Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,543)

Search Parameters:
Keywords = antibacterial activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5155 KiB  
Article
Antibacterial UV-Curable Gel with Hydroxyapatite Nanoparticles for Regenerative Medicine in the Field of Orthopedics
by Julia A. Burunkova, Valeria V. Semykina, Vera E. Sitnikova, Dmitry M. Dolgintsev, Faliya F. Zaripova, Alina A. Ponomareva, Diana R. Mizina, Attila Csick, Sandor Kokenyesi and Anton Zhilenkov
J. Compos. Sci. 2025, 9(2), 65; https://doi.org/10.3390/jcs9020065 (registering DOI) - 1 Feb 2025
Abstract
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because [...] Read more.
The development and analysis of the properties of a new material based on UV-curable acrylate monomers with silicon-containing hydroxyapatite and zinc oxide nanoparticles as an antibacterial component and gelatin was carried out. Using this material in orthopedics and dentistry is very convenient because it covers any surface geometry of metal implants and hardens under ultraviolet light. In this work, sorption properties, changes in porosity, and mechanical properties of the material were investigated. The conditions for obtaining hydroxyapatite (HA) nanoparticles and the presence of silicon oxide nanoparticles and organic for the shell in an aqueous medium were studied for the pH of the medium, the sequence of administration and concentration of the material components, as well as antibacterial properties. This polymer material is partially resorbable. That supports not only the growth of bone cells but also serves as a protective layer. It reduces friction between organic tissues and a metal implant and can be a solution to the problem of the aseptic instability of metal implants. The material can also be used to repair damaged bones and cartilage tissues, especially in cases where the application and curing procedure is performed using laparoscopic methods. In this work, the authors propose a simple and quite cheap method for obtaining material based on photopolymerizable acrylates and natural gelatin with nanoparticles of HA, zinc oxide, and silicon oxide. The method allows one to obtain a composite material with different nanoparticles in a polymer matrix which retain the requisite properties needed such as active-sized HA, antibacterial ZnO, and structure-forming and stability-improving SiO2 nanoparticles. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

24 pages, 12317 KiB  
Article
Combining Subtractive Genomics with Computer-Aided Drug Discovery Techniques to Effectively Target S. sputigena in Periodontitis
by Mallari Praveen, Chendruru Geya Sree, Simone Brogi, Vincenzo Calderone and Kamakshya Prasad Kanchan Prava Dalei
Computation 2025, 13(2), 34; https://doi.org/10.3390/computation13020034 (registering DOI) - 1 Feb 2025
Abstract
This study aimed to provide an inclusive in silico investigation for the identification of novel drug targets that can be exploited to develop drug candidates for treating oral infections caused by S. sputigena. By coupling subtractive genomics with an in silico drug [...] Read more.
This study aimed to provide an inclusive in silico investigation for the identification of novel drug targets that can be exploited to develop drug candidates for treating oral infections caused by S. sputigena. By coupling subtractive genomics with an in silico drug discovery approach, we identified dTDP-4-dehydrorhamnose 3,5-epimerase (UniProt ID: C9LUR0), UTP-glucose-1-phosphate uridyltransferase (UniProt ID: C9LRH1), and imidazole glycerol phosphate synthase (UniProt ID: C9LTU7) as three unique proteins crucial for the S. sputigena life cycle with no substantial similarity to human proteins. These potential drug targets served as the starting point for screening bioactive phytochemicals (1090 compounds) from the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database. Among the screened natural products, cubebin (IMPHY001912) showed a higher affinity for two of the three selected targets, as evidenced by molecular docking and molecular dynamics studies. Given its favorable drug-like profile and possible multitargeting behavior, cubebin could be further exploited as an antibacterial agent for treating S. sputigena-mediated oral infections. It is worth nothing that cubebin could be the active ingredient of appropriate formulations such as mouthwash and/or toothpaste to treat S. sputigena-induced periodontitis, with the advantage of limiting the adverse effects that could affect the use of current drugs. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

25 pages, 4457 KiB  
Article
Pyrrolizine- and Indolizine-Derived Spirooxindoles: Synthesis, Antibacterial Activity and Inverse Docking Analysis
by Pablo Romo, María del Pilar Crespo, Mauricio Barreto, María Elena Burbano, Melissa Mejia-Gutierrez, Jairo Quiroga and Rodrigo Abonia
Chemistry 2025, 7(1), 18; https://doi.org/10.3390/chemistry7010018 (registering DOI) - 1 Feb 2025
Abstract
Spirooxindoles are a family of heterocyclic compounds which bear the oxindole nucleus in their structures, which have a considerable pharmaceutical potential and which have been linked to various drugs for the treatment of diverse diseases. In this work, a wide variety of spirooxindoles [...] Read more.
Spirooxindoles are a family of heterocyclic compounds which bear the oxindole nucleus in their structures, which have a considerable pharmaceutical potential and which have been linked to various drugs for the treatment of diverse diseases. In this work, a wide variety of spirooxindoles bearing a pyrrolizinic nucleus were obtained by a 1,3-dipolar cycloaddition reaction between substituted isatins, trans-3-benzoyl acrylic acid and L-proline. In this approach, the target products 9am were obtained in 40–86% yields under heating to reflux in methanol over 2 h. Similarly, spirooxindoles containing an indolizinic nucleus 11aj were obtained in 45–69% yields by switching L-proline for pipecolic acid under heating to reflux in acetonitrile for 8 h. The antibacterial activity of the obtained products was evaluated against P. aeruginosa, K. pneumoniae, E. coli, S. aureus, and N. gonorrhoeae, also including an inverse docking analysis. Results show that 9f and 11i, were the most active compounds against S. aureus, while compounds 9d and 9m displayed the higher activity against N. gonorrhoeae. Inverse docking analysis showed that compounds 9b, 11a 11e, and 11i displayed high affinity to the target protein 6TYM and 7Q6S, which are involved in biological pathways of diverse cancer and Parkinson diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

28 pages, 1215 KiB  
Review
Towards Improved Bioavailability of Cereal Inositol Phosphates, Myo-Inositol and Phenolic Acids
by Krzysztof Żyła and Aleksandra Duda
Molecules 2025, 30(3), 652; https://doi.org/10.3390/molecules30030652 (registering DOI) - 1 Feb 2025
Abstract
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with [...] Read more.
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with the prevention of metabolic syndrome and colon cancer. The bran fraction of wheat, maize, brown rice and other cereals contains high levels of phytate, free and total phenolics, and endogenous enzymes such as amylases, phytase, xylanase, β-glucanase and feruloyl esterase, whose activities can be increased by germination. The preliminary steps of digestion begin in the oral cavity where substrates for the action of endogenous cereal and salivary enzymes start to be released from the food matrix. IP6 released from phytate complexes with arabinoxylans, starch and protein bodies would eventually enhance the absorption of nutrients, including phenolics, by regulating tight junctions and, together with ferulic acid (FA), would maintain cell barrier integrity and epithelial antibacterial immunity. In addition, both IP6 and FA exert potent and complementary antioxidant effects, while FA together with IPx generated through advanced hydrolysis of IP6 by endogenous and microbial phytases may affect digestive enzyme activity and incretin secretion, resulting in modulated insulin and glucagon release and prevention of various diabetic complications. Contrary to widespread negative attitudes towards phytate, in this review, we present the strategy of selecting cereals with high phytate and phenolic content, as well as high endogenous phytase, feruloyl esterase and endoxylanase activities, to produce value-added health-promoting foods. The advanced hydrolysis of phytate and phenolic compounds by cereal and/or microbial enzymes would generate substantial amounts of “enzymatically generated inositol” (EGI), including IP6, IPx and myo-inositol, the compounds that, together with free FA, provide enhanced bioavailability of cereal nutrients through multiple synergistic effects not previously realised. Full article
27 pages, 7343 KiB  
Article
Cannabidiol (CBD) Acts as an Antioxidant on Gardnerella vaginalis, Resulting in Reduced Metabolic Activity, Loss of Survivability, and Elimination of Biofilms
by Ronit Vogt Sionov, Maya Korem, Itzhack Polacheck and Doron Steinberg
Antibiotics 2025, 14(2), 136; https://doi.org/10.3390/antibiotics14020136 (registering DOI) - 1 Feb 2025
Viewed by 118
Abstract
Background: Gardnerella vaginalis is a natural inhabitant of the vagina, but when an imbalance occurs in the vaginal microbiota, this bacterium can cause vaginosis, a condition that must be treated when symptomatic and prior to a gynecological intervention. Cannabidiol (CBD) is an [...] Read more.
Background: Gardnerella vaginalis is a natural inhabitant of the vagina, but when an imbalance occurs in the vaginal microbiota, this bacterium can cause vaginosis, a condition that must be treated when symptomatic and prior to a gynecological intervention. Cannabidiol (CBD) is an anti-inflammatory compound that also has antibacterial activities against several Gram-positive and certain Gram-negative bacteria. Objectives: Since G. vaginalis is an opportunistic pathogenic Gram-variable bacterium, we investigated its response to CBD. Methods: The antibacterial activity of CBD was studied by broth dilution assay, changes in intracellular ATP levels, and the ability of bacteria to recover on chocolate agar plates. The antibiofilm activity was investigated by MTT metabolic assay, crystal violet staining, and HR-SEM. Flow cytometric analyses were performed to measure changes in membrane potential, membrane perforation, and metabolic activity. Reactive oxygen species (ROS) production was analyzed using the nitro blue tetrazolium (NBT) reagent. Gene expression was determined by semi-quantitative real-time PCR, while protein composition was determined by LC-MS/MS analysis. Results: We observed that G. vaginalis clinical isolates exhibited high susceptibility to CBD with a minimum inhibitory concentration (MIC) of 2.5 µg/mL CBD. CBD induced rapid membrane hyperpolarization and caused cytoplasmic leakage of ATP without increasing propidium iodide uptake. This was accompanied by reduced metabolic activity and loss of survivability. Proteomic analysis revealed decreased expression of some ribosomal-associated proteins. CBD exhibited antioxidant activity by reducing intracellular ROS levels in a dose-dependent manner. The antibacterial effect was neutralized by the free radical scavenger α-tocopherol, suggesting the involvement of radicals in executing the antibacterial effect. Importantly, CBD not only prevented the biofilm formation of G. vaginalis but also reduced the metabolic activity and biofilm biomass of preformed, mature biofilms. Real-time PCR analysis of G. vaginalis treated with CBD for 6 h showed an increase in the expression of biofilm-associated genes, suggesting that the antibiofilm activity of CBD is mainly due to its antibacterial effect. CBD did not alter the ability of G. vaginalis to adhere to HeLa cervical carcinoma cells and CBD-treated bacteria were still phagocytosed by RAW264.7 macrophages. Conclusions: Our study shows that CBD exhibits antibacterial and antibiofilm activities against G. vaginalis clinical isolates and is thus a potential drug for the treatment of vaginosis caused by this bacterium. Full article
(This article belongs to the Special Issue Antimicrobial and Antibiofilm Activity by Natural Compounds)
Show Figures

Figure 1

30 pages, 6137 KiB  
Article
Comprehensive Metabolomics Profiling and Bioactivity Study of Lycium shawii (Awsaj) Extracts with Particular Emphasis on Potential Anti-Malarial Properties
by Ruba Al-Nemi, Mutaz Akkawi, Khalid Sawalha, Siska Andrina Kusumastuti, Nuralih, Susi Kusumaningrum, Tia Okselni, Vania Chlarisa Situmorang, Abdi Wira Septama, Mariusz Jaremko and Abdul-Hamid Emwas
Metabolites 2025, 15(2), 84; https://doi.org/10.3390/metabo15020084 (registering DOI) - 1 Feb 2025
Viewed by 244
Abstract
Background/Objectives: Although malaria is one of the oldest known human diseases, it continues to be a major global health challenge. According to UNICEF, the global malaria mortality rate exceeded 600,000 annually in 2022, which includes more than 1000 children dying each day. This [...] Read more.
Background/Objectives: Although malaria is one of the oldest known human diseases, it continues to be a major global health challenge. According to UNICEF, the global malaria mortality rate exceeded 600,000 annually in 2022, which includes more than 1000 children dying each day. This study aimed to investigate the comprehensive chemical profile and biological activities, particularly the antimalarial activity, of Lycium shawii (Awsaj), a shrub traditionally used in the Arabian Peninsula, Middle East, India, and Africa to treat a myriad of ailments. Methods: Crude extracts of L. shawii were prepared using water, ethanol, methanol, and acetone. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) were utilized to perform untargeted metabolomics to maximize metabolite detection and tentatively identify bioactive phytochemicals. The total phenolic content (TPC) was measured for each extract, and bioassays were conducted to evaluate their antimalarial, antibacterial, and anti-inflammatory activities, particularly those of the water extract, which is the traditional method of consumption in Arabian folk medicine. Results: A total of 148 metabolites were detected, 45 of which were classified as phytochemicals. The bioassays revealed that the water extract that is traditionally used showed promising antimalarial potential by significantly inhibiting β-hematin formation in vitro at 1 mg/mL (with an absorbance of 0.140 ± 0.027). This is likely due to the rich presence of quinoline in the aqueous extract among several other bioactive phytochemicals, such as phenylpropanoids, alkaloids, flavonoids, and benzenoids. However, their anti-inflammatory and antibacterial activities were found to be weak, with only a minor inhibition of nitric oxide (NO) production in LPS-induced RAW 264.7 cells at a concentration of 500 µg/mL and weak antibacterial effects against pathogens like P. aeruginosa, MRSA, A. baumannii, and K. pneumoniae with an MIC of 500 μg/mL. The results also revealed that the methanolic extract had the highest TPC at 26.265 ± 0.005 mg GAE/g. Conclusions: The findings support the traditional medicinal use of L. shawii and highlight its potential as a source of novel therapeutic compounds, particularly for treating malaria. This study encourages further research to isolate and develop effective plant-based anti-malarial agents. Full article
Show Figures

Figure 1

25 pages, 498 KiB  
Review
Nanotechnology Meets Phytotherapy: A Cutting-Edge Approach to Treat Bacterial Infections
by Katarzyna Pacyga, Paweł Pacyga, Emilia Szuba, Szymon Viscardi, Ewa Topola and Anna Duda-Madej
Int. J. Mol. Sci. 2025, 26(3), 1254; https://doi.org/10.3390/ijms26031254 - 31 Jan 2025
Viewed by 219
Abstract
The increasing prevalence of bacterial infections and the rise in antibiotic resistance have prompted the search for alternative therapeutic strategies. One promising approach involves combining plant-based bioactive substances with nanoparticles, which have demonstrated improved antimicrobial activity compared to their free forms, both in [...] Read more.
The increasing prevalence of bacterial infections and the rise in antibiotic resistance have prompted the search for alternative therapeutic strategies. One promising approach involves combining plant-based bioactive substances with nanoparticles, which have demonstrated improved antimicrobial activity compared to their free forms, both in vitro, in vivo, and in clinical studies. This approach not only improves their stability but also enables targeted delivery to bacterial cells, reducing side effects and minimising the risk of resistance development, leading to more effective treatments. This narrative review explores the benefits of combining bioactive plant compounds (berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine) with nanoparticles for the treatment of bacterial infections (caused by Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens, and Pseudomonas aeruginosa), highlighting the potential of this approach to overcome the limitations of traditional antimicrobial therapies. Ultimately, this strategy offers a promising alternative in the fight against resistant bacterial strains, paving the way for the development of more effective and sustainable treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds of Natural Origin)
18 pages, 707 KiB  
Review
Light-Activable Silver Nanoparticles for Combatting Antibiotic-Resistant Bacteria and Biofilms
by Varsha Godakhindi, Elana Kravitz and Juan Luis Vivero-Escoto
Molecules 2025, 30(3), 626; https://doi.org/10.3390/molecules30030626 - 31 Jan 2025
Viewed by 190
Abstract
Silver nanoparticles (AgNPs) are among the most widely used nanoparticulate materials for antimicrobial applications. The innate antibacterial properties of AgNPs are closely associated with the release of silver ions (Ag+) and the generation of reactive oxygen species (ROS). Multiple reports have [...] Read more.
Silver nanoparticles (AgNPs) are among the most widely used nanoparticulate materials for antimicrobial applications. The innate antibacterial properties of AgNPs are closely associated with the release of silver ions (Ag+) and the generation of reactive oxygen species (ROS). Multiple reports have elaborated on the synergistic effect against bacteria by combining photosensitizers with AgNPs (PS-AgNPs). This combination allows for the light-activated generation of Ag+ and ROS from PS-AgNPs. This is an efficient and controlled approach for the effective elimination of pathogens and associated biofilms. This review summarizes the design and synthetic strategies to produce PS-AgNPs reported in the literature. First, we explore multiple bacterial cell death mechanisms associated with AgNPs and possible pathways for resistance against AgNPs and Ag+. The next sections summarize the recent findings on the design and application of PS-AgNPs for the inactivation of resistant and non-resistant bacterial strains as well as the elimination and inhibition of biofilms. Finally, the review describes major outcomes in the field and provides a perspective on the future applications of this burgeoning area of research. Full article
24 pages, 342 KiB  
Review
Lipid Nanoparticles Carrying Essential Oils for Multiple Applications as Antimicrobials
by Elenice Francisco da Silva, Fernanda Aparecida Longato dos Santos, Henrique Machado Pires, Luciana Machado Bastos and Lígia Nunes de Morais Ribeiro
Pharmaceutics 2025, 17(2), 178; https://doi.org/10.3390/pharmaceutics17020178 - 31 Jan 2025
Viewed by 329
Abstract
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of [...] Read more.
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of essential EO-based LNPs with antimicrobial properties and applications in human and animal health, as well as biopesticides. In the human healthcare field, reports have addressed the effect of encapsulating EOs in lipid nanosystems with antiviral, antibacterial, antiprotozoal and antifungal activities. In animal care, this still needs to be more deeply explored while looking for more sustainable alternatives against different types of parasites that affect animal health. Overall, the antibacterial activities of LNPs carrying EOs are described as alternatives to the use of synthetic antibiotics. In the field of agriculture, studies showed that these approaches in the control of phytopathogens and other pests that affect food production. There is a growing demand for innovative and more sustainable technologies. However, there are still some challenges to be overcome in order to allow these innovations to reach the market. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 2711 KiB  
Article
Design of Decanoic Acid/Polysorbate 80 Composite Vesicles as Cosmetics Carrier: Stability, Skin Permeability, Antioxidant and Antibacterial Activity
by Ying Yang, Bohang Zou, Xinyu Fan, Xinyue Ma, Siqi Li, Xiangyu Zhang, Jinlian Li and Dongmei Wu
Molecules 2025, 30(3), 624; https://doi.org/10.3390/molecules30030624 - 31 Jan 2025
Viewed by 177
Abstract
Fatty acid vesicles are natural biomaterials which possess unique bilayer structures and offer biomimetic advantages for drug and gene delivery. Nevertheless, the formation of fatty acid vesicles is limited to neutral alkaline circumstances and cannot adapt to the acidic environment of the living [...] Read more.
Fatty acid vesicles are natural biomaterials which possess unique bilayer structures and offer biomimetic advantages for drug and gene delivery. Nevertheless, the formation of fatty acid vesicles is limited to neutral alkaline circumstances and cannot adapt to the acidic environment of the living system. In this work, the non-ionic surfactant polysorbate 80 (TW80) was introduced, extending the pH window of vesicles formed by decanoic acid (DA) from 6.90–7.80 to 2.28–6.31. The DA/TW80 composite vesicles were used to encapsulate quercetin (QT), achieving an encapsulation efficiency of up to 75.6%. The formation of DA/TW80/QT composite vesicles was confirmed through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Moreover, free QT was released rapidly, while QT encapsulated in the DA/TW80 composite vesicles demonstrated a slower release profile. Skin permeability studies revealed that the cumulative drug penetration within 24 h using the DA/TW80/QT composite vesicles reached approximately 904.7 μg·cm−2, 1.81 times higher than that of a QT solution. Furthermore, the DA/TW80/QT composite vesicles demonstrated enhanced antioxidant activity and greater antibacterial efficacy compared to either the drug or the vesicles alone. The results provide a crucial foundation for the application of drug-loaded vesicles in cosmetics. Full article
(This article belongs to the Section Medicinal Chemistry)
23 pages, 1344 KiB  
Article
In Silico Approach for Antibacterial Discovery: PTML Modeling of Virtual Multi-Strain Inhibitors Against Staphylococcus aureus
by Valeria V. Kleandrova, M. Natália D. S. Cordeiro and Alejandro Speck-Planche
Pharmaceuticals 2025, 18(2), 196; https://doi.org/10.3390/ph18020196 - 31 Jan 2025
Viewed by 320
Abstract
Background/Objectives: Infectious diseases caused by Staphylococcus aureus (S. aureus) have become alarming health issues worldwide due to the ever-increasing emergence of multidrug resistance. In silico approaches can accelerate the identification and/or design of versatile antibacterial chemicals with the ability to [...] Read more.
Background/Objectives: Infectious diseases caused by Staphylococcus aureus (S. aureus) have become alarming health issues worldwide due to the ever-increasing emergence of multidrug resistance. In silico approaches can accelerate the identification and/or design of versatile antibacterial chemicals with the ability to target multiple S. aureus strains with varying degrees of drug resistance. Here, we develop a perturbation theory machine learning model based on a multilayer perceptron neural network (PTML-MLP) for the prediction and design of versatile virtual inhibitors against S. aureus strains. Methods: To develop the PTML-MLP model, chemical and biological data associated with antibacterial activity against S. aureus strains were retrieved from the ChEMBL database. We applied the Box–Jenkins approach to convert the topological indices into multi-label graph-theoretical indices; the latter were used as inputs for the creation of the PTML-MLP model. Results: The PTML-MLP model exhibited accuracy higher than 80% in both training and test sets. The physicochemical and structural interpretation of the PTML-MLP model was performed through the fragment-based topological design (FBTD) approach. Such interpretations permitted the analysis of different molecular fragments with favorable contributions to the multi-strain antibacterial activity and the design of four new drug-like molecules using different fragments as building blocks. The designed molecules were predicted/confirmed by our PTML model as multi-strain inhibitors of diverse S. aureus strains, thus representing promising chemotypes to be considered for future synthesis and biological testing of versatile anti-S. aureus agents. Conclusions: This work envisages promising applications of PTML modeling for early antibacterial drug discovery and related antimicrobial research areas. Full article
Show Figures

Figure 1

21 pages, 17835 KiB  
Article
Urtica dioica Aqueous Leaf Extract: Chemical Composition and In Vitro Evaluation of Biological Activities
by Nouha Dakhli, Auxiliadora López-Jiménez, Casimiro Cárdenas, Manel Hraoui, Jihene Dhaouafi, Manuel Bernal, Hichem Sebai and Miguel Ángel Medina
Int. J. Mol. Sci. 2025, 26(3), 1220; https://doi.org/10.3390/ijms26031220 - 30 Jan 2025
Viewed by 271
Abstract
Urtica dioica L. has been used as a natural remedy due to its healing properties for over 2000 years. The aim of this study is to investigate the chemical composition, antimicrobial, antioxidant, and antitumor properties in vitro of the aqueous extract of Urtica [...] Read more.
Urtica dioica L. has been used as a natural remedy due to its healing properties for over 2000 years. The aim of this study is to investigate the chemical composition, antimicrobial, antioxidant, and antitumor properties in vitro of the aqueous extract of Urtica dioica leaves (AEUD). The chemical composition was assessed by an ultra-high-performance liquid chromatography system coupled to a benchtop QExactive high-resolution accurate mass spectrometry operating in a data-dependent acquisition mode as a non-target approach. Minimal inhibitory concentration (MIC) and disc diffusion were used to assess the antibacterial efficacy against nine bacterial strains. The antioxidant impact was assessed using DPPH, ABTS, FRAP, and ferrous ion-chelating ability assays. By using the MTT method, the cytotoxicity effect of AEUD on colon cancer cell HCT-116 was evaluated. Flow cytometry was used to analyze the cell cycle. Finally, the anti-migration and anti-invasion properties of AEUD on HCT-116 cells were estimated using the wound healing test and Transwell assays. AEUD is a rich source of phenolic compounds. The results of disc diffusion and MIC showed that the AEUD is more active against Gram-positive bacteria than against Gram-negative bacteria. MTT assay confirmed that the AEUD inhibited HCT-116 colon cancer cell proliferation. Findings of flow cytometry confirmed that cell cycle arrest occurred at the G2 phase. Additionally, AEUD had anti-migration and anti-invasion effects. This study shows that Urtica dioica aqueous leaf extract exhibits potential antibacterial, antioxidant, and antitumoral activities on HCT-116 colon cancer cells. Full article
16 pages, 596 KiB  
Article
Phytochemical Research and Screening of Pharmacological Activity in Eryngium planum L. Herb Extracts
by Ksenia Matiusha, Andriy Grytsyk, Roman Hrytsyk, Ain Raal and Oleh Koshovyi
Appl. Sci. 2025, 15(3), 1433; https://doi.org/10.3390/app15031433 - 30 Jan 2025
Viewed by 297
Abstract
Species of the genus Eryngium L. of the Apiaceae family are successfully used in folk medicine in various countries worldwide, but they are hardly implemented in official medicinal and pharmaceutical practices. Therefore, it is advisable to conduct phytochemical and pharmacological research in E. [...] Read more.
Species of the genus Eryngium L. of the Apiaceae family are successfully used in folk medicine in various countries worldwide, but they are hardly implemented in official medicinal and pharmaceutical practices. Therefore, it is advisable to conduct phytochemical and pharmacological research in E. planum L. herb extracts to develop and implement new phytomedicines based on this raw material. Purified water, and 40% and 70% ethanol were used for obtaining soft extracts. A total of seven hydroxycinnamic acids, six flavonoids, and three tannin metabolites were identified and quantified in the E. planum extracts by HPLC. These extracts were characterized as practically non-toxic medicines (V toxicity class, LD50 > 5000 mg/kg). The hepatoprotective activity of the E. planum extracts has been established. They were affected to reduce serum thiobarbituric acid (TBA) levels by 29.3%, 31.5%, and 32.4%, respectively, compared to untreated animals and in liver homogenate by 59.5%, 65.4%, and 66.8%, respectively. The alanine transaminase (ALT) activity decreased by 26.9%, 30.8%, and 33.8%, respectively. The aspartate transaminase (AST) activity decreased by 23.9 %, 25.7 %, and 30.5 %, respectively. The sedative activity of E. planum extracts was studied for the first time. The 70% ethanol extract has the most pronounced sedative effect due to a significant decrease in motor activity (by 2.4 times compared to the control group) in the «Open Field test» and reduction in concern in the «Cube tests», «Raised Cross Maze», and "Black and White Camera". This extract also demonstrates a moderate antibacterial effect against gram-positive microorganisms (8–10 mm), including staphylococci, streptococci, and bacilli. These results provide a foundation for further preclinical and clinical studies of the dry extract of E. planum herb (extractant: 70% ethanol) to integrate it into modern medical practice and develop new supplements. Full article
(This article belongs to the Special Issue Novel Research on Bioactive Compounds in Plant Products)
37 pages, 5182 KiB  
Article
Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles
by Sevasti Matsia, Anastasios Papadopoulos, Antonios Hatzidimitriou, Lars Schumacher, Aylin Koldemir, Rainer Pöttgen, Angeliki Panagiotopoulou, Christos T. Chasapis and Athanasios Salifoglou
Int. J. Mol. Sci. 2025, 26(3), 1198; https://doi.org/10.3390/ijms26031198 - 30 Jan 2025
Viewed by 495
Abstract
Lanthanides have seen rapid growth in the pharmaceutical and biomedical field, thus necessitating the development of hybrid metal–organic materials capable of exerting defined biological activities. Ternary hybrid lanthanide compounds were synthesized through reaction systems of Ln(III) (Ln = La, Nd, Eu) involving the [...] Read more.
Lanthanides have seen rapid growth in the pharmaceutical and biomedical field, thus necessitating the development of hybrid metal–organic materials capable of exerting defined biological activities. Ternary hybrid lanthanide compounds were synthesized through reaction systems of Ln(III) (Ln = La, Nd, Eu) involving the antioxidant flavonoid chrysin (Chr) and 1,10-phenanhtroline (phen) under solvothermal conditions, thus leading to pure crystalline materials. The so-derived compounds were characterized physicochemically in the solid state through analytical (elemental analysis), spectroscopic (FT-IR, UV-visible, luminescence, ESI-MS, circular dichroism, 151Eu Mössbauer), magnetic susceptibility, and X-ray crystallographic techniques. The analytical and spectroscopic data corroborate the 3D structure of the mononuclear complex assemblies and are in line with theoretical calculations (Bond Valence Sum and Hirshfeld analysis), with their luminescence suggesting quenching on the flavonoid-phen electronic signature. Magnetic susceptibility data suggest potential correlations, which could be envisioned, supporting future functional sensors. At the biological level, the title compounds were investigated for their (a) ability to interact with bovine serum albumin and (b) antibacterial efficacy against Gram(−) (E. coli) and Gram(+) (S. aureus) bacteria, collectively revealing distinctly configured biological profiles and suggesting analogous applications in cellular (patho)physiologies. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

23 pages, 4551 KiB  
Article
The Influence of Basil and Cinnamon Essential Oils on Bioactive Sponge Composites of Collagen Reinforced with Hydroxyapatite
by Alina Robu, Madalina Georgiana Albu Kaya, Aurora Antoniac, Durmuș Alpaslan Kaya, Alina Elena Coman, Maria-Minodora Marin, Robert Ciocoiu, Rodica Roxana Constantinescu and Iulian Antoniac
Materials 2025, 18(3), 626; https://doi.org/10.3390/ma18030626 - 30 Jan 2025
Viewed by 378
Abstract
The increasing prevalence of acute traumas, surgical wounds, and chronic skin wounds poses significant therapeutic challenges for wound treatment. One of the main concerns in wound care is the danger of infection, which is a significant barrier to healing and a cause of [...] Read more.
The increasing prevalence of acute traumas, surgical wounds, and chronic skin wounds poses significant therapeutic challenges for wound treatment. One of the main concerns in wound care is the danger of infection, which is a significant barrier to healing and a cause of higher morbidity and mortality rates. The emergence of drug-resistant bacterial species is becoming more frequent every day. Antimicrobial dressings have become a viable strategy for wound healing and hospital expense savings. Several factors, such as the wound’s localization and state, microbial load, and cost, must be considered when choosing an appropriate antimicrobial dressing. One of the key goals of wound care is infection avoidance. This study addresses the therapeutic challenges of acute traumas, surgical wounds, and chronic skin wounds, focusing on infection prevention and combating drug-resistant bacterial strains. The research explores the development of novel composite wound dressings incorporating hydroxyapatite, known for its osteoconductive properties, and essential oils from basil and cinnamon, recognized for their antimicrobial activity. The study evaluates the impact of these additives on key properties such as surface morphology, water absorption, enzymatic degradation, and mechanical performance. Antimicrobial tests showed that two experimental samples (A1S and A1BS) exhibited significant activity against Escherichia coli but not on Staphylococcus aureus. The results highlight the dressings’ enhanced antimicrobial properties, mechanical strength, and controlled degradation, making them promising candidates for advanced wound healing. Tailored applications were identified, with each dressing composition offering unique benefits for specific wound-healing scenarios based on the balance between flexibility, structural support, and bioactivity. Full article
Show Figures

Figure 1

Back to TopTop