Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = TCAM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2264 KiB  
Article
Enhanced CPU Design for SDN Controller
by Hiba S. Bazzi, Ramzi A. Jaber, Ahmad M. El-Hajj, Fathelalem A. Hija and Ali M. Haidar
Micromachines 2024, 15(8), 997; https://doi.org/10.3390/mi15080997 - 31 Jul 2024
Viewed by 869
Abstract
Software-Defined Networking (SDN) revolutionizes network management by decoupling control plane functionality from data plane devices, enabling the centralized control and programmability of network behavior. This paper uses the ternary system to improve the Central Processing Unit (CPU) inside the SDN controller to enhance [...] Read more.
Software-Defined Networking (SDN) revolutionizes network management by decoupling control plane functionality from data plane devices, enabling the centralized control and programmability of network behavior. This paper uses the ternary system to improve the Central Processing Unit (CPU) inside the SDN controller to enhance network management. The Multiple-Valued Logic (MVL) circuit shows remarkable improvement compared to the binary circuit regarding the chip area, propagation delay, and energy consumption. Moreover, the Carbon Nanotube Field-Effect Transistor (CNTFET) shows improvement compared to other transistor technologies regarding energy efficiency and circuit speed. To the best of our knowledge, this is the first time that a ternary design has been applied inside the CPU of an SDN controller. Earlier studies focused on Ternary Content-Addressable Memory (TCAM) in SDN. This paper proposes a new 1-trit Ternary Full Adder (TFA) to decrease the propagation delay and the Power–Delay Product (PDP). The proposed design is compared to the latest 17 designs, including 15 designs that are 1-trit TFA CNTFET-based, 2-bit binary FA FinFET-based, and 2-bit binary FA CMOS-based, using the HSPICE simulator, to optimize the CPU utilization in SDN environments, thereby enhancing programmability. The results show the success of the proposed design in reducing the propagation delays by over 99% compared to the 2-bit binary FA CMOS-based design, over 78% compared to the 2-bit binary FA FinFET-based design, over 91% compared to the worst-case TFA, and over 49% compared to the best-case TFAs. Full article
Show Figures

Figure 1

14 pages, 4537 KiB  
Article
Multimodal Hateful Meme Classification Based on Transfer Learning and a Cross-Mask Mechanism
by Fan Wu, Guolian Chen, Junkuo Cao, Yuhan Yan and Zhongneng Li
Electronics 2024, 13(14), 2780; https://doi.org/10.3390/electronics13142780 - 15 Jul 2024
Viewed by 886
Abstract
Hateful memes are malicious and biased sentiment information widely spread on the internet. Detecting hateful memes differs from traditional multimodal tasks because, in conventional tasks, visual and textual information align semantically. However, the challenge in detecting hateful memes lies in their unique multimodal [...] Read more.
Hateful memes are malicious and biased sentiment information widely spread on the internet. Detecting hateful memes differs from traditional multimodal tasks because, in conventional tasks, visual and textual information align semantically. However, the challenge in detecting hateful memes lies in their unique multimodal nature, where images and text in memes may be weak or unrelated, requiring models to understand the content and perform multimodal reasoning. To address this issue, we introduce a multimodal fine-grained hateful memes detection model named “TCAM”. The model leverages advanced encoding techniques from TweetEval and CLIP and introduces enhanced Cross-Attention and Cross-Mask Mechanisms (CAM) in the feature fusion stage to improve multimodal correlations. It effectively embeds fine-grained features of data and image descriptions into the model through transfer learning. This paper uses the Area Under the Receiver Operating Characteristic Curve (AUROC) as the primary metric to evaluate the model’s discriminatory ability. This approach achieved an AUROC score of 0.8362 and an accuracy score of 0.764 on the Facebook Hateful Memes Challenge (FHMC) dataset, confirming its high discriminatory capability. The TCAM model demonstrates relatively superior performance compared to ensemble machine learning methods. Full article
(This article belongs to the Special Issue Application of Data Mining in Social Media)
Show Figures

Figure 1

14 pages, 6733 KiB  
Article
Analyzing Various Structural and Temperature Characteristics of Floating Gate Field Effect Transistors Applicable to Fine-Grain Logic-in-Memory Devices
by Sangki Cho, Sueyeon Kim, Myounggon Kang, Seungjae Baik and Jongwook Jeon
Micromachines 2024, 15(4), 450; https://doi.org/10.3390/mi15040450 - 27 Mar 2024
Cited by 1 | Viewed by 974
Abstract
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze [...] Read more.
Although the von Neumann architecture-based computing system has been used for a long time, its limitations in data processing, energy consumption, etc. have led to research on various devices and circuit systems suitable for logic-in-memory (LiM) computing applications. In this paper, we analyze the temperature-dependent device and circuit characteristics of the floating gate field effect transistor (FGFET) source drain barrier (SDB) and FGFET central shallow barrier (CSB) identified in previous papers, and their applicability to LiM applications is specifically confirmed. These FGFETs have the advantage of being much more compatible with existing silicon-based complementary metal oxide semiconductor (CMOS) processes compared to devices using new materials such as ferroelectrics for LiM computing. Utilizing the 32 nm technology node, the leading-edge node where the planar metal oxide semiconductor field effect transistor structure is applied, FGFET devices were analyzed in TCAD, and an environment for analyzing circuits in HSPICE was established. To seamlessly connect FGFET-based devices and circuit analyses, compact models of FGFET-SDB and -CSBs were developed and applied to the design of ternary content-addressable memory (TCAM) and full adder (FA) circuits for LiM. In addition, depression and potential for application of FGFET devices to neural networks were analyzed. The temperature-dependent characteristics of the TCAM and FA circuits with FGFETs were analyzed as an indicator of energy and delay time, and the appropriate number of CSBs should be applied. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

14 pages, 2059 KiB  
Article
An Effective Selection of Memory Technologies for TCAM to Improve the Search Operations: Demonstration of Memory Efficiency in SDN Recovery
by Abdulhadi Alahmadi and Tae Sun Chung
Electronics 2024, 13(4), 707; https://doi.org/10.3390/electronics13040707 - 9 Feb 2024
Cited by 1 | Viewed by 952
Abstract
Ternary Content-Addressable Memory (TCAM) is used for storing the flow tables in software-defined networking (SDN)-based OpenFlow switches. However, the TCAM can store only a certain number of flow tables (8000). Moreover, when the switch flow tables need to be updated due to the [...] Read more.
Ternary Content-Addressable Memory (TCAM) is used for storing the flow tables in software-defined networking (SDN)-based OpenFlow switches. However, the TCAM can store only a certain number of flow tables (8000). Moreover, when the switch flow tables need to be updated due to the link failure in the SDN, further updates may be lost due to the flow tables limit of the TCAM space. Hence, to resolve this issue, other memories need to be used in conjunction with TCAM to enhance the memory operations of TCAM. When considering which flash memory technology is to be used in conjunction with TCAM, we need to balance several factors to ensure optimal performance, speed, endurance, reliability, integration complexity, and cost-effectiveness. Hence, it leads to a multi-criteria decision-making problem regarding the selection of other memory technologies such as 3D XPoint, Magnetoresistive RAM, Resistive RAM, and Ferroelectric RAM. In this paper, we use the analytical network process (ANP) method to select the suitable technology in conjunction with TCAM, considering the features of the memory technologies for Software-Defined Internet-of-Things (SD-IoT). We provide a comprehensive numerical model leveraging the ANP to rank the memory technologies regarding their weights. The highest weights identify the most suitable technology for TCAM. We perform simulations to show the effectiveness of the mathematical model utilizing the ANP. The results show that the suggested methodology reduces the recovery delay, improves the packets received ratio (PRR), decreases the jitter, and increases the throughput. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

24 pages, 4258 KiB  
Article
Saving Energy Using the Modified Heuristic Algorithm for Energy Saving (MHAES) in Software-Defined Networks
by Péter András Agg and Zsolt Csaba Johanyák
Sensors 2023, 23(23), 9581; https://doi.org/10.3390/s23239581 - 2 Dec 2023
Viewed by 1257
Abstract
Energy consumption is a significant concern in daily life, often neglected in terms of cost and environmental impact. Since IT networks play an essential role in our daily routines, energy-saving in this area is crucial. However, the implementation of energy efficiency solutions in [...] Read more.
Energy consumption is a significant concern in daily life, often neglected in terms of cost and environmental impact. Since IT networks play an essential role in our daily routines, energy-saving in this area is crucial. However, the implementation of energy efficiency solutions in this field have to ensure that the network performance is minimally affected. Traditional networks encounter difficulties in achieving this goal. Software-Defined Networks (SDN), which have gained popularity in the past decade, offer easy-to-use opportunities to increase energy efficiency. Features like central controllability and quick programmability can help to reduce energy consumption. In this article, a new algorithm named the Modified Heuristic Algorithm for Energy Saving (MHAES) is presented, which was compared to eight commonly used methods in different topologies for energy efficiency. The results indicate that by maintaining an appropriate load balance, one can save more energy than in case of using some other well-known procedures by applying a threshold value based on forecast, keeping only a minimal number of nodes in an active state, and ensuring that nodes not participating in packet transmission remain in sleep mode. Full article
(This article belongs to the Topic Next Generation Intelligent Communications and Networks)
Show Figures

Figure 1

15 pages, 465 KiB  
Article
Reducing Flow Table Update Costs in Software-Defined Networking
by Wen Wang, Lin Yang, Xiongjun Yang and Jingchao Wang
Sensors 2023, 23(23), 9375; https://doi.org/10.3390/s23239375 - 23 Nov 2023
Viewed by 791
Abstract
In software-defined networking (SDN), the traffic forwarding delay highly depends on the latency associated with updating the forwarding rules in flow tables. With the increase in fine-grained flow control requirements, due to the flexible control capabilities of SDN, more rules are being inserted [...] Read more.
In software-defined networking (SDN), the traffic forwarding delay highly depends on the latency associated with updating the forwarding rules in flow tables. With the increase in fine-grained flow control requirements, due to the flexible control capabilities of SDN, more rules are being inserted and removed from flow tables. Moreover, the matching fields of these rules might overlap since multiple control domains might generate different rules for similar flows. This overlap implies dependency relationships among the rules, imposing various restrictions on forwarding entries during updates, e.g., by following update orders or storing entries at specified locations, especially in flow tables implemented using ternary content addressable memory (TCAM); otherwise, mismatching or packet dropping will occur. It usually takes a while to resolve and maintain dependencies during updates, which hinders high forwarding efficiency. To reduce the delay associated with updating dependent rules, in this paper, we propose an updating algorithm for TCAM-based flow tables. We formulate the TCAM maintenance process as an NP-hard problem and analyze the inefficiency of existing moving approaches. To solve the problem, we propose an optimal moving chain for single rule updates and provide theoretical proof for its minimum moving steps. For multiple rules arriving at a switch simultaneously, we designed a dynamic approach to update concurrent entries; it is able to update multiple rules heuristically within a restricted TCAM region. As the update efficiency concerns dependencies among rules, we evaluate our flow table by updating algorithms with different dependency complexities. The results show that our approach achieves about 6% fewer moving steps than existing approaches. The advantage is more pronounced when the flow table is heavily utilized and rules have longer dependency chains. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

24 pages, 562 KiB  
Article
Packet Classification Using TCAM of Narrow Entries
by Hsin-Tsung Lin, Wei-Han Pan and Pi-Chung Wang
Technologies 2023, 11(5), 147; https://doi.org/10.3390/technologies11050147 - 19 Oct 2023
Viewed by 1844
Abstract
Packet classification based on rules of packet header fields is the key technology for enabling software-defined networking (SDN). Ternary content addressable memory (TCAM) is a widely used hardware for packet classification; however, commercially available TCAM chips have only limited storage. As the number [...] Read more.
Packet classification based on rules of packet header fields is the key technology for enabling software-defined networking (SDN). Ternary content addressable memory (TCAM) is a widely used hardware for packet classification; however, commercially available TCAM chips have only limited storage. As the number of supported header fields in SDN increases, the number of supported rules in a TCAM chip is reduced. In this work, we present a novel scheme to enable packet classification using TCAM with entries that are narrower than rules by storing the most representative field of a ruleset in TCAM. Due to the fact that not all rules can be distinguished using one field, our scheme employs a TCAM-based multimatch packet classification technique to ensure correctness. We further develop approaches to reduce redundant TCAM accesses for multimatch packet classification. Although our scheme requires additional TCAM accesses, it supports packet classification upon long rules with narrow TCAM entries, and drastically reduces the required TCAM storage. Our experimental results show that our scheme requires a moderate number of additional TCAM accesses and consumes much less storage compared to the basic TCAM-based packet classification. Thus, it can provide the required scalability for long rules required by potential applications of SDN. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

23 pages, 1559 KiB  
Systematic Review
Traditional, Complementary and Alternative Medicines in the Treatment of Ejaculatory Disorders: A Systematic Review
by Kristian Leisegang, Chinyerum Sylvia Opuwari, Faith Moichela and Renata Finelli
Medicina 2023, 59(9), 1607; https://doi.org/10.3390/medicina59091607 - 6 Sep 2023
Cited by 1 | Viewed by 3072
Abstract
Background and Objectives: Ejaculatory dysfunction (EjD) is a common male sexual disorder that includes premature ejaculation, delayed ejaculation, retrograde ejaculation, and anejaculation. Although psychological and pharmacological treatments are available, traditional, complementary, and alternative medicine (TCAM) is reportedly used. However, the clinical evidence [...] Read more.
Background and Objectives: Ejaculatory dysfunction (EjD) is a common male sexual disorder that includes premature ejaculation, delayed ejaculation, retrograde ejaculation, and anejaculation. Although psychological and pharmacological treatments are available, traditional, complementary, and alternative medicine (TCAM) is reportedly used. However, the clinical evidence for TCAM in EjD remains unclear. Therefore, this study aims to systematically review human clinical trials investigating the use of TCAM to treat EjD. Materials and Methods: A systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted by searching Scopus and PubMed databases. Controlled clinical trials investigating a cohort of male patients diagnosed primarily with EjD and undergoing any TCAM intervention compared to any comparison group were included. Quality of the studies was assessed using the Cochrane Risk of Bias tool for randomized controlled trials. Results: Following article screening, 22 articles were included. Of these, 21 investigated TCAM in premature ejaculation, and only 1 investigated TCAM in retrograde ejaculation. Different TCAM categories included studies that investigated lifestyle, exercise and/or physical activities (n = 7); herbal medicine supplements (n = 5); topical herbal applications (n = 4); acupuncture or electroacupuncture (n = 3); vitamin, mineral and/or nutraceutical supplements (n = 1); hyaluronic acid penile injection (n = 1); and music therapy (n = 1). Only 31.8% (n = 7) of the included studies were found to have a low risk of bias. The available studies were widely heterogenous in the TCAM intervention investigated and comparison groups used. However, the included studies generally showed improved outcomes intra-group and when compared to placebo. Conclusions: Different TCAM interventions may have an important role particularly in the management of PE. However, more studies using standardized interventions are needed. Full article
Show Figures

Graphical abstract

13 pages, 2907 KiB  
Article
Dynamic Power Reduction in TCAM Using Advanced Selective Pre-Charging of Match Lines
by Su-Yeon Doo and Kee-Won Kwon
Electronics 2023, 12(17), 3691; https://doi.org/10.3390/electronics12173691 - 31 Aug 2023
Viewed by 1107
Abstract
In this paper, we propose a power-efficient memory operation, selective match line precharge, based on an analysis of power consumption in ternary content-addressable memory (TCAM). A statistical study reveals that, on average, 58% of power dissipation related to the match line operation is [...] Read more.
In this paper, we propose a power-efficient memory operation, selective match line precharge, based on an analysis of power consumption in ternary content-addressable memory (TCAM). A statistical study reveals that, on average, 58% of power dissipation related to the match line operation is saved by deactivating the unnecessary swing of match lines. The improvement has been simulated and proved using 180 nm CMOS technology. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

20 pages, 3993 KiB  
Article
Simulated Microgravity Exposure Induces Antioxidant Barrier Deregulation and Mitochondria Enlargement in TCam-2 Cell Spheroids
by Marika Berardini, Luisa Gesualdi, Caterina Morabito, Francesca Ferranti, Anna Reale, Michele Zampieri, Katsiaryna Karpach, Antonella Tinari, Lucia Bertuccini, Simone Guarnieri, Angela Catizone, Maria A. Mariggiò and Giulia Ricci
Cells 2023, 12(16), 2106; https://doi.org/10.3390/cells12162106 - 19 Aug 2023
Cited by 3 | Viewed by 1824
Abstract
One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to [...] Read more.
One of the hallmarks of microgravity-induced effects in several cellular models is represented by the alteration of oxidative balance with the consequent accumulation of reactive oxygen species (ROS). It is well known that male germ cells are sensitive to oxidative stress and to changes in gravitational force, even though published data on germ cell models are scarce. We previously studied the effects of simulated microgravity (s-microgravity) on a 2D cultured TCam-2 seminoma-derived cell line, considered the only human cell line available to study in vitro mitotically active human male germ cells. In this study, we used a corresponding TCam-2 3D cell culture model that mimics cell–cell contacts in organ tissue to test the possible effects induced by s-microgravity exposure. TCam-2 cell spheroids were cultured for 24 h under unitary gravity (Ctr) or s-microgravity conditions, the latter obtained using a random positioning machine (RPM). A significant increase in intracellular ROS and mitochondria superoxide anion levels was observed after RPM exposure. In line with these results, a trend of protein and lipid oxidation increase and increased pCAMKII expression levels were observed after RPM exposure. The ultrastructural analysis via transmission electron microscopy revealed that RPM-exposed mitochondria appeared enlarged and, even if seldom, disrupted. Notably, even the expression of the main enzymes involved in the redox homeostasis appears modulated by RPM exposure in a compensatory way, with GPX1, NCF1, and CYBB being downregulated, whereas NOX4 and HMOX1 are upregulated. Interestingly, HMOX1 is involved in the heme catabolism of mitochondria cytochromes, and therefore the positive modulation of this marker can be associated with the observed mitochondria alteration. Altogether, these data demonstrate TCam-2 spheroid sensitivity to acute s-microgravity exposure and indicate the capability of these cells to trigger compensatory mechanisms that allow them to overcome the exposure to altered gravitational force. Full article
(This article belongs to the Special Issue New Insights into Microgravity and Space Biology)
Show Figures

Figure 1

17 pages, 2873 KiB  
Article
The Design of a Dynamic Configurable Packet Parser Based on FPGA
by Ying Sun and Zhichuan Guo
Micromachines 2023, 14(8), 1560; https://doi.org/10.3390/mi14081560 - 5 Aug 2023
Cited by 1 | Viewed by 2266
Abstract
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced [...] Read more.
To meet the evolving demands of programmable networks and address the limitations of traditional fixed-type protocol parsers, we propose a dynamic and configurable low-latency parser implemented on an FPGA. The architecture consists of three protocol analysis modules and a TCAM-SRAM. Latency is reduced by optimizing the state machine and parallel extraction matching. At the same time, we introduce the chain mapping idea and container concept to formulate the matching and extraction rules of table entries and enhance the extensibility of the parser. Furthermore, our system supports dynamic configuration through SDN control, allowing flexible adaptation to diverse scenarios. Our design has been verified and simulated with a cocotb-based framework. The resulting architecture is implemented on Xilinx Ultrascale+ FPGAs and supports a throughput of more than 80 Gbps, with a maximum latency of only 36 nanoseconds for L4 protocol parsing. Full article
(This article belongs to the Special Issue FPGA Applications and Future Trends)
Show Figures

Figure 1

14 pages, 6751 KiB  
Article
The Subtype Identity of Testicular Cancer Cells Determines Their Immunostimulatory Activity in a Coculture Model
by Fabian A. Gayer, Miriam Henkel, Juliane Luft, Sybille D. Reichardt, Alexander Fichtner, Tobias J. Legler and Holger M. Reichardt
Cancers 2023, 15(9), 2619; https://doi.org/10.3390/cancers15092619 - 5 May 2023
Cited by 2 | Viewed by 1633
Abstract
Testicular germ cell cancer (TGCC) is subdivided into several subtypes. While seminomatous germ cell tumors (SGCT) are characterized by an intensive infiltration of immune cells which constitute a pro-inflammatory tumor micromilieu (TME), immune cells in non-seminomatous germ cell tumors (NSGCT) are differently composed [...] Read more.
Testicular germ cell cancer (TGCC) is subdivided into several subtypes. While seminomatous germ cell tumors (SGCT) are characterized by an intensive infiltration of immune cells which constitute a pro-inflammatory tumor micromilieu (TME), immune cells in non-seminomatous germ cell tumors (NSGCT) are differently composed and less abundant. Previously, we have shown that the seminomatous cell line TCam-2 promotes T cell and monocyte activation in a coculture model, resulting in mutual interactions between both cell types. Here we set out to compare this feature of TCam-2 cells with the non-seminomatous cell line NTERA-2. Peripheral blood T cells or monocytes cocultured with NTERA-2 cells failed to secrete relevant amounts of pro-inflammatory cytokines, and significantly downregulated the expression of genes encoding activation markers and effector molecules. In contrast, immune cells cocultured with TCam-2 cells produced IL-2, IL-6 and TNFα, and strongly upregulated the expression of multiple pro-inflammatory genes. Furthermore, the expression of genes involved in proliferation, stemness and subtype specification remained unaltered in NTERA-2 cells during coculture with T cells or monocytes, indicating the absence of mutual interactions. Collectively, our findings uncover fundamental differences between SGCT and NSGCT in their capability to generate a pro-inflammatory TME, which possibly impacts the clinical features and prognosis of both TGCC subtypes. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

21 pages, 4859 KiB  
Article
Activin and BMP Signalling in Human Testicular Cancer Cell Lines, and a Role for the Nucleocytoplasmic Transport Protein Importin-5 in Their Crosstalk
by Karthika Radhakrishnan, Michael Luu, Josie Iaria, Jessie M. Sutherland, Eileen A. McLaughlin, Hong-Jian Zhu and Kate L. Loveland
Cells 2023, 12(7), 1000; https://doi.org/10.3390/cells12071000 - 24 Mar 2023
Cited by 2 | Viewed by 2116
Abstract
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma [...] Read more.
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma and non-seminoma tumour types. A balance between activin and BMP signalling may influence TGCT emergence and progression, and we investigated this using human cell line models of seminoma (TCam-2) and non-seminoma (NT2/D1). Activin A- and BMP4-regulated transcripts measured at 6 h post-treatment by RNA-sequencing revealed fewer altered transcripts in TCam-2 cells but a greater responsiveness to activin A, while BMP4 altered more transcripts in NT2/D1 cells. Activin significantly elevated transcripts linked to pluripotency, cancer, TGF-β, Notch, p53, and Hippo signalling in both lines, whereas BMP4 altered TGF-β, pluripotency, Hippo and Wnt signalling components. Dose-dependent antagonism of BMP4 signalling by activin A in TCam-2 cells demonstrated signalling crosstalk between these two TGF-β superfamily arms. Levels of the nuclear transport protein, IPO5, implicated in BMP4 and WNT signalling, are highly regulated in the foetal mouse germline. IPO5 knockdown in TCam-2 cells using siRNA blunted BMP4-induced transcript changes, indicating that IPO5 levels could determine TGF-β signalling pathway outcomes in TGCTs. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

2 pages, 202 KiB  
Abstract
Microgravity-Induced Metabolic Response in 2D and 3D TCam-2 Cell Cultures
by Caterina Morabito, Simone Guarnieri, Marika Berardini, Luisa Gesualdi, Francesca Ferranti, Anna Reale, Giulia Ricci, Angela Catizone and Maria A. Mariggiò
Biol. Life Sci. Forum 2023, 21(1), 7; https://doi.org/10.3390/blsf2023021007 - 20 Mar 2023
Viewed by 755
Abstract
The past few decades have seen an increasing number of both space travels and studies aimed at investigating the effects induced by space flights and the environment on humans. One of the main features of these conditions is the presence of altered gravity, [...] Read more.
The past few decades have seen an increasing number of both space travels and studies aimed at investigating the effects induced by space flights and the environment on humans. One of the main features of these conditions is the presence of altered gravity, mostly represented by microgravity experienced by astronauts. Microgravity is well known to induce deleterious effects at cellular, organ and systemic levels, including alterations in the male and female reproductive systems. In the present study, we investigated the effect of simulated microgravity on the metabolic activity of male germ cells using TCam-2 line as a cell model. These cells were cultured in the Random Positioning Machine that simulated microgravity conditions, and were grown as 2D monolayers or 3D spheroids to assay the effects on single cells or on organ-like structures. After a 24 hour-exposure to simulated microgravity, TCam-2 monolayers showed: (1) a decreased proliferation rate and a delay in cell cycle progression; (2) increased anaerobic metabolism; (3) increased levels of reactive oxygen species and superoxide anion; (4) modifications in mitochondrial morphology. After the same 24 hour-exposure, TCam-2 spheroids showed: (1) an increased anaerobic and aerobic activity in 40% and 26% of samples, respectively; (2) alterations in the redox balance with a decrease in catalase activity in about 65% of cell samples, and therefore, a deficit in the cellular antioxidant capacity; (3) increases in oxidative damage to proteins and lipids in more than 50% of cell samples. In conclusion, these data demonstrated a clear inference of simulated microgravity on the metabolic activity of TCam-2 cells, which is expressed through the activation of an oxidative stress state, that, if not compensated for, could be deleted over time. Full article
2 pages, 203 KiB  
Abstract
Microgravity Exposure Induces Antioxidant Barrier Deregulation and Mitochondrial Structure Alterations in TCam-2 Cells
by Luisa Gesualdi, Marika Berardini, Francesca Ferranti, Anna Reale, Michele Zampieri, Katsiaryna Karpach, Maria A. Mariggiò, Caterina Morabito, Simone Guarnieri, Angela Catizone and Giulia Ricci
Biol. Life Sci. Forum 2023, 21(1), 6; https://doi.org/10.3390/blsf2023021006 - 20 Mar 2023
Viewed by 843
Abstract
One of the hallmarks of microgravity-induced alterations in several cell models is an alteration in oxidative balance. Notably, male germ cells, sensitive to oxidative stress, have also been shown susceptibility to changes in gravitational force. To gain more insights into the mechanisms of [...] Read more.
One of the hallmarks of microgravity-induced alterations in several cell models is an alteration in oxidative balance. Notably, male germ cells, sensitive to oxidative stress, have also been shown susceptibility to changes in gravitational force. To gain more insights into the mechanisms of male germ cells’ response to altered gravity, a 3D cell culture model was established from TCam-2 cells, a seminoma cell line and the only available in vitro model to study mitotically active human male germ cells. TCam-2 spheroids were cultured for 24 hours under unitary gravity (UG) or simulated microgravity conditions (SM), which was achieved using a random positioning machine (RPM). Apoptosis and necrosis analyses performed on the UG- and SM exposed samples revealed no significant differences in all of the cell death markers. Notably, the Mitosox assay revealed significant oxidation of mitochondria, after microgravity exposure, at least at this culture time. In the SM-treated samples, gene expression levels (evaluated by real-time PCR) of the main enzymes of the antioxidant barrier, GPX1 and NCF1, were reduced, indicating an influence of SM on mitochondrial function. Notably, the expression of HMOX, involved in the heme catabolism of mitochondrial cytochromes, was increased. The SOD, XDH, CYBA, NCF-2, TXN, and TXNRD genes were not affected. The ultrastructural analysis by transmission electron microscopy revealed that SM significantly altered TCam-2 spheroid mitochondria, which appeared swollen and, in some cases, disrupted. Indeed, mitophagy, or mitochondrial autophagy, appears to be more represented in the samples exposed to simulated microgravity. This result seems to be in line with the increase, mediated by the simulated microgravity, in the enzyme HMOX. All together, these preliminary data demonstrate TCam-2 spheroids’ sensitivity to acute SM exposure, strongly indicating a microgravity-dependent modulation of mitochondrial morphology and activity and encouraging us to perform further investigations on the chronical exposure to SM of TCam-2 spheroids. Full article
Back to TopTop