheat planting areas in Henan Province in 2019, although the extraction accuracy decreased compared to 2022, it still exceeded that of the random forest model. Additionally, the U-Net++ model did not achieve higher classification accuracy. (4) Experimental results demonstrate that deep learning models constructed based on pseudo-labels exhibit higher classification accuracy. Compared to traditional machine learning models like random forest, they have higher spatiotemporal adaptability and robustness, further validating the scientific and practical feasibility of pseudo-labels and their generation strategies, which are expected to provide a feasible technical pathway for intelligent extraction of winter wheat spatial distribution information in the future. Full article
Show Figures

Figure 1

21 pages, 7074 KiB  
Article
Fire Vulnerability, Resilience, and Recovery Rates of Mediterranean Pine Forests Using a 33-Year Time Series of Satellite Imagery
by Esther Peña-Molina, Daniel Moya, Eva Marino, José Luis Tomé, Álvaro Fajardo-Cantos, Javier González-Romero, Manuel Esteban Lucas-Borja and Jorge de las Heras
Remote Sens. 2024, 16(10), 1718; https://doi.org/10.3390/rs16101718 - 13 May 2024
Cited by 1 | Viewed by 2298
Abstract
The modification of fire regimes and their impact on vegetation recovery, soil properties, and fuel structure are current key research areas that attempt to identify the thresholds of vegetation’s susceptibility to wildfires. This study aimed to evaluate the vulnerability of Mediterranean pine forests [...] Read more.
The modification of fire regimes and their impact on vegetation recovery, soil properties, and fuel structure are current key research areas that attempt to identify the thresholds of vegetation’s susceptibility to wildfires. This study aimed to evaluate the vulnerability of Mediterranean pine forests (Pinus halepensis Mill. and Pinus pinaster Aiton) to wildfires, analyzing two major forest fires that occurred in Yeste (Spain) in 1994 and 2017, affecting over 14,000 and 3200 hectares, respectively. Four recovery regions were identified based on fire severity—calculated using the delta Normalized Burn Ratio (dNBR) index—and recurrence: areas with high severity in 2017 but not in 1994 (UB94-HS17), areas with high severity in 1994 but not in 2017 (HS94-UB17), areas with high severity in both fires (HS94-HS17), and areas unaffected by either fire (UB94-UB17). The analysis focused on examining the recovery patterns of three spectral indices—the Normalized Difference Vegetation Index (NDVI), Normalized Moisture Index (NDMI), and Normalized Burn Ratio (NBR)—using the Google Earth Engine platform from 1990 to 2023. Additionally, the Relative Recovery Indicator (RRI), the Ratio of Eighty Percent (R80P), and the Year-on-Year average (YrYr) metrics were computed to assess the spectral recovery rates by region. These three spectral indices showed similar dynamic responses to fire. However, the Mann–Kendall and unit root statistical tests revealed that the NDVI and NDMI exhibited distinct trends, particularly in areas with recurrence (HS94-HS17). The NDVI outperformed the NBR and NDMI in distinguishing variations among regions. These results suggest accelerated vegetation spectral regrowth in the short term. The Vegetation Recovery Capacity After Fire (VRAF) index showed values from low to moderate, while the Vulnerability to Fire (V2FIRE) index exhibited values from medium to high across all recovery regions. These findings enhance our understanding of how vegetation recovers from fire and how vulnerable it is to fire. Full article
(This article belongs to the Special Issue Land Use/Cover Mapping and Trend Analysis Using Google Earth Engine)
Show Figures

Figure 1

44 pages, 25578 KiB  
Review
Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review
by Qinghua Ye, Yuzhe Wang, Lin Liu, Linan Guo, Xueqin Zhang, Liyun Dai, Limin Zhai, Yafan Hu, Nauman Ali, Xinhui Ji, Youhua Ran, Yubao Qiu, Lijuan Shi, Tao Che, Ninglian Wang, Xin Li and Liping Zhu
Remote Sens. 2024, 16(10), 1709; https://doi.org/10.3390/rs16101709 - 11 May 2024
Cited by 1 | Viewed by 3009
Abstract
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are [...] Read more.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate–cryosphere–hydrology–hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze–thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

18 pages, 51367 KiB  
Article
Drone-Acquired Short-Wave Infrared (SWIR) Imagery in Landscape Archaeology: An Experimental Approach
by Jesse Casana and Carolin Ferwerda
Remote Sens. 2024, 16(10), 1671; https://doi.org/10.3390/rs16101671 - 9 May 2024
Cited by 1 | Viewed by 2173
Abstract
Many rocks, minerals, and soil types reflect short-wave infrared (SWIR) imagery (900–2500 nm) in distinct ways, and geologists have long relied on this property to aid in the mapping of differing surface lithologies. Although surface archaeological features including artifacts, anthrosols, or structural remains [...] Read more.
Many rocks, minerals, and soil types reflect short-wave infrared (SWIR) imagery (900–2500 nm) in distinct ways, and geologists have long relied on this property to aid in the mapping of differing surface lithologies. Although surface archaeological features including artifacts, anthrosols, or structural remains also likely reflect SWIR wavelengths of light in unique ways, archaeological applications of SWIR imagery are rare, largely due to the low spatial resolution and high acquisition costs of these data. Fortunately, a new generation of compact, drone-deployable sensors now enables the collection of ultra-high-resolution (<10 cm), hyperspectral (>100 bands) SWIR imagery using a consumer-grade drone, while the analysis of these complex datasets is now facilitated by powerful imagery-processing software packages. This paper presents an experimental effort to develop a methodology that would allow archaeologists to collect SWIR imagery using a drone, locate surface artifacts in the resultant data, and identify different artifact types in the imagery based on their reflectance values across the 900–1700 nm spectrum. Our results illustrate both the potential of this novel approach to exploring the archaeological record, as we successfully locate and characterize many surface artifacts in our experimental study, while also highlighting challenges in successful data collection and analysis, largely related to current limitations in sensor and drone technology. These findings show that as underlying hardware sees continued improvements in the coming years, drone-acquired SWIR imagery can become a powerful tool for the discovery, documentation, and analysis of archaeological landscapes. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Landscape Archaeology)
Show Figures

Figure 1

24 pages, 20771 KiB  
Article
Overestimated Fog-Top Entrainment in WRF Simulation Leading to Unrealistic Dissipation of Sea Fog: A Case Study
by Li Zhang, Hao Shi, Shanhong Gao and Shun Li
Remote Sens. 2024, 16(10), 1656; https://doi.org/10.3390/rs16101656 - 7 May 2024
Cited by 1 | Viewed by 1505
Abstract
Entrainment at the top of the planetary boundary layer (PBL) is of significant importance because it controls the upward growth of the PBL height. An option called ysu_topdown_pblmix, which provides a parameterization of fog-top entrainment, has been proposed for valley fog modeling and [...] Read more.
Entrainment at the top of the planetary boundary layer (PBL) is of significant importance because it controls the upward growth of the PBL height. An option called ysu_topdown_pblmix, which provides a parameterization of fog-top entrainment, has been proposed for valley fog modeling and introduced into the YSU (Yonsei University) PBL scheme in the Weather Research and Forecasting (WRF) model. However, enabling this option in simulations of sea fog over the Yellow Sea typically results in unrealistic dissipation near the fog bottom and even within the entire fog layer. In this study, we theoretically examine the composition of the option ysu_topdown_pblmix, and then argue that one term in this option might be redundant for sea-fog modeling. The fog-top variables are employed in this term to determine the basic entrainment in the dry PBL, which is already parameterized by the surface variables in the original YSU PBL scheme. This term likely leads to an overestimation of the fog-top entrainment rate, so we refer to it as redundant. To explore the connection between the redundant term and unrealistic dissipation, a widespread sea-fog episode over the Yellow Sea is employed as a case study based on the WRF model. The simulation results clearly attribute the unrealistic dissipation to the extra entrainment rate that the redundant term induces. Fog-top entrainment is unexpectedly overestimated due to this extra entrainment rate, resulting in a significantly drier and warmer bias within the interior of sea fog. When sea fog develops and reaches a temperature lower than the sea surface, the sea surface functions as a warming source to heat the fog bottom jointly with the downward heat flux brought by the fog-top entrainment, leading the dissipation to initially occur near the fog bottom and then gradually expand upwards. We suggest a straightforward method to modify the option ysu_topdown_pblmix for sea-fog modeling that eliminates the redundant term. The improvement effect of this method was supported by the results of sensitivity tests. However, more sea-fog cases are required to validate the modification method. Full article
Show Figures

Figure 1

12 pages, 3256 KiB  
Article
Miniaturizing Hyperspectral Lidar System Employing Integrated Optical Filters
by Haibin Sun, Yicheng Wang, Zhipei Sun, Shaowei Wang, Shengli Sun, Jianxin Jia, Changhui Jiang, Peilun Hu, Haima Yang, Xing Yang, Mika Karjalnen, Juha Hyyppä and Yuwei Chen
Remote Sens. 2024, 16(9), 1642; https://doi.org/10.3390/rs16091642 - 4 May 2024
Cited by 2 | Viewed by 1828
Abstract
Hyperspectral LiDAR (HSL) has been utilized as an efficacious technique in object classification and recognition based on its unique capability to obtain ranges and spectra synchronously. Different kinds of HSL prototypes with varied structures have been promoted and measured its performance. However, almost [...] Read more.
Hyperspectral LiDAR (HSL) has been utilized as an efficacious technique in object classification and recognition based on its unique capability to obtain ranges and spectra synchronously. Different kinds of HSL prototypes with varied structures have been promoted and measured its performance. However, almost all of these HSL prototypes employ complex and large spectroscopic devices, such as an Acousto-Optic Tunable Filter and Liquid-Crystal Tunable Filter, which makes this HSL system bulky and expensive, and then hinders its extensive application in many fields. In this paper, a smart and smaller spectroscopic component, an intergraded optical filter (IOF), is promoted to miniaturize these HSL systems. The system calibration, range precision, and spectral profile experiments were carried out to test the HSL prototype. Although the IOF employed here only covered a wavelength range of 699–758 nm with a six-channel passband and showed a transmittance of less than 50%, the HSL prototype showed excellent performance in ranging and spectral profile collecting. The spectral profiles collected are well in accordance with those acquired based on the AOTF. The spectral profiles of the fruits, vegetables, plants, and ore samples collected by the HSL based on an IOF can effectively reveal the status of the plants, the component materials, and ore species. Finally, we also showed the integrated design of the HSL based on a three-dimensional IOF and combined with a detector. The performance and designs of this HSL system based on an IOF show great potential for miniaturizing in some specific applications. Full article
(This article belongs to the Special Issue Remote Sensing and Lidar Data for Forest Monitoring)
Show Figures

Figure 1

29 pages, 2637 KiB  
Article
Four Years of Atmospheric Boundary Layer Height Retrievals Using COSMIC-2 Satellite Data
by Ginés Garnés-Morales, Maria João Costa, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Vanda Salgueiro, Jesús Abril-Gago, Sol Fernández-Carvelo, Juana Andújar-Maqueda, Antonio Valenzuela, Inmaculada Foyo-Moreno, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Daniele Bortoli and Juan Luis Guerrero-Rascado
Remote Sens. 2024, 16(9), 1632; https://doi.org/10.3390/rs16091632 - 3 May 2024
Cited by 3 | Viewed by 2050
Abstract
This work aimed to study the atmospheric boundary layer height (ABLH) from COSMIC-2 refractivity data, endeavoring to refine existing ABLH detection algorithms and scrutinize the resulting spatial and seasonal distributions. Through validation analyses involving different ground-based methodologies (involving data from lidar, ceilometer, microwave [...] Read more.
This work aimed to study the atmospheric boundary layer height (ABLH) from COSMIC-2 refractivity data, endeavoring to refine existing ABLH detection algorithms and scrutinize the resulting spatial and seasonal distributions. Through validation analyses involving different ground-based methodologies (involving data from lidar, ceilometer, microwave radiometers, and radiosondes), the optimal ABLH determination relied on identifying the lowest refractivity gradient negative peak with a magnitude at least τ% times the minimum refractivity gradient magnitude, where τ is a fitting parameter representing the minimum peak strength relative to the absolute minimum refractivity gradient. Different τ values were derived accounting for the moment of the day (daytime, nighttime, or sunrise/sunset) and the underlying surface (land or sea). Results show discernible relations between ABLH and various features, notably, the land cover and latitude. On average, ABLH is higher over oceans (≈1.5 km), but extreme values (maximums > 2.5 km, and minimums < 1 km) are reached over intertropical lands. Variability is generally subtle over oceans, whereas seasonality and daily evolution are pronounced over continents, with higher ABLHs during daytime and local wintertime (summertime) in intertropical (middle) latitudes. Full article
(This article belongs to the Special Issue Observation of Atmospheric Boundary-Layer Based on Remote Sensing)
Show Figures

Figure 1

17 pages, 7831 KiB  
Article
Landslide Mapping in Calitri (Southern Italy) Using New Multi-Temporal InSAR Algorithms Based on Permanent and Distributed Scatterers
by Nicola Angelo Famiglietti, Pietro Miele, Marco Defilippi, Alessio Cantone, Paolo Riccardi, Giulia Tessari and Annamaria Vicari
Remote Sens. 2024, 16(9), 1610; https://doi.org/10.3390/rs16091610 - 30 Apr 2024
Cited by 4 | Viewed by 2577
Abstract
Landslides play a significant role in the morpho-evolutional processes of slopes, affecting them globally under various geological conditions. Often unnoticed due to low velocities, they cause diffuse damage and loss of economic resources to the infrastructure or villages built on them. Recognizing and [...] Read more.
Landslides play a significant role in the morpho-evolutional processes of slopes, affecting them globally under various geological conditions. Often unnoticed due to low velocities, they cause diffuse damage and loss of economic resources to the infrastructure or villages built on them. Recognizing and mapping mass movements is crucial for mitigating economic and social impacts. Conventional monitoring techniques prove challenging for large areas, necessitating resource-intensive ground-based networks. Leveraging abundant synthetic aperture radar (SAR) sensors, satellite techniques offer cost-effective solutions. Among the various methods based on SAR products for detecting landslides, multi-temporal differential interferometry SAR techniques (MTInSAR) stand out for their precise measurement capabilities and spatiotemporal evolution analysis. They have been widely used in several works in the last decades. Using information from the official Italian landslide database (IFFI), this study employs Sentinel-1 imagery and two new processing chains, E-PS and E-SBAS algorithms, to detect deformation areas on the slopes of Calitri, a small town in Southern Italy; these algorithms assess the cumulated displacements and their state of activity. Taking into account the non-linear trends of the scatterers, these innovative algorithms have helped to identify a dozen clusters of points that correspond well with IFFI polygons. Full article
Show Figures

Figure 1

17 pages, 27416 KiB  
Article
Landsat 8 and 9 Underfly International Surface Reflectance Validation Collaboration
by Joshua Mann, Emily Maddox, Mahesh Shrestha, Jeffrey Irwin, Jeffrey Czapla-Myers, Aaron Gerace, Eon Rehman, Nina Raqueno, Craig Coburn, Guy Byrne, Mark Broomhall and Andrew Walsh
Remote Sens. 2024, 16(9), 1492; https://doi.org/10.3390/rs16091492 - 23 Apr 2024
Viewed by 2233
Abstract
During the launch and path to its final orbit, the Landsat 9 satellite performed a once in a mission lifetime maneuver as it passed beneath Landsat 8, resulting in near coincident data collection. This maneuver provided ground validation teams from across the globe [...] Read more.
During the launch and path to its final orbit, the Landsat 9 satellite performed a once in a mission lifetime maneuver as it passed beneath Landsat 8, resulting in near coincident data collection. This maneuver provided ground validation teams from across the globe the opportunity of collecting surface in situ data to compare directly to Landsat 8 and Landsat 9 data. Ground validation teams identified surface targets that would yield reflectance and/or thermal values that could be used in Landsat Level 2 product validation and set out to collect at these locations using surface validation methodologies the teams developed. The values were collected from each team and compared directly with each other across each of the different bands of both Landsat 8 and 9. The results proved consistency across the Landsat 8 and 9 platforms and also agreed well in surface reflectance underestimation of the Coastal Aerosol, Blue, and SWIR2 bands. Full article
Show Figures

Figure 1

18 pages, 4949 KiB  
Article
Combining Multi-View UAV Photogrammetry, Thermal Imaging, and Computer Vision Can Derive Cost-Effective Ecological Indicators for Habitat Assessment
by Qiao Hu, Ligang Zhang, Jeff Drahota, Wayne Woldt, Dana Varner, Andy Bishop, Ted LaGrange, Christopher M. U. Neale and Zhenghong Tang
Remote Sens. 2024, 16(6), 1081; https://doi.org/10.3390/rs16061081 - 20 Mar 2024
Cited by 4 | Viewed by 1792
Abstract
Recent developments in Unmanned Aircraft Vehicles (UAVs), thermal imaging, and Auto-machine learning (AutoML) have shown high potential for precise wildlife surveys but have rarely been studied for habitat assessment. Here, we propose a framework that leverages these advanced techniques to achieve cost-effective habitat [...] Read more.
Recent developments in Unmanned Aircraft Vehicles (UAVs), thermal imaging, and Auto-machine learning (AutoML) have shown high potential for precise wildlife surveys but have rarely been studied for habitat assessment. Here, we propose a framework that leverages these advanced techniques to achieve cost-effective habitat quality assessment from the perspective of actual wildlife community usage. The framework exploits vision intelligence hidden in the UAV thermal images and AutoML methods to achieve cost-effective wildlife distribution mapping, and then derives wildlife use indicators to imply habitat quality variance. We conducted UAV-based thermal wildlife surveys at three wetlands in the Rainwater Basin, Nebraska. Experiments were set to examine the optimal protocols, including various flight designs (61 and 122 m), feature types, and AutoML. The results showed that UAV images collected at 61 m with a spatial resolution of 7.5 cm, combined with Faster R-CNN, returned the optimal wildlife mapping (more than 90% accuracy). Results also indicated that the vision intelligence exploited can effectively transfer the redundant AutoML adaptation cycles into a fully automatic process (with around 33 times efficiency improvement for data labeling), facilitating cost-effective AutoML adaptation. Eventually, the derived ecological indicators can explain the wildlife use status well, reflecting potential within- and between-habitat quality variance. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

21 pages, 25991 KiB  
Article
CUS3D: A New Comprehensive Urban-Scale Semantic-Segmentation 3D Benchmark Dataset
by Lin Gao, Yu Liu, Xi Chen, Yuxiang Liu, Shen Yan and Maojun Zhang
Remote Sens. 2024, 16(6), 1079; https://doi.org/10.3390/rs16061079 - 19 Mar 2024
Cited by 1 | Viewed by 1815
Abstract
With the continuous advancement of the construction of smart cities, the availability of large-scale and semantically enriched datasets is essential for enhancing the machine’s ability to understand urban scenes. Mesh data have a distinct advantage over point cloud data for large-scale scenes, as [...] Read more.
With the continuous advancement of the construction of smart cities, the availability of large-scale and semantically enriched datasets is essential for enhancing the machine’s ability to understand urban scenes. Mesh data have a distinct advantage over point cloud data for large-scale scenes, as they can provide inherent geometric topology information and consume less memory space. However, existing publicly available large-scale scene mesh datasets are limited in scale and semantic richness and do not cover a wide range of urban semantic information. The development of 3D semantic segmentation algorithms depends on the availability of datasets. Moreover, existing large-scale 3D datasets lack various types of official annotation data, which hinders the widespread applicability of benchmark applications and may cause label errors during data conversion. To address these issues, we present a comprehensive urban-scale semantic segmentation benchmark dataset. It is suitable for various research pursuits on semantic segmentation methodologies. This dataset contains finely annotated point cloud and mesh data types for 3D, as well as high-resolution original 2D images with detailed 2D semantic annotations. It is constructed from a 3D reconstruction of 10,840 UVA aerial images and spans a vast area of approximately 2.85 square kilometers that covers both urban and rural scenes. The dataset is composed of 152,298,756 3D points and 289,404,088 triangles. Each 3D point, triangular mesh, and the original 2D image in the dataset are carefully labeled with one of the ten semantic categories. Six typical 3D semantic segmentation methods were compared on the CUS3D dataset, with KPConv demonstrating the highest overall performance. The mIoU is 59.72%, OA is 89.42%, and mAcc is 97.88%. Furthermore, the experimental results on the impact of color information on semantic segmentation suggest that incorporating both coordinate and color features can enhance the performance of semantic segmentation. The current limitations of the CUS3D dataset, particularly in class imbalance, will be the primary target for future dataset enhancements. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

22 pages, 43461 KiB  
Article
Few-Shot Learning for Crop Mapping from Satellite Image Time Series
by Sina Mohammadi, Mariana Belgiu and Alfred Stein
Remote Sens. 2024, 16(6), 1026; https://doi.org/10.3390/rs16061026 - 14 Mar 2024
Cited by 2 | Viewed by 1921
Abstract
Recently, deep learning methods have achieved promising crop mapping results. Yet, their classification performance is constrained by the scarcity of labeled samples. Therefore, the development of methods capable of exploiting label-rich environments to classify crops in label-scarce environments using only a few labeled [...] Read more.
Recently, deep learning methods have achieved promising crop mapping results. Yet, their classification performance is constrained by the scarcity of labeled samples. Therefore, the development of methods capable of exploiting label-rich environments to classify crops in label-scarce environments using only a few labeled samples per class is required. Few-shot learning (FSL) methods have achieved this goal in computer vision for natural images, but they remain largely unexplored in crop mapping from time series data. In order to address this gap, we adapted eight FSL methods to map infrequent crops cultivated in the selected study areas from France and a large diversity of crops from a complex agricultural area situated in Ghana. The FSL methods are commonly evaluated using class-balanced unlabeled sets from the target domain data (query sets), leading to overestimated classification results. This is unrealistic since these sets can have an arbitrary number of samples per class. In our work, we used the Dirichlet distribution to model the class proportions in few-shot query sets as random variables. We demonstrated that transductive information maximization based on α-divergence (α-TIM) performs better than the competing methods, including dynamic time warping (DTW), which is commonly used to tackle the lack of labeled samples. α-TIM achieved, for example, a macro F1-score of 59.6% in Ghana in a 24-way 20-shot setting (i.e., 20 labeled samples from each of the 24 crop types) and a macro F1-score of 75.9% in a seven-way 20-shot setting in France, outperforming the second best-performing methods by 2.7% and 5.7%, respectively. Moreover, α-TIM outperformed a baseline deep learning model, highlighting the benefits of effectively integrating the query sets into the learning process. Full article
Show Figures

Graphical abstract

25 pages, 16942 KiB  
Article
TAG-Net: Target Attitude Angle-Guided Network for Ship Detection and Classification in SAR Images
by Dece Pan, Youming Wu, Wei Dai, Tian Miao, Wenchao Zhao, Xin Gao and Xian Sun
Remote Sens. 2024, 16(6), 944; https://doi.org/10.3390/rs16060944 - 7 Mar 2024
Viewed by 1512
Abstract
Synthetic aperture radar (SAR) ship detection and classification has gained unprecedented attention due to its important role in maritime transportation. Many deep learning-based detectors and classifiers have been successfully applied and achieved great progress. However, ships in SAR images present discrete and multi-centric [...] Read more.
Synthetic aperture radar (SAR) ship detection and classification has gained unprecedented attention due to its important role in maritime transportation. Many deep learning-based detectors and classifiers have been successfully applied and achieved great progress. However, ships in SAR images present discrete and multi-centric features, and their scattering characteristics and edge information are sensitive to variations in target attitude angles (TAAs). These factors pose challenges for existing methods to obtain satisfactory results. To address these challenges, a novel target attitude angle-guided network (TAG-Net) is proposed in this article. The core idea of TAG-Net is to leverage TAA information as guidance and use an adaptive feature-level fusion strategy to dynamically learn more representative features that can handle the target imaging diversity caused by TAA. This is achieved through a TAA-aware feature modulation (TAFM) module. It uses the TAA information and foreground information as prior knowledge and establishes the relationship between the ship scattering characteristics and TAA information. This enables a reduction in the intra-class variability and highlights ship targets. Additionally, considering the different requirements of the detection and classification tasks for the scattering information, we propose a layer-wise attention-based task decoupling detection head (LATD). Unlike general deep learning methods that use shared features for both detection and classification tasks, LATD extracts multi-level features and uses layer attention to achieve feature decoupling and select the most suitable features for each task. Finally, we introduce a novel salient-enhanced feature balance module (SFB) to provide richer semantic information and capture the global context to highlight ships in complex scenes, effectively reducing the impact of background noise. A large-scale ship detection dataset (LSSDD+) is used to verify the effectiveness of TAG-Net, and our method achieves state-of-the-art performance. Full article
(This article belongs to the Special Issue SAR Data Processing and Applications Based on Machine Learning Method)
Show Figures

Graphical abstract

28 pages, 20313 KiB  
Article
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
by Rana Waqar Aslam, Hong Shu, Iram Naz, Abdul Quddoos, Andaleeb Yaseen, Khansa Gulshad and Saad S. Alarifi
Remote Sens. 2024, 16(5), 928; https://doi.org/10.3390/rs16050928 - 6 Mar 2024
Cited by 23 | Viewed by 3390
Abstract
Wetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote [...] Read more.
Wetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral water indices, land cover classification, change detection and risk mapping to examine moisture variability, land cover modifications, area changes and proximity-based threats over two decades. The random forest algorithm attained the highest accuracy (89.5%) for land cover classification based on rigorous k-fold cross-validation, with a training accuracy of 91.2% and a testing accuracy of 87.3%. This demonstrates the model’s effectiveness and robustness for wetland vulnerability modeling in the study area, showing 11% shrinkage in open water bodies since 2000. Inventory risk zoning revealed 30% of present-day wetland areas under moderate to high vulnerability. The cellular automata–Markov (CA–Markov) model predicted continued long-term declines driven by swelling anthropogenic pressures like the 29 million population growth surrounding Khinjhir Lake. The research demonstrates the effectiveness of integrating satellite data analytics, machine learning algorithms and spatial modeling to generate actionable insights into wetland vulnerability to guide conservation planning. The findings provide a robust baseline to inform policies aimed at ensuring the health and sustainable management and conservation of Khinjhir Lake wetlands in the face of escalating human and climatic pressures that threaten the ecological health and functioning of these vital ecosystems. Full article
Show Figures

Figure 1

24 pages, 10745 KiB  
Article
Modeling Land Use Transformations and Flood Hazard on Ibaraki’s Coastal in 2030: A Scenario-Based Approach Amid Population Fluctuations
by Mohammadreza Safabakhshpachehkenari and Hideyuki Tonooka
Remote Sens. 2024, 16(5), 898; https://doi.org/10.3390/rs16050898 - 3 Mar 2024
Cited by 2 | Viewed by 1904
Abstract
Coastal areas, influenced by human activity and natural factors, face major environmental shifts, including climate-induced flood risks. This highlights the importance of forecasting coastal land use for effective flood defense and ecological conservation. Japan’s distinct demographic path necessitates flexible strategies for managing its [...] Read more.
Coastal areas, influenced by human activity and natural factors, face major environmental shifts, including climate-induced flood risks. This highlights the importance of forecasting coastal land use for effective flood defense and ecological conservation. Japan’s distinct demographic path necessitates flexible strategies for managing its urban development. The study examines the Ibaraki Coastal region to analyze the impacts of land-use changes in 2030, predicting and evaluating future floods from intensified high tides and waves in scenario-based forecasts. The future roughness map is derived from projected land-use changes, and we utilize this information in DioVISTA 3.5.0 software to simulate flood scenarios. Finally, we analyzed the overlap between simulated floods and each land-use category. The results indicate since 2020, built-up areas have increased by 52.37 sq. km (39%). In scenarios of constant or shrinking urban areas, grassland increased by 28.54 sq. km (42%), and urban land cover decreased by 7.47 sq. km (5.6%) over ten years. Our research examines two separate peaks in water levels associated with urban flooding. Using 2030 land use maps and a peak height of 4 m, which is the lower limit of the maximum run-up height due to storm surge expected in the study area, 4.71 sq. km of residential areas flooded in the urban growth scenario, compared to 4.01 sq. km in the stagnant scenario and 3.96 sq. km in the shrinkage scenario. With the upper limit of 7.2 m, which is the extreme case in most of the study area, these areas increased to 49.91 sq. km, 42.52 sq. km, and 42.31 sq. km, respectively. The simulation highlights future flood-prone urban areas for each scenario, guiding targeted flood prevention efforts. Full article
Show Figures

Figure 1

17 pages, 9275 KiB  
Article
Mapping Soil Organic Carbon Stock Using Hyperspectral Remote Sensing: A Case Study in the Sele River Plain in Southern Italy
by Nicolas Francos, Paolo Nasta, Carolina Allocca, Benedetto Sica, Caterina Mazzitelli, Ugo Lazzaro, Guido D’Urso, Oscar Rosario Belfiore, Mariano Crimaldi, Fabrizio Sarghini, Eyal Ben-Dor and Nunzio Romano
Remote Sens. 2024, 16(5), 897; https://doi.org/10.3390/rs16050897 - 3 Mar 2024
Cited by 3 | Viewed by 3646
Abstract
Mapping soil organic carbon (SOC) stock can serve as a resilience indicator for climate change. As part of the carbon dioxide (CO2) sink, soil has recently become an integral part of the global carbon agenda to mitigate climate change. We used [...] Read more.
Mapping soil organic carbon (SOC) stock can serve as a resilience indicator for climate change. As part of the carbon dioxide (CO2) sink, soil has recently become an integral part of the global carbon agenda to mitigate climate change. We used hyperspectral remote sensing to model the SOC stock in the Sele River plain located in the Campania region in southern Italy. To this end, a soil spectral library (SSL) for the Campania region was combined with an aerial hyperspectral image acquired with the AVIRIS–NG sensor mounted on a Twin Otter aircraft at an altitude of 1433 m. The products of this study were four raster layers with a high spatial resolution (1 m), representing the SOC stocks and three other related soil attributes: SOC content, clay content, and bulk density (BD). We found that the clay minerals’ spectral absorption at 2200 nm has a significant impact on predicting the examined soil attributes. The predictions were performed by using AVIRIS–NG sensor data over a selected plot and generating a quantitative map which was validated with in situ observations showing high accuracies in the ground-truth stage (OC stocks [RPIQ = 2.19, R2 = 0.72, RMSE = 0.07]; OC content [RPIQ = 2.27, R2 = 0.80, RMSE = 1.78]; clay content [RPIQ = 1.6 R2 = 0.89, RMSE = 25.42]; bulk density [RPIQ = 1.97, R2 = 0.84, RMSE = 0.08]). The results demonstrated the potential of combining SSLs with remote sensing data of high spectral/spatial resolution to estimate soil attributes, including SOC stocks. Full article
(This article belongs to the Special Issue Remote Sensing of Carbon Fluxes and Stocks II)
Show Figures

Figure 1

42 pages, 20744 KiB  
Review
A Comprehensive Survey of Unmanned Aerial Vehicles Detection and Classification Using Machine Learning Approach: Challenges, Solutions, and Future Directions
by Md Habibur Rahman, Mohammad Abrar Shakil Sejan, Md Abdul Aziz, Rana Tabassum, Jung-In Baik and Hyoung-Kyu Song
Remote Sens. 2024, 16(5), 879; https://doi.org/10.3390/rs16050879 - 1 Mar 2024
Cited by 9 | Viewed by 9336
Abstract
Autonomous unmanned aerial vehicles (UAVs) have several advantages in various fields, including disaster relief, aerial photography and videography, mapping and surveying, farming, as well as defense and public usage. However, there is a growing probability that UAVs could be misused to breach vital [...] Read more.
Autonomous unmanned aerial vehicles (UAVs) have several advantages in various fields, including disaster relief, aerial photography and videography, mapping and surveying, farming, as well as defense and public usage. However, there is a growing probability that UAVs could be misused to breach vital locations such as airports and power plants without authorization, endangering public safety. Because of this, it is critical to accurately and swiftly identify different types of UAVs to prevent their misuse and prevent security issues arising from unauthorized access. In recent years, machine learning (ML) algorithms have shown promise in automatically addressing the aforementioned concerns and providing accurate detection and classification of UAVs across a broad range. This technology is considered highly promising for UAV systems. In this survey, we describe the recent use of various UAV detection and classification technologies based on ML and deep learning (DL) algorithms. Four types of UAV detection and classification technologies based on ML are considered in this survey: radio frequency-based UAV detection, visual data (images/video)-based UAV detection, acoustic/sound-based UAV detection, and radar-based UAV detection. Additionally, this survey report explores hybrid sensor- and reinforcement learning-based UAV detection and classification using ML. Furthermore, we consider method challenges, solutions, and possible future research directions for ML-based UAV detection. Moreover, the dataset information of UAV detection and classification technologies is extensively explored. This investigation holds potential as a study for current UAV detection and classification research, particularly for ML- and DL-based UAV detection approaches. Full article
(This article belongs to the Special Issue UAV Agricultural Management: Recent Advances and Future Prospects)
Show Figures

Figure 1

24 pages, 33015 KiB  
Article
An Extended Polar Format Algorithm for Joint Envelope and Phase Error Correction in Widefield Staring SAR with Maneuvering Trajectory
by Yujie Liang, Yi Liang, Xiaoge Wang, Junhui Li and Mengdao Xing
Remote Sens. 2024, 16(5), 856; https://doi.org/10.3390/rs16050856 - 29 Feb 2024
Cited by 1 | Viewed by 1067
Abstract
Polar format algorithm (PFA) is a widely used high-resolution SAR imaging algorithm that can be implemented in advanced widefield staring synthetic aperture radar (WFS-SAR). However, existing algorithms have limited analysis in wavefront curvature error (WCE) and are challenging to apply to WFS-SAR with [...] Read more.
Polar format algorithm (PFA) is a widely used high-resolution SAR imaging algorithm that can be implemented in advanced widefield staring synthetic aperture radar (WFS-SAR). However, existing algorithms have limited analysis in wavefront curvature error (WCE) and are challenging to apply to WFS-SAR with high-resolution and large-swath scenes. This paper proposes an extended polar format algorithm for joint envelope and phase error correction in WFS-SAR imaging with maneuvering trajectory. The impact of the WCE and residual acceleration error (RAE) are analyzed in detail by deriving the specific wavenumber domain signal based on the mapping relationship between the geometry space and wavenumber space. Subsequently, this paper improves the traditional WCE compensation function and introduces a new range cell migration (RCM) recalibration function for joint envelope and phase error correction. The 2D precisely focused SAR image is acquired based on the spatially variant inverse filtering in the final. Simulation experiments validate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue New Approaches in High-Resolution SAR Imaging)
Show Figures

Graphical abstract

38 pages, 53898 KiB  
Review
Large-Scale 3D Reconstruction from Multi-View Imagery: A Comprehensive Review
by Haitao Luo, Jinming Zhang, Xiongfei Liu, Lili Zhang and Junyi Liu
Remote Sens. 2024, 16(5), 773; https://doi.org/10.3390/rs16050773 - 22 Feb 2024
Cited by 6 | Viewed by 7717
Abstract
Three-dimensional reconstruction is a key technology employed to represent virtual reality in the real world, which is valuable in computer vision. Large-scale 3D models have broad application prospects in the fields of smart cities, navigation, virtual tourism, disaster warning, and search-and-rescue missions. Unfortunately, [...] Read more.
Three-dimensional reconstruction is a key technology employed to represent virtual reality in the real world, which is valuable in computer vision. Large-scale 3D models have broad application prospects in the fields of smart cities, navigation, virtual tourism, disaster warning, and search-and-rescue missions. Unfortunately, most image-based studies currently prioritize the speed and accuracy of 3D reconstruction in indoor scenes. While there are some studies that address large-scale scenes, there has been a lack of systematic comprehensive efforts to bring together the advancements made in the field of 3D reconstruction in large-scale scenes. Hence, this paper presents a comprehensive overview of a 3D reconstruction technique that utilizes multi-view imagery from large-scale scenes. In this article, a comprehensive summary and analysis of vision-based 3D reconstruction technology for large-scale scenes are presented. The 3D reconstruction algorithms are extensively categorized into traditional and learning-based methods. Furthermore, these methods can be categorized based on whether the sensor actively illuminates objects with light sources, resulting in two categories: active and passive methods. Two active methods, namely, structured light and laser scanning, are briefly introduced. The focus then shifts to structure from motion (SfM), stereo matching, and multi-view stereo (MVS), encompassing both traditional and learning-based approaches. Additionally, a novel approach of neural-radiance-field-based 3D reconstruction is introduced. The workflow and improvements in large-scale scenes are elaborated upon. Subsequently, some well-known datasets and evaluation metrics for various 3D reconstruction tasks are introduced. Lastly, a summary of the challenges encountered in the application of 3D reconstruction technology in large-scale outdoor scenes is provided, along with predictions for future trends in development. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

12 pages, 3883 KiB  
Technical Note
Exploring Semantic Prompts in the Segment Anything Model for Domain Adaptation
by Ziquan Wang, Yongsheng Zhang, Zhenchao Zhang, Zhipeng Jiang, Ying Yu, Li Li and Lei Li
Remote Sens. 2024, 16(5), 758; https://doi.org/10.3390/rs16050758 - 21 Feb 2024
Cited by 6 | Viewed by 2634
Abstract
Robust segmentation in adverse weather conditions is crucial for autonomous driving. However, these scenes struggle with recognition and make annotations expensive, resulting in poor performance. As a result, the Segment Anything Model (SAM) was recently proposed to finely segment the spatial structure of [...] Read more.
Robust segmentation in adverse weather conditions is crucial for autonomous driving. However, these scenes struggle with recognition and make annotations expensive, resulting in poor performance. As a result, the Segment Anything Model (SAM) was recently proposed to finely segment the spatial structure of scenes and to provide powerful prior spatial information, thus showing great promise in resolving these problems. However, SAM cannot be applied directly for different geographic scales and non-semantic outputs. To address these issues, we propose SAM-EDA, which integrates SAM into an unsupervised domain adaptation mean-teacher segmentation framework. In this method, we use a “teacher-assistant” model to provide semantic pseudo-labels, which will fill in the holes in the fine spatial structure given by SAM and generate pseudo-labels close to the ground truth, which then guide the student model for learning. Here, the “teacher-assistant” model helps to distill knowledge. During testing, only the student model is used, thus greatly improving efficiency. We tested SAM-EDA on mainstream segmentation benchmarks in adverse weather conditions and obtained a more-robust segmentation model. Full article
(This article belongs to the Special Issue Remote Sensing Image Classification and Semantic Segmentation)
Show Figures

Graphical abstract

22 pages, 4906 KiB  
Article
Using Remote Sensing Multispectral Imagery for Invasive Species Quantification: The Effect of Image Resolution on Area and Biomass Estimation
by Manuel de Figueiredo Meyer, José Alberto Gonçalves and Ana Maria Ferreira Bio
Remote Sens. 2024, 16(4), 652; https://doi.org/10.3390/rs16040652 - 9 Feb 2024
Cited by 2 | Viewed by 2216
Abstract
This study assesses the applicability of different-resolution multispectral remote sensing images for mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a prominent invasive species in European coastal areas. This study was carried out on the Cávado estuary sand spit (Portugal). [...] Read more.
This study assesses the applicability of different-resolution multispectral remote sensing images for mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a prominent invasive species in European coastal areas. This study was carried out on the Cávado estuary sand spit (Portugal). The performance of three sets of multispectral images with different Ground Sample Distances (GSDs) were compared: 2.5 cm, 5 cm, and 10 cm. The images were classified using the supervised classification algorithm random forest and later improved by applying a sieve filter. Samples of C. edulis were also collected, dried, and weighed to estimate the AGB using the relationship between the dry weight (DW) and vegetation indices (VIs). The resulting regression models were evaluated based on their coefficient of determination (R2), Normalised Root Mean Square Error (NRMSE), p-value, Akaike information criterion (AIC), and the Bayesian information criterion (BIC). The results show that the three tested image resolutions allow for constructing reliable coverage maps of C. edulis, with overall accuracy values of 89%, 85%, and 88% for the classification of the 2.5 cm, 5 cm, and 10 cm GSD images, respectively. The best-performing VI-DW regression models achieved R2 = 0.87 and NRMSE = 0.09 for the 2.5 cm resolution; R2 = 0.77 and NRMSE = 0.12 for the 5 cm resolution; and R2 = 0.64 and NRMSE = 0.15 for the 10 cm resolution. The C. edulis area and total AGB were 3441.10 m2 and 28,327.1 kg (with an AGB relative error (RE) = 0.08) for the 2.5 cm resolution; 3070.04 m2 and 29,170.8 kg (AGB RE = 0.08) for the 5 cm resolution; and 2305.06 m2 and 22,135.7 kg (AGB RE = 0.11) for the 10 cm resolution. Spatial and model differences were analysed in detail to determine their causes. Final analyses suggest that multispectral imagery of up to 5 cm GSD is adequate for estimating C. edulis distribution and biomass. Full article
(This article belongs to the Special Issue Remote Sensing for 2D/3D Mapping)
Show Figures

Figure 1

25 pages, 25438 KiB  
Article
Geomorphology, Mineralogy, and Chronology of Mare Basalts in the Oceanus Procellarum Region
by Cheng Zhang, Jianping Chen, Yiwen Pan, Shuangshuang Wu, Jian Chen, Xiaoxia Hu, Yue Pang, Xueting Liu and Ke Wang
Remote Sens. 2024, 16(4), 634; https://doi.org/10.3390/rs16040634 - 8 Feb 2024
Cited by 2 | Viewed by 2240
Abstract
Mare basalts on the lunar surface are tangible expressions of the complex thermal evolution and geological processes that have occurred within the lunar interior. These basaltic manifestations are highly important because they provide invaluable insights into lunar geological evolution. Notably, the Oceanus Procellarum [...] Read more.
Mare basalts on the lunar surface are tangible expressions of the complex thermal evolution and geological processes that have occurred within the lunar interior. These basaltic manifestations are highly important because they provide invaluable insights into lunar geological evolution. Notably, the Oceanus Procellarum region, which is renowned for its extensive and long-lasting basaltic volcanism, is a premier location to investigate late-stage lunar thermal evolution. The primary aim of this research is to elucidate the geomorphological, compositional, and temporal attributes that define the mare basalts within the Oceanus Procellarum region. To achieve this aim, we comprehensively analyzed the geomorphological features present within the region, leveraging Kaguya/SELENE TC images and digital elevation models. Specifically, these geomorphological features encompass impact craters, wrinkle ridges, sinuous rilles, and volcanic domes. Subsequently, we thoroughly examined the mineralogical attributes of basalts in the Oceanus Procellarum region, leveraging Kaguya/SELENE MI data and compositional map products. To more accurately reflect the actual ages of the mare basalts in the Oceanus Procellarum region, we carefully delineated the geological units within the area and employed the latest crater size-frequency distribution (CSFD) technique to precisely determine their ages. This refined approach allowed for a more comprehensive and accurate understanding of the basaltic rocks in the study area. Overall, our comprehensive study included an in-depth analysis of the volcanic activity and evolution of the Oceanus Procellarum region, along with an examination of the correlation between the mineralogical composition and ages of mare basalts. The findings from this exhaustive investigation reveal a definitive age range for basalt units within the Oceanus Procellarum region from approximately 3.69 Ga to 1.17 Ga. Moreover, the latest mare basalts that formed were pinpointed north of the Aristarchus crater. Significantly, the region has experienced at least five distinct volcanic events, occurring approximately 3.40 Ga, 2.92 Ga, 2.39 Ga, 2.07 Ga, and 1.43 Ga, leading to the formation of multiple basalt units characterized by their unique mineral compositions and elemental abundances. Through the application of remote sensing mineralogical analysis, three primary basalt types were identified: low-titanium, very-low-titanium, and intermediate-titanium basalt. Notably, the younger basalt units exhibit an elevated titanium proportion, indicative of progressive olivine enrichment. Consequently, these younger basalt units exhibit more intricate and complex mineral compositions, offering valuable insights into the dynamic geological processes shaping the lunar surface. Full article
(This article belongs to the Special Issue Planetary Remote Sensing and Applications to Mars and Chang’E-6/7)
Show Figures

Figure 1

23 pages, 3468 KiB  
Review
Review of Satellite Remote Sensing and Unoccupied Aircraft Systems for Counting Wildlife on Land
by Marie R. G. Attard, Richard A. Phillips, Ellen Bowler, Penny J. Clarke, Hannah Cubaynes, David W. Johnston and Peter T. Fretwell
Remote Sens. 2024, 16(4), 627; https://doi.org/10.3390/rs16040627 - 8 Feb 2024
Cited by 3 | Viewed by 3631
Abstract
Although many medium-to-large terrestrial vertebrates are still counted by ground or aerial surveys, remote-sensing technologies and image analysis have developed rapidly in recent decades, offering improved accuracy and repeatability, lower costs, speed, expanded spatial coverage and increased potential for public involvement. This review [...] Read more.
Although many medium-to-large terrestrial vertebrates are still counted by ground or aerial surveys, remote-sensing technologies and image analysis have developed rapidly in recent decades, offering improved accuracy and repeatability, lower costs, speed, expanded spatial coverage and increased potential for public involvement. This review provides an introduction for wildlife biologists and managers relatively new to the field on how to implement remote-sensing techniques (satellite and unoccupied aircraft systems) for counting large vertebrates on land, including marine predators that return to land to breed, haul out or roost, to encourage wider application of these technological solutions. We outline the entire process, including the selection of the most appropriate technology, indicative costs, procedures for image acquisition and processing, observer training and annotation, automation, and citizen science campaigns. The review considers both the potential and the challenges associated with different approaches to remote surveys of vertebrates and outlines promising avenues for future research and method development. Full article
Show Figures

Figure 1

28 pages, 11516 KiB  
Article
Segmentation of Individual Tree Points by Combining Marker-Controlled Watershed Segmentation and Spectral Clustering Optimization
by Yuchan Liu, Dong Chen, Shihan Fu, Panagiotis Takis Mathiopoulos, Mingming Sui, Jiaming Na and Jiju Peethambaran
Remote Sens. 2024, 16(4), 610; https://doi.org/10.3390/rs16040610 - 6 Feb 2024
Cited by 7 | Viewed by 2922
Abstract
Accurate identification and segmentation of individual tree points are crucial for assessing forest spatial distribution, understanding tree growth and structure, and managing forest resources. Traditional methods based on Canopy Height Models (CHM) are simple yet prone to over- and/or under-segmentation. To deal with [...] Read more.
Accurate identification and segmentation of individual tree points are crucial for assessing forest spatial distribution, understanding tree growth and structure, and managing forest resources. Traditional methods based on Canopy Height Models (CHM) are simple yet prone to over- and/or under-segmentation. To deal with this problem, this paper introduces a novel approach that combines marker-controlled watershed segmentation with a spectral clustering algorithm. Initially, we determined the local maxima within a series of variable windows according to the lower bound of the prediction interval of the regression equation between tree crown radius and tree height to preliminarily segment individual trees. Subsequently, using this geometric shape analysis method, the under-segmented trees were identified. For these trees, vertical tree crown profile analysis was performed in multiple directions to detect potential treetops which were then considered as inputs for spectral clustering optimization. Our experiments across six plots showed that our method markedly surpasses traditional approaches, achieving an average Recall of 0.854, a Precision of 0.937, and an F1-score of 0.892. Full article
Show Figures

Figure 1

16 pages, 5457 KiB  
Article
Edge Effects in Amazon Forests: Integrating Remote Sensing and Modelling to Assess Changes in Biomass and Productivity
by Luise Bauer, Andreas Huth, André Bogdanowski, Michael Müller and Rico Fischer
Remote Sens. 2024, 16(3), 501; https://doi.org/10.3390/rs16030501 - 28 Jan 2024
Cited by 2 | Viewed by 3365
Abstract
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest [...] Read more.
The tropical forests in the Amazon store large amounts of carbon and are still considered a carbon sink. There is evidence that deforestation can turn a forest landscape into a carbon source due to land use and forest degradation. Deforestation causes fragmented forest landscapes. It is known from field experiments that forest dynamics at the edge of forest fragments are altered by changes in the microclimate and increased tree mortality (“edge effects”). However, it is unclear how this will affect large fragmented forest landscapes, and thus the entire Amazon region. The aim of this study is to investigate different forest attributes in edge and core forest areas at high resolution, and thus to identify the large-scale impacts of small-scale edge effects. Therefore, a well-established framework combining forest modelling and lidar-generated forest structure information was combined with radar-based forest cover data. Furthermore, forests were also analyzed at the landscape level to investigate changes between highly fragmented and less-fragmented landscapes. This study found that the aboveground biomass in forest edge areas is 27% lower than in forest core areas. In contrast, the net primary productivity is 13% higher in forest edge areas than in forest core areas. In the second step, whole fragmented landscapes were analyzed. Nearly 30% of all forest landscapes are highly fragmented, particularly in the regions of the Arc of Deforestation, on the edge of the Andes and on the Amazon river banks. Less-fragmented landscapes are mainly located in the central Amazon rainforest. The aboveground biomass is 28% lower in highly fragmented forest landscapes than in less-fragmented landscapes. The net primary productivity is 13% higher in highly fragmented forest landscapes than in less-fragmented forest landscapes. In summary, fragmentation of the Amazon rainforest has an impact on forest attributes such as biomass and productivity, with mostly negative effects on forest dynamics. If deforestation continues and the proportion of highly fragmented forest landscapes increase, the effect may be even more intense. By combining lidar, radar and forest modelling, this study shows that it is possible to map forest structure, and thus the degree of forest degradation, over a large area and derive more detailed information about the carbon dynamics of the Amazon region. Full article
(This article belongs to the Special Issue Lidar for Environmental Remote Sensing: Theory and Application)
Show Figures

Figure 1

33 pages, 56873 KiB  
Article
An Open Benchmark Dataset for Forest Characterization from Sentinel-1 and -2 Time Series
by Sarah Hauser, Michael Ruhhammer, Andreas Schmitt and Peter Krzystek
Remote Sens. 2024, 16(3), 488; https://doi.org/10.3390/rs16030488 - 26 Jan 2024
Viewed by 2738
Abstract
Earth observation satellites offer vast opportunities for quantifying landscapes and regional land cover composition and changes. The integration of artificial intelligence in remote sensing is essential for monitoring significant land cover types like forests, demanding a substantial volume of labeled data for effective [...] Read more.
Earth observation satellites offer vast opportunities for quantifying landscapes and regional land cover composition and changes. The integration of artificial intelligence in remote sensing is essential for monitoring significant land cover types like forests, demanding a substantial volume of labeled data for effective AI model development and validation. The Wald5Dplus project introduces a distinctive open benchmark dataset for mid-European forests, labeling Sentinel-1/2 time series using data from airborne laser scanning and multi-spectral imagery. The freely accessible satellite images are fused in polarimetric, spectral, and temporal domains, resulting in analysis-ready data cubes with 512 channels per year on a 10 m UTM grid. The dataset encompasses labels, including tree count, crown area, tree types (deciduous, coniferous, dead), mean crown volume, base height, tree height, and forested area proportion per pixel. The labels are based on an individual tree characterization from high-resolution airborne LiDAR data using a specialized segmentation algorithm. Covering three test sites (Bavarian Forest National Park, Steigerwald, and Kranzberg Forest) and encompassing around six million trees, it generates over two million labeled samples. Comprehensive validation, including metrics like mean absolute error, median deviation, and standard deviation, in the random forest regression confirms the high quality of this dataset, which is made freely available. Full article
Show Figures

Figure 1

23 pages, 12227 KiB  
Article
3D Reconstruction of Ancient Buildings Using UAV Images and Neural Radiation Field with Depth Supervision
by Yingwei Ge, Bingxuan Guo, Peishuai Zha, San Jiang, Ziyu Jiang and Demin Li
Remote Sens. 2024, 16(3), 473; https://doi.org/10.3390/rs16030473 - 25 Jan 2024
Cited by 7 | Viewed by 3256
Abstract
The 3D reconstruction of ancient buildings through inclined photogrammetry finds a wide range of applications in surveying, visualization and heritage conservation. Unlike indoor objects, reconstructing ancient buildings presents unique challenges, including the slow speed of 3D reconstruction using traditional methods, the complex textures [...] Read more.
The 3D reconstruction of ancient buildings through inclined photogrammetry finds a wide range of applications in surveying, visualization and heritage conservation. Unlike indoor objects, reconstructing ancient buildings presents unique challenges, including the slow speed of 3D reconstruction using traditional methods, the complex textures of ancient structures and geometric issues caused by repeated textures. Additionally, there is a hash conflict problem when rendering outdoor scenes using neural radiation fields. To address these challenges, this paper proposes a 3D reconstruction method based on depth-supervised neural radiation fields. To enhance the representation of the geometric neural network, the addition of a truncated signed distance function (TSDF) supplements the existing signed distance function (SDF). Furthermore, the neural network’s training is supervised using depth information, leading to improved geometric accuracy in the reconstruction model through depth data obtained from sparse point clouds. This study also introduces a progressive training strategy to mitigate hash conflicts, allowing the hash table to express important details more effectively while reducing feature overlap. The experimental results demonstrate that our method, under the same number of iterations, produces images with clearer structural details, resulting in an average 15% increase in the Peak Signal-to-Noise Ratio (PSNR) value and a 10% increase in the Structural Similarity Index Measure (SSIM) value. Moreover, our reconstruction model produces higher-quality surface models, enabling the fast and highly geometrically accurate 3D reconstruction of ancient buildings. Full article
Show Figures

Graphical abstract

23 pages, 2229 KiB  
Review
Remote Sensing-Based 3D Assessment of Landslides: A Review of the Data, Methods, and Applications
by Hessah Albanwan, Rongjun Qin and Jung-Kuan Liu
Remote Sens. 2024, 16(3), 455; https://doi.org/10.3390/rs16030455 - 24 Jan 2024
Cited by 6 | Viewed by 4174
Abstract
Remote sensing (RS) techniques are essential for studying hazardous landslide events because they capture information and monitor sites at scale. They enable analyzing causes and impacts of ongoing events for disaster management. There has been a plethora of work in the literature mostly [...] Read more.
Remote sensing (RS) techniques are essential for studying hazardous landslide events because they capture information and monitor sites at scale. They enable analyzing causes and impacts of ongoing events for disaster management. There has been a plethora of work in the literature mostly discussing (1) applications to detect, monitor, and predict landslides using various instruments and image analysis techniques, (2) methodological mechanics in using optical and microwave sensing, and (3) quantification of surface geological and geotechnical changes using 2D images. Recently, studies have shown that the degree of hazard is mostly influenced by speed, type, and volume of surface deformation. Despite available techniques to process lidar and image/radar-derived 3D geometry, prior works mostly focus on using 2D images, which generally lack details on the 3D aspects of assessment. Thus, assessing the 3D geometry of terrain using elevation/depth information is crucial to determine its cover, geometry, and 3D displacements. In this review, we focus on 3D landslide analysis using RS data. We include (1) a discussion on sources, types, benefits, and limitations of 3D data, (2) the recent processing methods, including conventional, fusion-based, and artificial intelligence (AI)-based methods, and (3) the latest applications. Full article
Show Figures

Figure 1

29 pages, 8367 KiB  
Article
X- and Ku-Band SAR Backscattering Signatures of Snow-Covered Lake Ice and Sea Ice
by Katriina Veijola, Juval Cohen, Marko Mäkynen, Juha Lemmetyinen, Jaan Praks and Bin Cheng
Remote Sens. 2024, 16(2), 369; https://doi.org/10.3390/rs16020369 - 16 Jan 2024
Cited by 1 | Viewed by 2029
Abstract
In this work, backscattering signatures of snow-covered lake ice and sea ice from X- and Ku-band synthetic aperture radar (SAR) data are investigated. The SAR data were acquired with the ESA airborne SnowSAR sensor in winter 2012 over Lake Orajärvi in northern Finland [...] Read more.
In this work, backscattering signatures of snow-covered lake ice and sea ice from X- and Ku-band synthetic aperture radar (SAR) data are investigated. The SAR data were acquired with the ESA airborne SnowSAR sensor in winter 2012 over Lake Orajärvi in northern Finland and over landfast ice in the Bay of Bothnia of the Baltic Sea. Co-incident with the SnowSAR acquisitions, in situ snow and ice data were measured. In addition, time series of TerraSAR-X images and ice mass balance buoy data were acquired for Lake Orajärvi in 2011–2012. The main objective of our study was to investigate relationships between SAR backscattering signatures and snow depth over lake and sea ice, with the ultimate objective of assessing the feasibility of retrieval of snow characteristics using X- and Ku-band dual-polarization (VV and VH) SAR over freshwater or sea ice. This study constitutes the first comprehensive survey of snow backscattering signatures at these two combined frequencies over both lake and sea ice. For lake ice, we show that X-band VH-polarized backscattering coefficient (σo) and the Ku-band VV/VH-ratio exhibited the highest sensitivity to the snow depth. For sea ice, the highest sensitivity to the snow depth was found from the Ku-band VV-polarized σo and the Ku-band VV/VH-ratio. However, the observed relations were relatively weak, indicating that at least for the prevailing snow conditions, obtaining reliable estimates of snow depth over lake and sea ice would be challenging using only X- and Ku-band backscattering information. Full article
(This article belongs to the Special Issue Emerging Remote Sensing Techniques for Monitoring Glaciers and Snow)
Show Figures

Figure 1

33 pages, 6092 KiB  
Review
Mapping Compound Flooding Risks for Urban Resilience in Coastal Zones: A Comprehensive Methodological Review
by Hai Sun, Xiaowei Zhang, Xuejing Ruan, Hui Jiang and Wenchi Shou
Remote Sens. 2024, 16(2), 350; https://doi.org/10.3390/rs16020350 - 16 Jan 2024
Cited by 9 | Viewed by 5226
Abstract
Coastal regions, increasingly threatened by floods due to climate-change-driven extreme weather, lack a comprehensive study that integrates coastal and riverine flood dynamics. In response to this research gap, we conducted a comprehensive bibliometric analysis and thorough visualization and mapping of studies of compound [...] Read more.
Coastal regions, increasingly threatened by floods due to climate-change-driven extreme weather, lack a comprehensive study that integrates coastal and riverine flood dynamics. In response to this research gap, we conducted a comprehensive bibliometric analysis and thorough visualization and mapping of studies of compound flooding risk in coastal cities over the period 2014–2022, using VOSviewer and CiteSpace to analyze 407 publications in the Web of Science Core Collection database. The analytical results reveal two persistent research topics: the way to explore the return periods or joint probabilities of flood drivers using statistical modeling, and the quantification of flood risk with different return periods through numerical simulation. This article examines critical causes of compound coastal flooding, outlines the principal methodologies, details each method’s features, and compares their strengths, limitations, and uncertainties. This paper advocates for an integrated approach encompassing climate change, ocean–land systems, topography, human activity, land use, and hazard chains to enhance our understanding of flood risk mechanisms. This includes adopting an Earth system modeling framework with holistic coupling of Earth system components, merging process-based and data-driven models, enhancing model grid resolution, refining dynamical frameworks, comparing complex physical models with more straightforward methods, and exploring advanced data assimilation, machine learning, and quasi-real-time forecasting for researchers and emergency responders. Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Ocean and Coastal Ecology)
Show Figures

Graphical abstract

17 pages, 8577 KiB  
Article
A Feasibility Study of Nearshore Bathymetry Estimation via Short-Range K-Band MIMO Radar
by Giovanni Ludeno, Matteo Antuono, Francesco Soldovieri and Gianluca Gennarelli
Remote Sens. 2024, 16(2), 261; https://doi.org/10.3390/rs16020261 - 9 Jan 2024
Cited by 2 | Viewed by 2535
Abstract
This paper provides an assessment of a 24 GHz multiple-input multiple-output radar as a remote sensing tool to retrieve bathymetric maps in coastal areas. The reconstruction procedure considered here exploits the dispersion relation and has been previously employed to elaborate the data acquired [...] Read more.
This paper provides an assessment of a 24 GHz multiple-input multiple-output radar as a remote sensing tool to retrieve bathymetric maps in coastal areas. The reconstruction procedure considered here exploits the dispersion relation and has been previously employed to elaborate the data acquired via X-band marine radar. The estimation capabilities of the sensor are investigated firstly on synthetic radar data. With this aim, case studies referring to sea waves interacting with a constant and a spatially varying bathymetry are both considered. Finally, the reconstruction procedure is tested by processing real data recorded at Bagnoli Bay, Naples, South Italy. The preliminary results shown here confirm the potential of the radar sensor as a tool for sea wave monitoring. Full article
Show Figures

Figure 1

20 pages, 3372 KiB  
Review
The Rising Concern for Sea Level Rise: Altimeter Record and Geo-Engineering Debate
by Jim Gower and Vittorio Barale
Remote Sens. 2024, 16(2), 262; https://doi.org/10.3390/rs16020262 - 9 Jan 2024
Cited by 2 | Viewed by 2731
Abstract
The Oceans from Space V Symposium, held in Venice, Italy, on 24–27 October 2022, devoted special sessions to sea level rise, as described by a series of satellite altimeters, and to remediations of consequent calamities in vulnerable mediterranean seas. It emerged that various [...] Read more.
The Oceans from Space V Symposium, held in Venice, Italy, on 24–27 October 2022, devoted special sessions to sea level rise, as described by a series of satellite altimeters, and to remediations of consequent calamities in vulnerable mediterranean seas. It emerged that various aspects of climate change can be modelled in time as a Single Exponential Event (SEE), with a similar trend (a 54–year e–folding time) for CO2 concentration in the Earth’s atmosphere, global average sea surface temperature, and global average sea level. The sea level rise record, combining tide gauges data starting in 1850, as well as more recent altimeter data, for the last 30 years, is already 25 cm above historical values. If the curve continues to follow the exponential growth of the simple SEE model, it will reach about 40 cm by the year 2050, 1 m by 2100, and 2.5 m by 2150. As a result, dramatic impacts would be expected for most coastal areas in the next century. Decisive remediations, based on geo-engineering at the basin scale, are possible for semi-enclosed seas, such as the Mediterranean and Black Seas. Damming the Strait of Gibraltar would provide an alternative to the conclusion that coastal sites such as the City of Venice are inevitably doomed. Full article
(This article belongs to the Special Issue Oceans from Space V)
Show Figures

Figure 1

26 pages, 12608 KiB  
Article
Your Input Matters—Comparing Real-Valued PolSAR Data Representations for CNN-Based Segmentation
by Sylvia Hochstuhl, Niklas Pfeffer, Antje Thiele, Horst Hammer and Stefan Hinz
Remote Sens. 2023, 15(24), 5738; https://doi.org/10.3390/rs15245738 - 15 Dec 2023
Cited by 2 | Viewed by 1376
Abstract
Inspired by the success of Convolutional Neural Network (CNN)-based deep learning methods for optical image segmentation, there is a growing interest in applying these methods to Polarimetric Synthetic Aperture Radar (PolSAR) data. However, effectively utilizing well-established real-valued CNNs for PolSAR image segmentation requires [...] Read more.
Inspired by the success of Convolutional Neural Network (CNN)-based deep learning methods for optical image segmentation, there is a growing interest in applying these methods to Polarimetric Synthetic Aperture Radar (PolSAR) data. However, effectively utilizing well-established real-valued CNNs for PolSAR image segmentation requires converting complex-valued data into real-valued representations. This paper presents a systematic comparison of 14 different real-valued representations used as CNN input in the literature. These representations encompass various approaches, including the use of coherency matrix elements, hand-crafted feature vectors, polarimetric features based on target decomposition, and combinations of these methods. The goal is to assess the impact of the choice of PolSAR data representation on segmentation performance and identify the most suitable representation. Four test configurations are employed to achieve this, involving different CNN architectures (U-Net with ResNet-18 or EfficientNet backbone) and PolSAR data acquired in different frequency bands (S- and L-band). The results emphasize the importance of selecting an appropriate real-valued representation for CNN-based PolSAR image segmentation. This study’s findings reveal that combining multiple polarimetric features can potentially enhance segmentation performance but does not consistently improve the results. Therefore, when employing this approach, careful feature selection becomes crucial. In contrast, using coherency matrix elements with amplitude and phase representation consistently achieves high segmentation performance across different test configurations. This representation emerges as one of the most suitable approaches for CNN-based PolSAR image segmentation. Notably, it outperforms the commonly used alternative approach of splitting the coherency matrix elements into real and imaginary parts. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

26 pages, 11888 KiB  
Article
Remotely Sensed Agroclimatic Classification and Zoning in Water-Limited Mediterranean Areas towards Sustainable Agriculture
by Ioannis Faraslis, Nicolas R. Dalezios, Nicolas Alpanakis, Georgios A. Tziatzios, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, Nicholas Dercas, Alfonso Domínguez, José Antonio Martínez-López, Ramón López-Urrea, Fadi Karam, Hacib Amami and Radhouan Nciri
Remote Sens. 2023, 15(24), 5720; https://doi.org/10.3390/rs15245720 - 13 Dec 2023
Cited by 4 | Viewed by 1922
Abstract
Agroclimatic classification identifies zones for efficient use of natural resources leading to optimal and non-optimal crop production. The aim of this paper is the development of a methodology to determine sustainable agricultural zones in three Mediterranean study areas, namely, “La Mancha Oriental” in [...] Read more.
Agroclimatic classification identifies zones for efficient use of natural resources leading to optimal and non-optimal crop production. The aim of this paper is the development of a methodology to determine sustainable agricultural zones in three Mediterranean study areas, namely, “La Mancha Oriental” in Spain, “Sidi Bouzid” in Tunisia, and “Bekaa” valley in Lebanon. To achieve this, time series analysis with advanced geoinformatic techniques is applied. The agroclimatic classification methodology is based on three-stages: first, the microclimate features of the region are considered using aridity and vegetation health indices leading to water-limited growth environment (WLGE) zones based on water availability; second, landform features and soil types are associated with WLGE zones to identify non-crop-specific agroclimatic zones (NCSAZ); finally, specific restricted crop parameters are combined with NCSAZ to create the suitability zones. The results are promising as compared with the current crop production systems of the three areas under investigation. Due to climate change, the results indicate that these arid or semi-arid regions are also faced with insufficient amounts of precipitation for supporting rainfed annual crops. Finally, the proposed methodology reveals that the employment and use of remote sensing data and methods could be a significant tool for quickly creating detailed, and up to date agroclimatic zones. Full article
(This article belongs to the Special Issue Remote Sensing for Agrometeorology II)
Show Figures

Graphical abstract

22 pages, 19803 KiB  
Article
MSISR-STF: Spatiotemporal Fusion via Multilevel Single-Image Super-Resolution
by Xiongwei Zheng, Ruyi Feng, Junqing Fan, Wei Han, Shengnan Yu and Jia Chen
Remote Sens. 2023, 15(24), 5675; https://doi.org/10.3390/rs15245675 - 8 Dec 2023
Cited by 4 | Viewed by 1797
Abstract
Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for [...] Read more.
Due to technological limitations and budget constraints, spatiotemporal image fusion uses the complementarity of high temporal–low spatial resolution (HTLS) and high spatial–low temporal resolution (HSLT) data to obtain high temporal and spatial resolution (HTHS) fusion data, which can effectively satisfy the demand for HTHS data. However, some existing spatiotemporal image fusion models ignore the large difference in spatial resolution, which yields worse results for spatial information under the same conditions. Based on the flexible spatiotemporal data fusion (FSDAF) framework, this paper proposes a multilevel single-image super-resolution (SISR) method to solve this issue under the large difference in spatial resolution. The following are the advantages of the proposed method. First, multilevel super-resolution (SR) can effectively avoid the limitation of a single SR method for a large spatial resolution difference. In addition, the issue of noise accumulation caused by multilevel SR can be alleviated by learning-based SR (the cross-scale internal graph neural network (IGNN)) and then interpolation-based SR (the thin plate spline (TPS)). Finally, we add the reference information to the super-resolution, which can effectively control the noise generation. This method has been subjected to comprehensive experimentation using two authentic datasets, affirming that our proposed method surpasses the current state-of-the-art spatiotemporal image fusion methodologies in terms of performance and effectiveness. Full article
Show Figures

Graphical abstract

26 pages, 29208 KiB  
Article
A Green Fingerprint of Antarctica: Drones, Hyperspectral Imaging, and Machine Learning for Moss and Lichen Classification
by Juan Sandino, Barbara Bollard, Ashray Doshi, Krystal Randall, Johan Barthelemy, Sharon A. Robinson and Felipe Gonzalez
Remote Sens. 2023, 15(24), 5658; https://doi.org/10.3390/rs15245658 - 7 Dec 2023
Cited by 4 | Viewed by 4852
Abstract
Mapping Antarctic Specially Protected Areas (ASPAs) remains a critical yet challenging task, especially in extreme environments like Antarctica. Traditional methods are often cumbersome, expensive, and risky, with limited satellite data further hindering accuracy. This study addresses these challenges by developing a workflow that [...] Read more.
Mapping Antarctic Specially Protected Areas (ASPAs) remains a critical yet challenging task, especially in extreme environments like Antarctica. Traditional methods are often cumbersome, expensive, and risky, with limited satellite data further hindering accuracy. This study addresses these challenges by developing a workflow that enables precise mapping and monitoring of vegetation in ASPAs. The processing pipeline of this workflow integrates small unmanned aerial vehicles (UAVs)—or drones—to collect hyperspectral and multispectral imagery (HSI and MSI), global navigation satellite system (GNSS) enhanced with real-time kinematics (RTK) to collect ground control points (GCPs), and supervised machine learning classifiers. This workflow was validated in the field by acquiring ground and aerial data at ASPA 135, Windmill Islands, East Antarctica. The data preparation phase involves a data fusion technique to integrate HSI and MSI data, achieving the collection of georeferenced HSI scans with a resolution of up to 0.3 cm/pixel. From these high-resolution HSI scans, a series of novel spectral indices were proposed to enhance the classification accuracy of the model. Model training was achieved using extreme gradient boosting (XGBoost), with four different combinations tested to identify the best fit for the data. The research results indicate the successful detection and mapping of moss and lichens, with an average accuracy of 95%. Optimised XGBoost models, particularly Model 3 and Model 4, demonstrate the applicability of the custom spectral indices to achieve high accuracy with reduced computing power requirements. The integration of these technologies results in significantly more accurate mapping compared to conventional methods. This workflow serves as a foundational step towards more extensive remote sensing applications in Antarctic and ASPA vegetation mapping, as well as in monitoring the impact of climate change on the Antarctic ecosystem. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications)
Show Figures

Figure 1

26 pages, 37177 KiB  
Article
An Integrated Approach for 3D Solar Potential Assessment at the City Scale
by Hassan Waqas, Yuhong Jiang, Jianga Shang, Iqra Munir and Fahad Ullah Khan
Remote Sens. 2023, 15(23), 5616; https://doi.org/10.3390/rs15235616 - 3 Dec 2023
Cited by 7 | Viewed by 3335
Abstract
The use of solar energy has shown the fastest global growth of all renewable energy sources. Efforts towards careful evaluation are required to select optimal locations for the installation of photovoltaics (PV) because their effectiveness is strongly reliant on exposure to solar irradiation. [...] Read more.
The use of solar energy has shown the fastest global growth of all renewable energy sources. Efforts towards careful evaluation are required to select optimal locations for the installation of photovoltaics (PV) because their effectiveness is strongly reliant on exposure to solar irradiation. Assessing the shadows cast by nearby buildings and vegetation is essential, especially at the city scale. Due to urban complexity, conventional methods using Digital Surface Models (DSM) overestimate solar irradiation in dense urban environments. To provide further insights into this dilemma, a new modeling technique was developed for integrated 3D city modeling and solar potential assessment on building roofs using light detection and ranging (LiDAR) data. The methodology used hotspot analysis to validate the workflow in both site and without-site contexts (e.g., trees that shield small buildings). Field testing was conducted, covering a total area of 4975 square miles and 10,489 existing buildings. The results demonstrate a considerable impact of large, dense trees on the solar irradiation received by smaller buildings. Considering the site’s context, a mean annual solar estimate of 99.97 kWh/m2/year was determined. Without considering the site context, this value increased by 9.3% (as a percentage of total rooftops) to 109.17 kWh/m2/year, with a peak in July and troughs in December and January. The study suggests that both factors have a substantial impact on solar potential estimations, emphasizing the importance of carefully considering the shadowing effect during PV panel installation. The research findings reveal that 1517 buildings in the downtown area of Austin have high estimated radiation ranging from 4.7 to 6.9 kWh/m2/day, providing valuable insights for the identification of optimal locations highly suitable for PV installation. Additionally, this methodology can be generalized to other cities, addressing the broader demand for renewable energy solutions. Full article
Show Figures

Graphical abstract

38 pages, 11952 KiB  
Article
NOAA MODIS SST Reanalysis Version 1
by Olafur Jonasson, Alexander Ignatov, Boris Petrenko, Victor Pryamitsyn and Yury Kihai
Remote Sens. 2023, 15(23), 5589; https://doi.org/10.3390/rs15235589 - 30 Nov 2023
Cited by 1 | Viewed by 1628
Abstract
The first NOAA full-mission reanalysis (RAN1) of the sea surface temperature (SST) from the two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard Terra (24 February 2000–present) and Aqua (4 July 2002–present) was performed. The dataset was produced using the NOAA Advanced Clear-Sky Processor for [...] Read more.
The first NOAA full-mission reanalysis (RAN1) of the sea surface temperature (SST) from the two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard Terra (24 February 2000–present) and Aqua (4 July 2002–present) was performed. The dataset was produced using the NOAA Advanced Clear-Sky Processor for Ocean (ACSPO) enterprise SST system from Collection 6.1 brightness temperatures (BTs) in three MODIS thermal emissive bands centered at 3.7, 11, and 12 µm with a spatial resolution of 1 km at nadir. In the initial stages of reprocessing, several instabilities in the MODIS SST time series were observed. In particular, Terra SSTs and corresponding BTs showed three ‘steps’: two on 30 October 2000 and 2 July 2001 (due to changes in the MODIS operating mode) and one on 25 April 2020 (due to a change in its nominal blackbody temperature, BBT, from 290 to 285 K). Additionally, spikes up to several tenths of a kelvin were observed during the quarterly warm-up/cool-down (WUCD) exercises, when the Terra MODIS BBT was varied. Systematic gradual drifts of ~0.025 K/decade were also seen in both Aqua and Terra SSTs over their full missions due to drifting BTs. These calibration instabilities were mitigated by debiasing MODIS BTs using the time series of observed minus modeled (‘O-M’) BTs. The RAN1 dataset was evaluated via comparisons with various in situ SSTs. The data meet the NOAA specifications for accuracy (±0.2 K) and precision (0.6 K), often by a wide margin, in a clear-sky ocean domain of 19–21%. The long-term SST drift is typically less than 0.01 K/decade for all MODIS SSTs, except for the daytime ‘subskin’ SST, for which the drift is ~0.02 K/decade. The MODIS RAN1 dataset is archived at NOAA CoastWatch and updated monthly in a delayed mode with a latency of two months. Additional archival with NASA JPL PO.DAAC is being discussed. Full article
(This article belongs to the Special Issue VIIRS 2011–2021: Ten Years of Success in Earth Observations)
Show Figures

Figure 1

17 pages, 9435 KiB  
Article
Spatial and Spectral Translation of Landsat 8 to Sentinel-2 Using Conditional Generative Adversarial Networks
by Rohit Mukherjee and Desheng Liu
Remote Sens. 2023, 15(23), 5502; https://doi.org/10.3390/rs15235502 - 25 Nov 2023
Viewed by 2053
Abstract
Satellite sensors like Landsat 8 OLI (L8) and Sentinel-2 MSI (S2) provide valuable multispectral Earth observations that differ in spatial resolution and spectral bands, limiting synergistic use. L8 has a 30 m resolution and a lower revisit frequency, while S2 offers up to [...] Read more.
Satellite sensors like Landsat 8 OLI (L8) and Sentinel-2 MSI (S2) provide valuable multispectral Earth observations that differ in spatial resolution and spectral bands, limiting synergistic use. L8 has a 30 m resolution and a lower revisit frequency, while S2 offers up to a 10 m resolution and more spectral bands, such as red edge bands. Translating observations from L8 to S2 can increase data availability by combining their images to leverage the unique strengths of each product. In this study, a conditional generative adversarial network (CGAN) is developed to perform sensor-specific domain translation focused on green, near-infrared (NIR), and red edge bands. The models were trained on the pairs of co-located L8-S2 imagery from multiple locations. The CGAN aims to downscale 30 m L8 bands to 10 m S2-like green and 20 m S2-like NIR and red edge bands. Two translation methodologies are employed—direct single-step translation from L8 to S2 and indirect multistep translation. The direct approach involves predicting the S2-like bands in a single step from L8 bands. The multistep approach uses two steps—the initial model predicts the corresponding S2-like band that is available in L8, and then the final model predicts the unavailable S2-like red edge bands from the S2-like band predicted in the first step. Quantitative evaluation reveals that both approaches result in lower spectral distortion and higher spatial correlation compared to native L8 bands. Qualitative analysis supports the superior fidelity and robustness achieved through multistep translation. By translating L8 bands to higher spatial and spectral S2-like imagery, this work increases data availability for improved earth monitoring. The results validate CGANs for cross-sensor domain adaptation and provide a reusable computational framework for satellite image translation. Full article
(This article belongs to the Special Issue Remote Sensing Data Fusion and Applications)
Show Figures

Figure 1

Back to TopTop