Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,286)

Search Parameters:
Keywords = IRI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 840 KiB  
Review
The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury
by Branislav Kura and Jan Slezak
Int. J. Mol. Sci. 2024, 25(14), 7884; https://doi.org/10.3390/ijms25147884 - 18 Jul 2024
Viewed by 103
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this [...] Read more.
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice. Full article
Show Figures

Figure 1

15 pages, 25096 KiB  
Article
Removal of Nitrogen and Phosphorus in Low Polluted Wastewater by Aquatic Plants: Impact of Monochromatic Light Radiation
by Lingyun Fan, Xujia Zhang, Qi Li, Yi Liu, Hanxi Wang and Shuying Zang
Water 2024, 16(14), 2002; https://doi.org/10.3390/w16142002 - 15 Jul 2024
Viewed by 276
Abstract
Plant absorption via aquatic plants is vital for the deep purification of treated wastewater. This study aimed to determine the removal efficiencies of nitrogen and phosphorus for different aquatic plants and the effect of monochromatic light as compared to white light. Five plants [...] Read more.
Plant absorption via aquatic plants is vital for the deep purification of treated wastewater. This study aimed to determine the removal efficiencies of nitrogen and phosphorus for different aquatic plants and the effect of monochromatic light as compared to white light. Five plants (i.e., Iris pseudacorus, Oenanthe javanica, Zantedeschia aethiopica, Ipomoea aquatica Forssk. and Sagittaria trifolia) were cultured in prepared wastewater and radiated by white, red, green and blue LED lamps with 8 h radiation per day, respectively. After 4 d of cultivation, the O. javanica and S. trifolia exhibited relatively better growth status and higher TP removal rates (90%). The blue light radiation played a key role in the TP uptake of the tested plants. The N removal rates of plants were relatively lower (10–40%), limited by the low COD content. The S. trifolia exhibited the highest efficiency, and red light promoted the removal of TN and NO3-N, whereas NH4+-N removal was driven by blue light radiation. So, O. javanica and S. trifolia coupled with blue and red lamps as supplementary light were suggested for the deep purification of municipal treated wastewater. The effect of intensity and ratio of monochromatic lights could be a direction for further research. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

9 pages, 19285 KiB  
Article
Time-Restricted Feeding Protects against Renal Ischemia-Reperfusion Injury in Mice
by Do Kyun Kim, Young Suk Kim, Min Jeong Kim, Seo Rin Kim, Dong Won Lee, Soo Bong Lee and Il Young Kim
Int. J. Mol. Sci. 2024, 25(14), 7652; https://doi.org/10.3390/ijms25147652 - 12 Jul 2024
Viewed by 285
Abstract
Ischemia-reperfusion injury (IRI) in the kidneys is a major cause of acute kidney injury (AKI). Time-restricted feeding (TRF), known for its metabolic health benefits and alleviation of various chronic diseases without calorie restriction, was investigated for its potential protective effects against IRI-induced AKI. [...] Read more.
Ischemia-reperfusion injury (IRI) in the kidneys is a major cause of acute kidney injury (AKI). Time-restricted feeding (TRF), known for its metabolic health benefits and alleviation of various chronic diseases without calorie restriction, was investigated for its potential protective effects against IRI-induced AKI. Male C57BL/6 mice underwent unilateral IRI, with their kidneys collected after two days. For two weeks before IRI induction, the TRF group had unlimited access to standard chow but within an 8-hour feeding window during the dark cycle. The study groups were Control, TRF, IRI, and TRF + IRI. In the TRF + IRI group, tubular damage scores significantly decreased compared to the IRI group. Furthermore, the TRF + IRI mice had lower levels of phosphorylated NF-κB and fewer F4/80-positive macrophages than the IRI group. Oxidative stress markers for lipids and proteins were also notably lower in the TRF + IRI group. Additionally, TUNEL-positive tubular cells and cleaved caspase-3 expression were reduced in the TRF + IRI group. Without calorie restriction, TRF mitigated renal damage by reducing inflammation, oxidative stress, and tubular apoptosis in renal IRI. This suggests that TRF could be a promising dietary strategy to prevent IRI-induced AKI. Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

14 pages, 1782 KiB  
Review
Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation
by Denise V. Nemeth, Leonardo Iannelli, Elena Gangitano, Vito D’Andrea and Maria Irene Bellini
Biomedicines 2024, 12(7), 1534; https://doi.org/10.3390/biomedicines12071534 - 10 Jul 2024
Viewed by 297
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization’s list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of [...] Read more.
Metformin (MTF) is the only biguanide included in the World Health Organization’s list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF’s effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF’s potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation. Full article
(This article belongs to the Special Issue Molecular Mechanism of Ischemia and Reperfusion Injury)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
The Seasonal Diet of the Alien Parupeneus forsskali (Fourmanoir & Guézé, 1976) (Actinopterygii, Mullidae) from Cyprus
by Christina Michail, Anna Pyle and Niki Chartosia
J. Mar. Sci. Eng. 2024, 12(7), 1122; https://doi.org/10.3390/jmse12071122 - 4 Jul 2024
Viewed by 654
Abstract
The alien Red Sea goatfish, Parupeneus forsskali (Fourmanoir & Guézé, 1976), is a Lessepsian migrant, entering the Mediterranean through the Suez Canal. This study explores its seasonal diet and biological traits in Cyprus, its non-native habitat. From August 2019 to July 2021, a [...] Read more.
The alien Red Sea goatfish, Parupeneus forsskali (Fourmanoir & Guézé, 1976), is a Lessepsian migrant, entering the Mediterranean through the Suez Canal. This study explores its seasonal diet and biological traits in Cyprus, its non-native habitat. From August 2019 to July 2021, a total of 249 specimens were collected, ranging in total length (TL) from 5.8 to 27.7 cm, with a mean TL of 15.1 ± 4.54 cm (SD). These specimens were examined with respect to sex and season. Through various methods (F%, N%, W%, and IRI), the feeding habits of the species were analysed, revealing a diet dominated by Crustacea (mainly Decapoda) and Polychaeta, with the secondary consumption of Mollusca, Echinodermata, and others. Significant differences were found between males and juveniles and females and juveniles, with adults preferring Decapoda and juveniles Copepoda, while seasonal variations were mainly influenced by prey availability. The Red Sea goatfish exhibited ontogenetic niche shifts in its depth and habitat distribution, influenced by size and age. The trophic level (TROPH) of P. forsskali ranged from 3.22 to 3.46, corresponding to an omnivorous diet with a preference for animals. These findings suggest that P. forsskali is an opportunistic predator with a diverse diet, thriving in its new habitat and potentially impacting the local marine food webs by competing with economically important native species for resources. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

14 pages, 3251 KiB  
Article
Enhancing Liver Transplant Outcomes through Liver Precooling to Mitigate Inflammatory Response and Protect Mitochondrial Function
by Minh H. Tran, Jie Gao, Xinzhe Wang, Ruisheng Liu, Colby L. Parris, Carlos Esquivel, Yingxiang Fan and Lei Wang
Biomedicines 2024, 12(7), 1475; https://doi.org/10.3390/biomedicines12071475 - 4 Jul 2024
Viewed by 431
Abstract
Transplanted organs experience several episodes of ischemia and ischemia-reperfusion. The graft injury resulting from ischemia-reperfusion (IRI) remains a significant obstacle to the successful survival of transplanted grafts. Temperature significantly influences cellular metabolic rates because biochemical reactions are highly sensitive to temperature changes. Consequently, [...] Read more.
Transplanted organs experience several episodes of ischemia and ischemia-reperfusion. The graft injury resulting from ischemia-reperfusion (IRI) remains a significant obstacle to the successful survival of transplanted grafts. Temperature significantly influences cellular metabolic rates because biochemical reactions are highly sensitive to temperature changes. Consequently, lowering the temperature could reduce the degradative reactions triggered by ischemia. In mitigating IRI in liver grafts, the potential protective effect of localized hypothermia on the liver prior to blood flow obstruction has yet to be explored. In this study, we applied local hypothermia to mouse donor livers for a specific duration before stopping blood flow to liver lobes, a procedure called “liver precooling”. Mouse donor liver temperature in control groups was controlled at 37 °C. Subsequently, the liver donors were preserved in cold University of Wisconsin solution for various durations followed by orthotopic liver transplantation. Liver graft injury, function and inflammation were assessed at 1 and 2 days post-transplantation. Liver precooling exhibited a significant improvement in graft function, revealing more than a 47% decrease in plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, coupled with a remarkable reduction of approximately 50% in liver graft histological damage compared to the control group. The protective effects of liver precooling were associated with the preservation of mitochondrial function, a substantial reduction in hepatocyte cell death, and a significantly attenuated inflammatory response. Taken together, reducing the cellular metabolism and enzymatic activity to a minimum level before ischemia protects against IRI during transplantation. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

25 pages, 6164 KiB  
Article
Developing Pavement Maintenance Strategies and Implementing Management Systems
by Li-Ling Huang, Jyh-Dong Lin, Wei-Hsing Huang, Chun-Hung Kuo, Yi-Shian Chiou and Mao-Yuan Huang
Infrastructures 2024, 9(7), 101; https://doi.org/10.3390/infrastructures9070101 - 27 Jun 2024
Viewed by 577
Abstract
The traffic volume and maintenance demand on Taiwan’s provincial highways have been steadily increasing. One of the most challenging issues in maintenance is determining the optimal timing and allocation of funds to avoid duplicative investments and maximize resource utilization. Currently, provincial highway maintenance [...] Read more.
The traffic volume and maintenance demand on Taiwan’s provincial highways have been steadily increasing. One of the most challenging issues in maintenance is determining the optimal timing and allocation of funds to avoid duplicative investments and maximize resource utilization. Currently, provincial highway maintenance units rely heavily on manual processes and paper-based records, using experiential methods to formulate maintenance strategies and conduct maintenance operations. This indicates a lack of objective maintenance strategies and pavement management systems in these units. This study aims to address this gap by integrating domestic and international literature on pavement maintenance decision-making. Existing approaches typically fall into two categories: “Pavement Indicator Rating” and “Pavement Maintenance Prioritization”. However, there has not been research integrating these methods for decision-making. Therefore, this research integrates these two approaches to establish a comprehensive maintenance strategy for Taiwan’s provincial highways. The Analytic Hierarchy Process (AHP) is employed as the decision-making theory, involving expert interviews to calculate maintenance weights for different pavement maintenance indicators. The results show that the pothole count, International Roughness Index (IRI), and Pavement Condition Index (PCI) are the three most critical maintenance indicators. The first phase of the maintenance strategy uses the “Pavement Indicator Rating“ to directly assess the pothole count, IRI, and PCI to categorize pavement sections as “maintenance sections” or “observation sections”. The second phase employs “Pavement Maintenance Prioritization”, integrating maintenance weights for each indicator to calculate maintenance scores. This phase prioritizes maintenance activities based on the results of the first phase’s rating for “maintenance sections”. Additionally, a provincial highway pavement management system is proposed to implement these strategies, enhancing maintenance management efficiency and ensuring the overall quality and longevity of provincial highway maintenance efforts. Full article
(This article belongs to the Special Issue Road Systems and Engineering)
Show Figures

Figure 1

19 pages, 1601 KiB  
Review
Advancements in Predictive Tools for Primary Graft Dysfunction in Liver Transplantation: A Comprehensive Review
by Piotr Gierej, Marcin Radziszewski, Wojciech Figiel and Michał Grąt
J. Clin. Med. 2024, 13(13), 3762; https://doi.org/10.3390/jcm13133762 - 27 Jun 2024
Viewed by 1370
Abstract
Orthotopic liver transplantation stands as the sole curative solution for end-stage liver disease. Nevertheless, the discrepancy between the demand and supply of grafts in transplant medicine greatly limits the success of this treatment. The increasing global shortage of organs necessitates the utilization of [...] Read more.
Orthotopic liver transplantation stands as the sole curative solution for end-stage liver disease. Nevertheless, the discrepancy between the demand and supply of grafts in transplant medicine greatly limits the success of this treatment. The increasing global shortage of organs necessitates the utilization of extended criteria donors (ECD) for liver transplantation, thereby increasing the risk of primary graft dysfunction (PGD). Primary graft dysfunction (PGD) encompasses early allograft dysfunction (EAD) and the more severe primary nonfunction (PNF), both of which stem from ischemia–reperfusion injury (IRI) and mitochondrial damage. Currently, the only effective treatment for PNF is secondary transplantation within the initial post-transplant week, and the occurrence of EAD suggests an elevated, albeit still uncertain, likelihood of retransplantation urgency. Nonetheless, the ongoing exploration of novel IRI mitigation strategies offers hope for future improvements in PGD outcomes. Establishing an intuitive and reliable tool to predict upcoming graft dysfunction is vital for early identification of high-risk patients and for making informed retransplantation decisions. Accurate diagnostics for PNF and EAD constitute essential initial steps in implementing future mitigation strategies. Recently, novel methods for PNF prediction have been developed, and several models for EAD assessments have been introduced. Here, we provide an overview of the currently scrutinized predictive tools for PNF and EAD evaluation strategies, accompanied by recommendations for future studies. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

23 pages, 7238 KiB  
Article
Cryptographic Algorithm Designed by Extracting Brainwave Patterns
by Marius-Alin Dragu, Irina-Emilia Nicolae and Mădălin-Corneliu Frunzete
Mathematics 2024, 12(13), 1971; https://doi.org/10.3390/math12131971 - 25 Jun 2024
Viewed by 849
Abstract
A new authentication method based on EEG signal is proposed here. Biometric features such as fingerprint scanning, facial recognition, iris scanning, voice recognition, and even brainwave patterns can be used for authentication methods. Brainwave patterns, also known as brain biometrics, can be captured [...] Read more.
A new authentication method based on EEG signal is proposed here. Biometric features such as fingerprint scanning, facial recognition, iris scanning, voice recognition, and even brainwave patterns can be used for authentication methods. Brainwave patterns, also known as brain biometrics, can be captured using technologies like electroencephalography (EEG) to authenticate a user based on their unique brain activity. This method is still in the research phase and is not yet commonly used for authentication purposes. Extracting EEG features for authentication typically involves signal processing techniques to analyze the brainwave patterns. Here, a method based on statistics for extracting EEG features is designed to extract meaningful information and patterns from the brainwave data for various applications, including authentication, brain–computer interface systems, and neurofeedback training. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

18 pages, 2509 KiB  
Review
In Situ and Ex Situ Conservation of Ornamental Geophytes in Poland
by Dariusz Sochacki, Przemysław Marciniak, Małgorzata Zajączkowska, Jadwiga Treder and Patrycja Kowalicka
Sustainability 2024, 16(13), 5375; https://doi.org/10.3390/su16135375 - 25 Jun 2024
Viewed by 365
Abstract
The protection of biological diversity in nature and in agriculture, including the production of ornamental crops, has become increasingly important in Poland as well as worldwide. The Convention on Biological Diversity, signed in 1992 at the Earth Summit of the UN in Rio [...] Read more.
The protection of biological diversity in nature and in agriculture, including the production of ornamental crops, has become increasingly important in Poland as well as worldwide. The Convention on Biological Diversity, signed in 1992 at the Earth Summit of the UN in Rio de Janeiro and ratified by the Polish government in 1995, imposed new regulations related to the protection of nature and the genetic resources of cultivated crops in Poland. The conservation of the genera, varieties and cultivars of ornamental geophytes—a group of plants of great interest from a botanical and physiological, but also a horticultural point of view—takes place in situ (both in nature and in the places of cultivation) and through the establishment of ex situ gene banks and collections. The natural genetic resources of ornamental geophytes include species from the genera Allium, Fritillaria, Gladiolus, Iris, Leucojum, Lilium and Muscari, among others, and more than a dozen species are protected by law due to varying degrees of threats. Botanical gardens play an essential role in the conservation of endangered species. Their activities focus on genus monitoring, managing ex situ gene banks (including National Collections), developing propagation methods and carrying out their reintroduction. In order to protect the national genetic resources of cultivated plants, the National Centre for Plant Genetic Resources at the Plant Breeding and Acclimatisation Institute—National Research Institute, under the auspices of the Ministry of Agriculture and Rural Development, was established. Concerning ornamental geophytes, the National Centre coordinates two field collections of cultivars of the genera Gladiolus, Lilium, Narcissus and Tulipa, which are of great economic importance and have a long tradition of breeding in Poland. The first one is located at the National Institute of Horticultural Research in Skierniewice (central Poland), and the second one is at the Experimental Substation of Variety Testing in Lisewo (northern Poland). The history of tulip collections in Poland dates back to the 1960s. At that time, the first breeding work for this species began. The collection of bulbous crops in Skierniewice is currently one of the largest in Poland, with a total of 934 accessions. Most of them are tulips (522) and lilies (222). Other plants in the collection in Skierniewice are gladiolus and narcissus. The most valuable accessions are grown under special protection (tunnels with dense nets) to guard against insects and maintain a mild climate inside. The genetic resources of the ornamental bulb plant collection in Lisewo currently consist of 611 accessions, mainly tulips (358), daffodils (121) and gladioli (132). All bulbous crops in both collections (Skierniewice and Lisewo) are grown in accordance with all principles of agrotechnics (negative field selection, fertilisation, soil maintenance). A particularly important task of botanical gardens, universities, research institutes and the National Centre is leading research on the methods of storage for survival organs, in vitro cultures and cryopreservation. We have discovered that the various activities for the species conservation of ornamental geophytes require a great deal of constantly deepening knowledge and extraordinary measures, including frequent monitoring of the effects of the applied measures. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

17 pages, 602 KiB  
Article
FLRW Transit Cosmological Model in f (R, T) Gravity
by Vijay Singh, Siwaphiwe Jokweni and Aroonkumar Beesham
Universe 2024, 10(7), 272; https://doi.org/10.3390/universe10070272 - 24 Jun 2024
Viewed by 442
Abstract
A Friedmann–Lemaitre–Robertson–Walker space–time model with all curvatures k=0, ±1 is explored in f(R,T) gravity, where R is the Ricci scalar, and T is the trace of the energy–momentum tensor. The solutions are obtained [...] Read more.
A Friedmann–Lemaitre–Robertson–Walker space–time model with all curvatures k=0, ±1 is explored in f(R,T) gravity, where R is the Ricci scalar, and T is the trace of the energy–momentum tensor. The solutions are obtained via the parametrization of the scale factor that leads to a model transiting from a decelerated universe to an accelerating one. The physical features of the model are discussed and analyzed in detail. The study shows that f(R,T) gravity can be a good alternative to the hypothetical candidates of dark energy to describe the present accelerating expansion of the universe. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

12 pages, 3399 KiB  
Article
Characterization of Receptor Binding Affinity for Vascular Endothelial Growth Factor with Interferometric Imaging Sensor
by Nese Lortlar Ünlü, Monireh Bakhshpour-Yucel, Elisa Chiodi, Sinem Diken-Gür, Sinan Emre and M. Selim Ünlü
Biosensors 2024, 14(7), 315; https://doi.org/10.3390/bios14070315 - 24 Jun 2024
Viewed by 604
Abstract
Wet Age-related macular degeneration (AMD) is the leading cause of vision loss in industrialized nations, often resulting in blindness. Biologics, therapeutic agents derived from biological sources, have been effective in AMD, albeit at a high cost. Due to the high cost of AMD [...] Read more.
Wet Age-related macular degeneration (AMD) is the leading cause of vision loss in industrialized nations, often resulting in blindness. Biologics, therapeutic agents derived from biological sources, have been effective in AMD, albeit at a high cost. Due to the high cost of AMD treatment, it is critical to determine the binding affinity of biologics to ensure their efficacy and make quantitative comparisons between different drugs. This study evaluates the in vitro VEGF binding affinity of two drugs used for treating wet AMD, monoclonal antibody-based bevacizumab and fusion protein-based aflibercept, performing quantitative binding measurements on an Interferometric Reflectance Imaging Sensor (IRIS) system. Both biologics can inhibit Vascular Endothelial Growth Factor (VEGF). For comparison, the therapeutic molecules were immobilized on to the same support in a microarray format, and their real-time binding interactions with recombinant human VEGF (rhVEGF) were measured using an IRIS. The results indicated that aflibercept exhibited a higher binding affinity to VEGF than bevacizumab, consistent with previous studies using ELISA and SPR. The IRIS system’s innovative and cost-effective features, such as silicon-based semiconductor chips for enhanced signal detection and multiplexed analysis capability, offer new prospects in sensor technologies. These attributes make IRISs a promising tool for future applications in the development of therapeutic agents, specifically biologics. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Figure 1

16 pages, 3332 KiB  
Article
Tequila Vinasse Treatment in Two Types of Vertical Downflow Treatment Wetlands (with Emergent Vegetation and Ligninolytic Fungi)
by Anderson A. Ramírez-Ramírez, Juan A. Lozano-Álvarez, Melesio Gutiérrez-Lomelí and Florentina Zurita
Water 2024, 16(13), 1778; https://doi.org/10.3390/w16131778 - 23 Jun 2024
Viewed by 438
Abstract
The aim of this study was to evaluate and compare the efficiency of two types of vertical downflow wetlands (VDFWs) (with the presence of ligninolytic fungus Trametes versicolor and planted with Iris sibirica) for the treatment of tequila vinasses (TVs) as a [...] Read more.
The aim of this study was to evaluate and compare the efficiency of two types of vertical downflow wetlands (VDFWs) (with the presence of ligninolytic fungus Trametes versicolor and planted with Iris sibirica) for the treatment of tequila vinasses (TVs) as a secondary treatment; control systems with only a filter medium were also included. The systems operated with a 7-day run/resting mode of operation. Various water quality parameters were analyzed in both the influent and the effluents, namely total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD5), total organic carbon (TOC), pH, electrical conductivity (EC), true color and turbidity, total phosphorus (TP), total nitrogen (TN), etc. The two types of VDFWs as well as the control treatment were effective in reducing the different pollutants (p < 0.05); however, planted systems showed a tendency toward higher efficiencies. With an influent concentration of 49,000 mg L−1 and an organic loading rate of 4942 g COD m−2d−1, the COD reduction was around 40% in the planted systems, while in the other two, the reduction was 35%. Furthermore, TSS removals were 36, 20 and 16% in the VDFWs with vegetation, ligninolytic fungus and control systems, respectively. These results suggest that the fungus Trametes versicolor did not develop the desirable enzymatic expression for pollutant removal, probably as a result of the absence of aerobic conditions in the systems. Therefore, more research is needed to achieve a better fungal performance in VDFWs. Full article
(This article belongs to the Special Issue Advanced Processes for Industrial Wastewater Treatment)
Show Figures

Graphical abstract

25 pages, 381 KiB  
Review
The Role of Interferon Regulatory Factors in Liver Diseases
by Chuanfei Zeng, Xiaoqin Zhu, Huan Li, Ziyin Huang and Mingkai Chen
Int. J. Mol. Sci. 2024, 25(13), 6874; https://doi.org/10.3390/ijms25136874 - 22 Jun 2024
Viewed by 391
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia–reperfusion [...] Read more.
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia–reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases. Full article
13 pages, 873 KiB  
Article
Hemogram-Derived Inflammatory Markers in Cats with Chronic Kidney Disease
by Martina Krofič Žel, Alenka Nemec Svete, Nataša Tozon and Darja Pavlin
Animals 2024, 14(12), 1813; https://doi.org/10.3390/ani14121813 - 18 Jun 2024
Viewed by 586
Abstract
Chronic kidney disease (CKD) is characterized by chronic inflammation, which mediates the progressive replacement of functional nephrons by fibrotic tissue. Hemogram-derived inflammatory markers are known to serve as markers of pathological conditions; however, their diagnostic value in feline CKD is still unknown. The [...] Read more.
Chronic kidney disease (CKD) is characterized by chronic inflammation, which mediates the progressive replacement of functional nephrons by fibrotic tissue. Hemogram-derived inflammatory markers are known to serve as markers of pathological conditions; however, their diagnostic value in feline CKD is still unknown. The aim of this retrospective study was to investigate selected hemogram-derived inflammatory markers (neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR) and the systemic immune-inflammatory index (SII)) in cats at different clinical stages of CKD. Eighty-eight client-owned cats with CKD and thirty-two healthy control cats were included. Cats with CKD were divided into two groups: early CKD (IRIS stage 1 and 2; 62 cats) and progressed CKD (IRIS stage 3 and 4; 26 cats). The values of inflammatory markers were compared between the two CKD groups and the control group. All investigated hemogram-derived inflammatory markers were significantly (p < 0.05) greater in cats with advanced CKD than in those in the other two groups. Additionally, we demonstrated a statistically significant weak to moderate correlation between serum urea, creatinine, selected hematologic and urinary parameters, and the investigated inflammatory markers in cats with CKD. Chronic inflammation can be easily and inexpensively assessed with hemogram-derived markers. Full article
Show Figures

Figure 1

Back to TopTop