Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = Atlantic warm water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4875 KiB  
Article
Late 20th Century Hypereutrophication of Northern Alberta’s Utikuma Lake
by Carling R. Walsh, Fabian Grey, R. Timothy Patterson, Maxim Ralchenko, Calder W. Patterson, Eduard G. Reinhardt, Dennis Grey, Henry Grey and Dwayne Thunder
Environments 2025, 12(2), 63; https://doi.org/10.3390/environments12020063 - 11 Feb 2025
Abstract
Eutrophication in Canadian lakes degrades water quality, disrupts ecosystems, and poses health risks due to potential development of harmful algal blooms. It also economically impacts the general public, industries like recreational and commercial fishing, and tourism. Analysis of a 140-year core record from [...] Read more.
Eutrophication in Canadian lakes degrades water quality, disrupts ecosystems, and poses health risks due to potential development of harmful algal blooms. It also economically impacts the general public, industries like recreational and commercial fishing, and tourism. Analysis of a 140-year core record from Utikuma Lake, northern Alberta, revealed the processes behind the lake’s current hypereutrophic conditions. End-member modeling analysis (EMMA) of the sediment grain size data identified catchment runoff linked to specific sedimentological processes. ITRAX X-ray fluorescence (XRF) elements/ratios were analyzed to assess changes in precipitation, weathering, and catchment runoff and to document changes in lake productivity over time. Five end members (EMs) were identified and linked to five distinct erosional and sedimentary processes, including moderate and severe precipitation events, warm and cool spring freshet, and anthropogenic catchment disturbances. Cluster analysis of EMMA and XRF data identified five distinct depositional periods from the late 19th century to the present, distinguished by characteristic rates of productivity, rainfall, weathering, and runoff linked to natural and anthropogenic drivers. The most significant transition in the record occurred in 1996, marked by an abrupt increase in both biological productivity and catchment runoff, leading to the hypereutrophic conditions that persist to the present. This limnological shift was primarily triggered by a sudden discharge from a decommissioned sewage treatment lagoon into the lake. Spectral and wavelet analysis confirmed the influence of the Arctic Oscillation, El Niño Southern Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation on runoff processes in Utikuma Lake’s catchment. Full article
Show Figures

Figure 1

17 pages, 3043 KiB  
Communication
Invasion of the Atlantic Ocean and Caribbean Sea by a Large Benthic Foraminifer in the Little Ice Age
by Edward Robinson and Thera Edwards
Diversity 2025, 17(2), 110; https://doi.org/10.3390/d17020110 - 2 Feb 2025
Abstract
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly [...] Read more.
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly the genus Amphistegina, useful proxies in the study of invasive marine biota, transported through hull fouling and ballast water contamination in modern commercial shipping. However, there is limited information on the importance of these dispersal mechanisms for foraminifers in the Pre-Industrial Era (pre-1850) for the Atlantic and Caribbean region. This paper examines possible constraints and vectors controlling the invasion of warm-water taxa from the Indo-Pacific region to the Atlantic and Caribbean region. Heterostegina depressa, first described from St. Helena, a remote island in the South Atlantic, provides a test case. The paper postulates that invasions through natural range expansion or ocean currents were unlikely along the possible available routes and hypothesises that anthropogenic vectors, particularly sailing ships, were the most likely means of transport. It concludes that the invasion of the Atlantic by H. depressa was accomplished within the Little Ice Age (1350–1850 C.E.), during the period between the start of Portuguese marine trade with east Africa in 1497 and the first description of H. depressa in 1826. This hypothesis is likely applicable to other foraminifers and other biota currently resident in the Atlantic and Caribbean region. The model presented provides well-defined parameters that can be tested using methods such as isotopic dating of foraminiferal assemblages in cores and genetic indices of similarity of geographic populations. Full article
(This article belongs to the Special Issue Ecology and Paleoecology of Atlantic and Caribbean Coral Reefs)
Show Figures

Figure 1

41 pages, 1028 KiB  
Review
Historical Review of Research on Fisheries vs. Climate Changes and Proposals for the Future in a Global Warming Context
by Juan Pérez-Rubín and Elena Pérez-Rubín
J. Mar. Sci. Eng. 2025, 13(2), 260; https://doi.org/10.3390/jmse13020260 - 30 Jan 2025
Abstract
Marine environmental variability and climate change are interconnected; they are the main causes of the fluctuations in ecosystems and cyclically affect fisheries. This work has four main goals. The first is to present a broad historical review of international research activities on fisheries [...] Read more.
Marine environmental variability and climate change are interconnected; they are the main causes of the fluctuations in ecosystems and cyclically affect fisheries. This work has four main goals. The first is to present a broad historical review of international research activities on fisheries and climate change, mainly in European waters. We have recovered a selection of seminal international scientific publications from 1914 to 1995, which aroused great interest among the scientific community at that time, although most of these publications have fallen into oblivion in the 21st century. The second goal is to review the main intergovernmental initiatives on climate and marine research from the 1980s to the present, detecting gaps and a lack of unanimity in some guidelines from international organizations. The third goal is to analyze decadal warming/cooling in the Canary Current Upwelling System (extending from the NW Iberian Peninsula to Senegal), to understand the current rapid tropicalization of pelagic and benthic ecosystems in Southern European Atlantic seas. The fourth goal is to identify priority research lines for the future, including the need to promote an international retrospective on fisheries oceanography research, for at least the last hundred years. Full article
Show Figures

Figure 1

15 pages, 284 KiB  
Brief Report
When Mediterranean Artisanal Fishers Protect Coastal Ecosystems
by Cornelia E. Nauen
Fishes 2024, 9(12), 472; https://doi.org/10.3390/fishes9120472 - 22 Nov 2024
Viewed by 663
Abstract
According to EuroStat data, the recorded landings of fisheries products from European waters were estimated at about 6 million tons in 2001, down to 3.2 million tons in 2022. This gradual decline slowed after the entering into force of the reform of the [...] Read more.
According to EuroStat data, the recorded landings of fisheries products from European waters were estimated at about 6 million tons in 2001, down to 3.2 million tons in 2022. This gradual decline slowed after the entering into force of the reform of the European Common Fisheries Policy (CFP) at the end of 2013, but was followed by a steeper decline after 2018. This is reflected in the last assessment of the Scientific Technical and Economic Committee for Fisheries (STEPF), noting that despite progress in the NE Atlantic management, 41% of the assessed stocks in 2022 were outside safe biological limits, down from 80% in 2003. Improvements in the Mediterranean are significantly slower. A warming ocean provokes the measurable poleward migration of species and adds stress to predator–prey relations in all European seas. Within this general picture, the broad-brush landscape is influenced by policy applications more in favour of industrial exploitation and regulatory and market environments, making it very hard for many small-scale fishers (SSFs) to remain in business, let alone attract younger successors for generational transition. In crowded marine spaces, it is a challenge to allocate access rights fairly between fisheries, exclusion zones for resource and habitat protection and much-needed ecosystem recovery, platforms for fossil exploitation, wind farms, underwater cables and recreational uses. Two examples of local initiatives with faunal recovery potential in the Mediterranean are briefly presented as a bottom-up complement to more top-down management approaches. They are spearheaded by artisanal fishers, who seek to restore spawning grounds and other coastal habitats as a way to procure enough fish and other complementary activities to secure their livelihoods in the future. They are supported by local scientists and nature conservation organisations. While promising, this is still rather the exception. Here, it is argued that trust-building between artisanal fishers, conservationists and scientists, and greater systemic support to SSFs by governments, increase chances for the urgently needed structural shifts that deliver the reversal in the ongoing decline in biodiversity and ocean productivity that all aspire to, to ensure sustained social and economic benefits. Full article
(This article belongs to the Special Issue Fisheries Policies and Management)
Show Figures

Graphical abstract

21 pages, 12498 KiB  
Article
The Influence of Local Climatic Factors and Water Vapor Transport from North Atlantic Ocean on Winter Snow-Cover Variation on Western Kunlun Mountains and Eastern Pamir Plateau
by Xiaoying Xue, Xiangde Xu, Guoyu Ren, Xiubao Sun and Panfeng Zhang
Remote Sens. 2024, 16(23), 4368; https://doi.org/10.3390/rs16234368 - 22 Nov 2024
Viewed by 466
Abstract
Snow cover days (SCD) have increased significantly in winter on the Western Kunlun Mountains and Eastern Pamir Plateau (hereafter referred to as KMPP for short), however the causes have not been well understood so far. Here, we use remote sensing data to analyze [...] Read more.
Snow cover days (SCD) have increased significantly in winter on the Western Kunlun Mountains and Eastern Pamir Plateau (hereafter referred to as KMPP for short), however the causes have not been well understood so far. Here, we use remote sensing data to analyze the abnormal increase in SCD on the KMPP and explore its causes from the perspective of the local factors and water vapor transport caused by sea surface temperatures (SST) warming. We discover that the winter SCD on the KMPP increased significantly at a rate of 4.75 days/decade (significant at the 0.01 level) during 1989–2020, while there has been a significant decrease on the Tibetan Plateau (TP), with a rate of −1.50 days/decade (significant at the 0.1 level). Based on ERA5, GPCP, GHCN, and station data, we find that, in contrast to the significant warming observed on the TP, temperature changes on the KMPP are negligible, while precipitation is increasing, differing from the decreasing precipitation trend observed on the TP. The differences in local temperature and precipitation changes cause different variations in SCD between the KMPP and the TP. The increase in SCD on the KMPP is primarily driven by increased precipitation (over 97% contribution), with minimal impact from the more or less unchanged temperature. In contrast, the decline in SCD on the TP results from decreased precipitation and significantly increased temperature. Furthermore, we found that changes in SCD on the KMPP are significantly correlated with SST in the northern North Atlantic Ocean. Based on the correlation vector, the anomaly field in the high/low SCD years of water vapor transport, and the FLEXPART model, we show that the northern North Atlantic Ocean is one of the major water vapor sources affecting the SCD on the KMPP. The warming SST in the northern North Atlantic Ocean enhances water vapor transport to the KMPP in winter, leading to an abnormal increase in the SCD that differs from the overall trend on the TP. The findings are conductive to further understand the peculiarity of winter precipitation and SCD on the KMPP, and the “Western Kunlun Mountains Oddity” in mountain glacial change. Full article
Show Figures

Figure 1

18 pages, 1927 KiB  
Article
Spatial Patterns and Environmental Control of Polychaete Communities in the Southwestern Barents Sea
by Dinara R. Dikaeva and Alexander G. Dvoretsky
Biology 2024, 13(11), 924; https://doi.org/10.3390/biology13110924 - 13 Nov 2024
Cited by 3 | Viewed by 673
Abstract
The Barents Sea region is influenced by an increased inflow of warm Atlantic water, which impacts all components of the local ecosystem. Information on the state of benthic communities is required to predict alterations in the food web’s structure and functioning. The spatial [...] Read more.
The Barents Sea region is influenced by an increased inflow of warm Atlantic water, which impacts all components of the local ecosystem. Information on the state of benthic communities is required to predict alterations in the food web’s structure and functioning. The spatial distribution of polychaete communities was investigated in relation to environmental conditions at nine stations along the Kola Transect (70°00′–74°00′ N, 33°30′ E) in April 2019. A taxonomically diverse fauna containing 114 taxa was found, with 95 identified at the species level. The fauna was composed predominantly of boreo-Arctic species (63%), followed by boreal (22%) and Arctic species (13%). The polychaete abundance and biomass exhibited considerable variability, ranging from 910 to 3546 ind. m−2 and from 3.4 to 72.7 g m−2, with average values of 1900 ind. m−2 and 18.7 g m−2, respectively. Cluster analysis revealed three distinct polychaete communities differing in dominant species composition, abundance, and biomass. The southern region featured the most abundant community, the middle part exhibited the highest diversity, and the northern area presented the community with the highest biomass. These spatial variations in community structure corresponded closely to the distribution and properties of water masses within the study area. Multivariate analysis identified depth as the primary driver of diversity indices, with higher values observed at shallow water sites. Salinity and water temperature together explained 46% of the variation in abundance, reflecting warming effects and showing positive or negative effects, depending on the taxa. Furthermore, an increase in water temperature had a positive impact on the contribution of boreal species to the total material, while exerting a strong negative effect on the overall community biomass, underscoring the potential of polychaetes in biological indication. Full article
(This article belongs to the Special Issue Feature Papers in 'Conservation Biology and Biodiversity')
Show Figures

Figure 1

21 pages, 8114 KiB  
Article
Palaeoecological Conditions in the South-Eastern and Western Baltic Sea during the Last Millennium
by Ekaterina Ponomarenko, Tatiana Pugacheva and Liubov Kuleshova
Quaternary 2024, 7(4), 44; https://doi.org/10.3390/quat7040044 - 14 Oct 2024
Viewed by 1236
Abstract
We present the reconstruction of palaeoenvironmental conditions in the Gdansk, Bornholm, and Arkona Basins of the Baltic Sea over the last millennium. A multiproxy study (including geochemical, XRF, grain size, AMS, and micropalaeontological analyses) of five short sediment cores was performed. The relative [...] Read more.
We present the reconstruction of palaeoenvironmental conditions in the Gdansk, Bornholm, and Arkona Basins of the Baltic Sea over the last millennium. A multiproxy study (including geochemical, XRF, grain size, AMS, and micropalaeontological analyses) of five short sediment cores was performed. The relative age of the sediments was determined based on the Pb distribution along the sediment sequences, as radiocarbon dating has resulted in an excessively old age. The retrieved cores cover two comparable warm periods, the Medieval Climate Anomaly and the Modern Warm Period, for which the increase in surface water productivity was reconstructed. Notably, the production of diatoms was higher during the colder periods (the Dark Ages and Little Ice Age), but this was also the case within the Modern Warm Period. In the Gdansk Basin, the initial salinity increase during the Littorina transgression started after 7.7 cal. a BP. The increased inflow activity was reconstructed during the Medieval Climate Anomaly, even in the Gdansk Basin, despite, in general, very low foraminiferal amounts and diversity. The strongly positive North Atlantic Oscillation Index during this period led to the prevalence of westerly winds over the Baltic region and stronger saltwater intrusions. In the recent sediments, the reconstructed inflow frequency demonstrates a variability against the reduction trend, and a general decline compared to the Medieval Climate Anomaly is seen. Full article
Show Figures

Figure 1

20 pages, 4929 KiB  
Article
On the Possible Climatic Consequences of the Large Oil Spills in Oceans
by Nina Prokopciuk, Nikolaj Tarasiuk, Ulrich Franck, Dean Ernest Schraufnagel, Algirdas Valiulis, Marina Kostantinova, Tymon Zielinski and Arunas Valiulis
Atmosphere 2024, 15(10), 1216; https://doi.org/10.3390/atmos15101216 - 12 Oct 2024
Cited by 1 | Viewed by 1084
Abstract
In the North Atlantic and the Northern Ocean, from the second half of 2010 to 2014, satellite imagery data showed increased surface water temperatures (in the Icelandic Depression area in September–October 2010, it was 1.3 °C higher than in 2009). The peak of [...] Read more.
In the North Atlantic and the Northern Ocean, from the second half of 2010 to 2014, satellite imagery data showed increased surface water temperatures (in the Icelandic Depression area in September–October 2010, it was 1.3 °C higher than in 2009). The peak of the annual sum of mean monthly ocean surface temperatures near the Icelandic Depression in 2010 (109.3 °C), as well as the negative values of the monthly averaged North Atlantic Oscillation (NAO) indices, estimated in the second half of 2010 and until March 2011, can be explained by the appearance of an additional film of oil origin on the water surface, formed after an oil spill accident at the Deepwater Horizon drilling rig in the Gulf of Mexico. Insufficient evaporative cooling of surface waters near the Icelandic Depression related to the formation of an additive film due to the influence of pollution of the North Sea by oil can explain the earlier peak in the annual sum of mean monthly ocean surface temperatures near the Icelandic Depression in 2003 (107.2 °C). Although global warming is usually ascribed to increased greenhouse gases in the atmosphere, ocean surface water pollution could increase the heat content of the ocean and explain the steady temperature stratification and desalination of these waters due to the melting of Greenland’s glaciers. Thus, when analyzing the concept of global warming, it is necessary to take into account the aspects of pollution of the ocean surface waters to assess the changes in their capacity to accumulate solar radiation, as well as the changes in the heat content of the ocean mixing zone (~200 m). Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

24 pages, 26164 KiB  
Article
A New Insight on the Upwelling along the Atlantic Iberian Coasts and Warm Water Outflow in the Gulf of Cadiz from Multiscale Ultrahigh Resolution Sea Surface Temperature Imagery
by José J. Alonso del Rosario, Elizabeth Blázquez Gómez, Juan Manuel Vidal Pérez, Faustino Martín Rey and Esther L. Silva-Ramírez
J. Mar. Sci. Eng. 2024, 12(9), 1580; https://doi.org/10.3390/jmse12091580 - 6 Sep 2024
Viewed by 892
Abstract
The ATLAZUL project is an Interreg effort among 18 partners from Spain and Portugal along the Atlantic Iberian coasts. One of its objectives is the development of new methods and data processing for oceanic information to produce useful products for private and public [...] Read more.
The ATLAZUL project is an Interreg effort among 18 partners from Spain and Portugal along the Atlantic Iberian coasts. One of its objectives is the development of new methods and data processing for oceanic information to produce useful products for private and public stakeholders. This study proposes a new insight on the sea surface dynamic of the ATLAZUL area based on almost two years of multiscale high resolution sea surface temperature imagery. The use of techniques such as the Karhunen–Loève transform (Empirical Orthogonal Function) and the Maximum Entropy Spectral Analysis were applied to study long- and short-term features in the sea surface temperature imagery. Mathematical Morphology and the Geometrical Theory of Measure are utilized to compute the Medial Axis Transform and the Hausdorff dimension. The results can be summarized as follows: (i) the tow upwelling areas are identified along the Galician–Portugal coast as indicated in the second and third modes of KLT/EOF analysis, and they are partially affected by wind; (ii) the tow warm water outflows from the Bay of Cádiz to the Gulf of Cádiz are identified as the second and third modes of KLT/EOF analysis, which are also influenced by wind; (iii) the skeletons of the surface signature of the upwelling and of the warmer water outflow, along with their fractal dimensions, indicate a chaotic pattern of spatial distribution and (iv) the harmonic prediction model should be combined with the wind prediction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

23 pages, 11490 KiB  
Article
Intertidal Species of Gelidium from the Temperate Coast of Argentina
by María Emilia Croce and D. Wilson Freshwater
Diversity 2024, 16(7), 399; https://doi.org/10.3390/d16070399 - 12 Jul 2024
Viewed by 1388
Abstract
The Gelidiales comprises economically valuable species of marine red algae that are found globally, in cold, temperate, and warm waters. Although there is much known about the species diversity and distribution of this order, it remains underexplored on the temperate coast of the [...] Read more.
The Gelidiales comprises economically valuable species of marine red algae that are found globally, in cold, temperate, and warm waters. Although there is much known about the species diversity and distribution of this order, it remains underexplored on the temperate coast of the Southwestern Atlantic Ocean. This study aimed to update current knowledge about the intertidal Gelidiaceae found on the temperate coast of Argentina using a combination of rbcL data and morpho-anatomical studies and to evaluate the morphological variability among species related to habitat characteristics. Three morphotypes were found at the six localities surveyed; two were identified as different morphologies of Gelidium crinale and one was identified as Gelidium carolinianum. Populations of both species were widespread and coexisted extensively from 37° S to 40° S along the Argentinean coast. G. carolinianum is newly reported in the Southern Hemisphere, indicating it has a disjunct distribution that includes the North Atlantic and Mediterranean as well. Molecular data confirmed previous reports of G. crinale in Argentina, a species that exhibited broad morphological variability among sites. The development of both spermatangia and carpogonia on the same fertile gametophyte thalli in G. crinale and G. carolinianum was described for the first time and demonstrated that they are monoecious. These findings shed light on the diversity and biogeography of Gelidiales from temperate South America. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

13 pages, 1939 KiB  
Article
Monthly Occurrence of Endoparasites of Chaetognaths in a Coastal System of the Mexican Central Pacific
by Viridiana Plascencia-Palomera, Carmen Franco-Gordo, Horacio Lozano-Cobo, Israel Ambriz-Arreola, Eduardo Suárez-Morales and Jaime Gómez-Gutiérrez
Parasitologia 2024, 4(3), 246-258; https://doi.org/10.3390/parasitologia4030021 - 8 Jul 2024
Viewed by 1118
Abstract
The prevalence of endoparasites associated with chaetognath abundance in the coastal waters of the Mexican Central Pacific was studied fortnightly from November 2010 to December 2011. A total of 35 (0.21%) out of 16,407 chaetognaths were found to be parasitized. Five out of [...] Read more.
The prevalence of endoparasites associated with chaetognath abundance in the coastal waters of the Mexican Central Pacific was studied fortnightly from November 2010 to December 2011. A total of 35 (0.21%) out of 16,407 chaetognaths were found to be parasitized. Five out of twelve chaetognath species (Flaccisagitta enflata, F. hexaptera, Parasagitta euneritica, Serratosagitta pacifica, Zonosagitta bedoti) were found to be parasitized by nine endoparasitic taxa: Protists (two morphotypes), digenean metacercariae [Didymozoidae, Hemiuridae, Parahemiurus sp., Lepocreadiidae, Prosorhynchus sp. (Bucephalidae)], and cestodes (metacestodes) [Tetraphyllidea (two morphotypes)]. Parasagitta. euneritica and Z. bedoti were the most abundant chaetognath species, and Protist sp. 2 and Tetraphyllidea sp. 1 were the most abundant parasites. The highest prevalence for most of the endoparasite species occurred in June, and the values varied according to three hydroclimatic periods: stratified (S), semi-mixed (SM), and mixed (M). Eight non-infected chaetognath species, two parasitized chaetognaths (F. enflata and S. pacifica), and two parasites (Protist sp. 1 and Tetraphyllidea sp. 2) were associated with warm temperatures (S and SM periods); in contrast, P. euneritica, Z. bedoti, parasitized F. hexaptera, and the parasite Tetraphyllidea sp. 1 showed a strong local preference for cooler temperatures, high productivity, and high biomass conditions (M periods). We discovered the occurrence of the digenean Prosorhynchus sp. (Bucephalidae) parasitizing the chaetognath P. euneritica, and this is the first report of Prosorhynchus parasitizing chaetognaths worldwide. We also confirmed the presence of Lepocrediidae (metacercariae larval stage) infecting F. hexaptera, a parasite that had only been recorded infecting other chaetognaths of the Atlantic Ocean. The parasite diversity affecting the chaetognath populations of the Central Mexican Pacific coast likely differs between the offshore, outer slope areas, and the surveyed coastal system. Full article
Show Figures

Figure 1

14 pages, 2072 KiB  
Article
Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures
by Fereshteh Aliazizi, Dua Özsoylu, Soroush Bakhshi Sichani, Mehran Khorshid, Christ Glorieux, Johan Robbens, Michael J. Schöning and Patrick Wagner
Micromachines 2024, 15(6), 755; https://doi.org/10.3390/mi15060755 - 4 Jun 2024
Viewed by 1784
Abstract
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated [...] Read more.
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems. Full article
(This article belongs to the Special Issue Multisensor Arrays)
Show Figures

Figure 1

30 pages, 6252 KiB  
Article
Comprehensive Transcriptome and Proteome Analyses Reveal the Drought Responsive Gene Network in Potato Roots
by Tianyuan Qin, Yihao Wang, Zhuanfang Pu, Ningfan Shi, Richard Dormatey, Huiqiong Wang and Chao Sun
Plants 2024, 13(11), 1530; https://doi.org/10.3390/plants13111530 - 31 May 2024
Viewed by 1369
Abstract
The root system plays a decisive role in the growth and development of plants. The water requirement of a root system depends strongly on the plant species. Potatoes are an important food and vegetable crop grown worldwide, especially under irrigation in arid and [...] Read more.
The root system plays a decisive role in the growth and development of plants. The water requirement of a root system depends strongly on the plant species. Potatoes are an important food and vegetable crop grown worldwide, especially under irrigation in arid and semi-arid regions. However, the expected impact of global warming on potato yields calls for an investigation of genes related to root development and drought resistance signaling pathways in potatoes. In this study, we investigated the molecular mechanisms of different drought-tolerant potato root systems in response to drought stress under controlled water conditions, using potato as a model. We analyzed the transcriptome and proteome of the drought-sensitive potato cultivar Atlantic (Atl) and the drought-tolerant cultivar Qingshu 9 (Q9) under normal irrigation (CK) and weekly drought stress (D). The results showed that a total of 14,113 differentially expressed genes (DEGs) and 5596 differentially expressed proteins (DEPs) were identified in the cultivars. A heat map analysis of DEGs and DEPs showed that the same genes and proteins in Atl and Q9 exhibited different expression patterns under drought stress. Weighted gene correlation network analysis (WGCNA) showed that in Atl, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched pathways were related to pyruvate metabolism and glycolysis, as well as cellular signaling and ion transmembrane transporter protein activity. However, GO terms and KEGG-enriched pathways related to phytohormone signaling and the tricarboxylic acid cycle were predominantly enriched in Q9. The present study provides a unique genetic resource to effectively explore the functional genes and uncover the molecular regulatory mechanism of the potato root system in response to drought stress. Full article
Show Figures

Figure 1

16 pages, 16188 KiB  
Article
Decline in Ice Coverage and Ice-Free Period Extension in the Kara and Laptev Seas during 1979–2022
by Pavel Shabanov, Alexander Osadchiev, Natalya Shabanova and Stanislav Ogorodov
Remote Sens. 2024, 16(11), 1875; https://doi.org/10.3390/rs16111875 - 24 May 2024
Cited by 1 | Viewed by 1108
Abstract
The duration of ice-free periods in different parts of the Arctic Ocean plays a great role in processes in the climate system and defines the most comfortable sea ice conditions for economic activity. Based on satellite-derived sea ice concentration data acquired by passive [...] Read more.
The duration of ice-free periods in different parts of the Arctic Ocean plays a great role in processes in the climate system and defines the most comfortable sea ice conditions for economic activity. Based on satellite-derived sea ice concentration data acquired by passive microwave instruments, we identified the spatial distribution of the dates of sea ice retreat (DOR), dates of sea ice advance (DOA), and the resulting ice-free period duration (IFP) between these days for the Kara and Laptev seas during 1979–2022. The monthly decline in sea ice extent was detected from June to October in both seas, i.e., during the whole ice-free period. The annual mean sea ice extent during 2011–2021 decreased by 19.0% and 12.8% relative to the long-term average during 1981–2010 in the Kara and Laptev seas, respectively. The statistically significant (95% confidence level) positive IFP trends were detected for the majority of areas of the Kara and Laptev seas. Averaged IFP trends were estimated equal to +20.2 day/decade and +16.2 day/decade, respectively. The observed DOR tendency to earlier sea ice melting plays a greater role in the total IFP extension, as compared to later sea ice formation related to the DOA tendency. We reveal that regions of inflow of warm Atlantic waters to the Kara Sea demonstrate the largest long-term trends in DOA, DOR, and IFP associated with the decrease in ice coverage, that highlights the process of atlantification. Also, the Great Siberian Polynya in the Laptev Sea is the area of the largest long-term decreasing trend in DOR. Full article
Show Figures

Figure 1

16 pages, 1619 KiB  
Article
Effects of Ocean Acidification and Summer Thermal Stress on the Physiology and Growth of the Atlantic Surfclam (Spisula solidissima)
by Laura Steeves, Molly Honecker, Shannon L. Meseck and Daphne Munroe
J. Mar. Sci. Eng. 2024, 12(4), 673; https://doi.org/10.3390/jmse12040673 - 18 Apr 2024
Viewed by 1672
Abstract
This study examines the physiological response of the Atlantic surfclam (Spisula solidissima) to ocean acidification in warm summer temperatures. Working with ambient seawater, this experiment manipulated pH conditions while maintaining natural diel fluctuations and seasonal shifts in temperature. One-year-old surfclams were [...] Read more.
This study examines the physiological response of the Atlantic surfclam (Spisula solidissima) to ocean acidification in warm summer temperatures. Working with ambient seawater, this experiment manipulated pH conditions while maintaining natural diel fluctuations and seasonal shifts in temperature. One-year-old surfclams were exposed to one of three pH conditions (ambient (control): 7.8 ± 0.07, medium: 7.51 ± 0.10, or low: 7.20 ± 0.10) in flow-through conditions for six weeks, and feeding and digestive physiology was measured after one day, two weeks, and six weeks. After six weeks of exposure to medium and low pH treatments, growth was not clearly affected, and, contrastingly, feeding and digestive physiology displayed variable responses to pH over time. Seemingly, low pH reduced feeding and absorption rates compared to both the medium treatment and ambient (control) condition; however, this response was clearer after two weeks compared to one day. At six weeks, suppressed physiological rates across both pH treatments and the ambient condition suggest thermal stress from high ambient water temperatures experienced the week prior (24–26 °C) dominated over any changes from low pH. Results from this study provide important information about reduced energy acquisition in surfclams in acidified environments and highlight the need for conducting multistressor experiments that consider the combined effects of temperature and pH stress. Full article
(This article belongs to the Special Issue Impacts of Climate Change on Shellfisheries)
Show Figures

Figure 1

Back to TopTop