Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = chiral Lagrangian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 330 KiB  
Article
Mass Spectrum of Noncharmed and Charmed Meson States in Extended Linear-Sigma Model
by Azar I. Ahmadov, Azzah A. Alshehri and Abdel Nasser Tawfik
Particles 2024, 7(3), 560-575; https://doi.org/10.3390/particles7030031 - 29 Jun 2024
Cited by 1 | Viewed by 732
Abstract
The mass spectrum of different meson particles is generated using an effective Lagrangian of the extended linear-sigma model (eLSM) for scalar and pseudoscalar meson fields and quark flavors, up, down, strange, and charm. Analytical formulas for the masses of scalar, pseudoscalar, vector, and [...] Read more.
The mass spectrum of different meson particles is generated using an effective Lagrangian of the extended linear-sigma model (eLSM) for scalar and pseudoscalar meson fields and quark flavors, up, down, strange, and charm. Analytical formulas for the masses of scalar, pseudoscalar, vector, and axialvector meson states are derived assuming global chiral symmetry. The various eLSM parameters are analytically deduced and numerically computed. This enables accurate estimations of the masses of sixteen noncharmed and thirteen charmed meson states at vanishing temperature. The comparison of these results to a recent compilation of the particle data group (PDG) allows us to draw the conclusion that the masses of sixteen noncharmed and thirteen charmed meson states calculated in the eLSM are in good agreement with the PDG. This shows that the eLSM, with its configurations and parameters, is an effective theoretical framework for determining the mass spectra of various noncharmed and charmed meson states, particularly at vanishing temperature. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
20 pages, 359 KiB  
Article
Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory
by Ivan Dadić and Dubravko Klabučar
Symmetry 2023, 15(11), 1970; https://doi.org/10.3390/sym15111970 - 24 Oct 2023
Cited by 1 | Viewed by 1142
Abstract
We demonstrate that the Finite-Time-Path Field Theory is an adequate tool for calculating neutrino oscillations. We apply this theory using a mass-mixing Lagrangian which involves the correct Dirac spin and chirality structure and a Pontecorvo–Maki–Nakagawa–Sakata (PMNS)-like mixing matrix. The model is exactly solvable. [...] Read more.
We demonstrate that the Finite-Time-Path Field Theory is an adequate tool for calculating neutrino oscillations. We apply this theory using a mass-mixing Lagrangian which involves the correct Dirac spin and chirality structure and a Pontecorvo–Maki–Nakagawa–Sakata (PMNS)-like mixing matrix. The model is exactly solvable. The Dyson–Schwinger equations transform propagators of the input free (massless) flavor neutrinos into a linear combination of oscillating (massive) neutrinos. The results are consistent with the predictions of the PMNS matrix while allowing for extrapolation to early times. Full article
10 pages, 418 KiB  
Article
ϕ(2170) Decaying to ϕππ and ϕKK¯
by Yun-Hua Chen
Universe 2023, 9(7), 325; https://doi.org/10.3390/universe9070325 - 9 Jul 2023
Cited by 1 | Viewed by 898
Abstract
Within the framework of dispersion theory, we study the the processes e+eϕ(2170)ϕππ(KK¯). The strong pion–pion final-state interactions, especially the KK¯ coupled channel in [...] Read more.
Within the framework of dispersion theory, we study the the processes e+eϕ(2170)ϕππ(KK¯). The strong pion–pion final-state interactions, especially the KK¯ coupled channel in the S wave, are taken into account in a model-independent way using the Omnès function solution. Through fitting the experimental data of the ππ and ϕπ invariant mass distributions of the e+eϕ(2170)ϕπ+π process, the low-energy constants in the chiral Lagrangian are determined. The theoretical prediction for the cross sections’ ratio σ(e+eϕ(2170)ϕK+K)/σ(e+eϕ(2170)ϕπ+π) is given, which could be useful for selecting the physical solution, when the fit to the e+eϕK+K cross-section distribution is available in the future. Our results suggest that above the kinematical threshold of ϕKK¯, the mechanism e+eϕK+K, with the kaons rescattering to a pion pair, plays an important role in the e+eϕπ+π transition. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

19 pages, 812 KiB  
Article
On the η1(1855), π1(1400) and π1(1600) as Dynamically Generated States and Their SU(3) Partners
by Mao-Jun Yan, Jorgivan M. Dias, Adolfo Guevara, Feng-Kun Guo and Bing-Song Zou
Universe 2023, 9(2), 109; https://doi.org/10.3390/universe9020109 - 19 Feb 2023
Cited by 5 | Viewed by 1705
Abstract
In this work, we interpret the newly observed η1(1855) resonance with exotic JPC=1+ quantum numbers in the I=0 sector, reported by the BESIII Collaboration, as a dynamically generated state from the [...] Read more.
In this work, we interpret the newly observed η1(1855) resonance with exotic JPC=1+ quantum numbers in the I=0 sector, reported by the BESIII Collaboration, as a dynamically generated state from the interaction between the lightest pseudoscalar mesons and axial-vector mesons. The interaction is derived from the lowest order chiral Lagrangian from which the Weinberg–Tomozawa term is obtained, describing the transition amplitudes among the relevant channels, which are then unitarized using the Bethe–Salpeter equation, according to the chiral unitary approach. We evaluate the η1(1855) decays into the ηη and KK¯*π channels and find that the latter has a larger branching fraction. We also investigate its SU(3) partners, and according to our findings, the π1(1400) and π1(1600) structures may correspond to dynamically generated states, with the former one coupled mostly to the b1π component and the latter one coupled to the K1(1270)K¯ channel. In particular, our result for the ratio Γ(π1(1600)f1(1285)π)/Γ(π1(1600)ηπ) is consistent with the measured value, which supports our interpretation for the higher π1 state. We also report two poles with a mass about 1.7 GeV in the I=1/2 sector, which may be responsible for the K*(1680). We suggest searching for two additional η1 exotic mesons with masses around 1.4 and 1.7 GeV. In particular, the predicted η1(1700) is expected to have a width around 0.1 GeV and can decay easily into KK¯ππ. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

9 pages, 319 KiB  
Proceeding Paper
Isospin Symmetry Breaking in Non-Perturbative QCD
by Abdel Nasser Tawfik
Phys. Sci. Forum 2023, 7(1), 22; https://doi.org/10.3390/ECU2023-14047 - 16 Feb 2023
Cited by 2 | Viewed by 1009
Abstract
At finite isospin chemical potential μI, the tension between measured decays and partial branching ratios of neutral and charged bosons as functions of dimuon mass squared and the Standard Model (SM) isospin asymmetry can be analyzed in nonperturbative QCD-effective models, for [...] Read more.
At finite isospin chemical potential μI, the tension between measured decays and partial branching ratios of neutral and charged bosons as functions of dimuon mass squared and the Standard Model (SM) isospin asymmetry can be analyzed in nonperturbative QCD-effective models, for instance, the Polyakov linear sigma-model. With almost first-principle derivation of the explicit isospin symmetry breaking, namely, σ¯3=fK±fK0 the isospin sigma field, and h3=ma02fK±fK0 the third generator of the matrix of the explicit symmetry breaking H=Taha. fK± and fK0 are decay constants of K± and K0, respectively. ma0 is the mass of a0 meson. Accordingly, the QCD phase structure could be extended to finite μI. With the thermal and density dependence of a0, fK±, and fK0, σ¯3 and h3 are accordingly expressed in dependence on the temperatures and the chemical potentials. We find that the resulting critical chiral temperatures Tχ decrease with the increase in μB and/or μI. We conclude that the (TχμI) boundary has almost the same structure as that of the (TχμB) plane. Full article
(This article belongs to the Proceedings of The 2nd Electronic Conference on Universe)
Show Figures

Figure 1

25 pages, 525 KiB  
Article
The Role of the Hidden Color Channel in Some Interesting Dibaryon Candidates
by Lianrong Dai, Yuhang Wang, Langning Chen and Tiange Zhang
Symmetry 2023, 15(2), 446; https://doi.org/10.3390/sym15020446 - 7 Feb 2023
Cited by 1 | Viewed by 1799
Abstract
Nowadays, exploring dibaryon candidates has attracted much attention, both theoretically and experimentally. It is important to find a reasonable model to predict the possible dibaryon candidates. The chiral SU(3) quark model is just one of the most successful models, with which we can [...] Read more.
Nowadays, exploring dibaryon candidates has attracted much attention, both theoretically and experimentally. It is important to find a reasonable model to predict the possible dibaryon candidates. The chiral SU(3) quark model is just one of the most successful models, with which we can reasonably explain the experimental binding energies of baryon’s ground state and the properties of deuteron, NN and YN scattering processes. By utilizing the same set of model parameters, we predicted the nonstrange d* dibaryon with a binding energy of 84MeV, which is consistent with a recent experiment in which we also found that the hidden color (CC) channel plays an important role in forming this bound state. Due to the theoretical investigation of the CC channel being scarce for dibaryons, we explore other possible and interesting dibaryon candidates in the present work. According to the symmetry properties, we chose six interesting candidates, including strangeness 0,1,5,6 systems. All the hidden color wave functions were built, and the spin-flavor-color matrix elements were systematically evaluated. Then, we applied these obtained matrix elements to further dynamically solve the corresponding resonating group method’s equation in a coupled-channel calculation. The results show that the coupling to the CC channel plays an significant role in forming each spin S = 3 state, where tensor coupling is also included and has an obvious effect in forming each S = 0 state. The present work is significant in helping us to acquire deeper understanding of the effects of the hidden color channel and QCD phenomenology. Full article
Show Figures

Figure 1

8 pages, 252 KiB  
Article
Tachyons as a Consequence of Light-Cone Reflection Symmetry
by Alan Chodos
Symmetry 2022, 14(9), 1947; https://doi.org/10.3390/sym14091947 - 19 Sep 2022
Cited by 2 | Viewed by 1402
Abstract
We introduce a new symmetry, light-cone reflection (LCR), which interchanges timelike and spacelike intervals. Our motivation is to provide a reason, based on symmetry, why tachyons might exist, with emphasis on application to neutrinos. We show that LCR, combined with translations, leads to [...] Read more.
We introduce a new symmetry, light-cone reflection (LCR), which interchanges timelike and spacelike intervals. Our motivation is to provide a reason, based on symmetry, why tachyons might exist, with emphasis on application to neutrinos. We show that LCR, combined with translations, leads to a much larger symmetry. We construct an LCR-invariant Lagrangian and discuss some of its properties. In a simple example, we find complete symmetry in the spectrum between tachyons and ordinary particles. We also show that the theory allows for the introduction of a further gauge invariance related to chiral symmetry. Full article
(This article belongs to the Special Issue Tachyons and Fundamental Symmetries)
22 pages, 1375 KiB  
Article
Why Do Elementary Particles Have Such Strange Mass Ratios?—The Importance of Quantum Gravity at Low Energies
by Tejinder P. Singh
Physics 2022, 4(3), 948-969; https://doi.org/10.3390/physics4030063 - 25 Aug 2022
Cited by 8 | Viewed by 3497
Abstract
When gravity is quantum, the point structure of space-time should be replaced by a non-commutative geometry. This is true even for quantum gravity in the infra-red. Using the octonions as space-time coordinates, we construct pre-spacetime, pre-quantum Lagrangian dynamics. We show that the symmetries [...] Read more.
When gravity is quantum, the point structure of space-time should be replaced by a non-commutative geometry. This is true even for quantum gravity in the infra-red. Using the octonions as space-time coordinates, we construct pre-spacetime, pre-quantum Lagrangian dynamics. We show that the symmetries of this non-commutative space unify the standard model of particle physics with SU(2)R chiral gravity. The algebra of the octonionic space yields spinor states which can be identified with three generations of quarks and leptons. The geometry of the space implies quantisation of electric charge, and leads to a theoretical derivation of the mysterious mass ratios of quarks and the charged leptons. Quantum gravity is quantisation not only of the gravitational field, but also of the point structure of space-time. Full article
(This article belongs to the Special Issue New Advances in Quantum Geometry)
Show Figures

Figure 1

25 pages, 521 KiB  
Article
Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter
by Mannque Rho
Symmetry 2022, 14(5), 994; https://doi.org/10.3390/sym14050994 - 12 May 2022
Cited by 5 | Viewed by 3068
Abstract
We describe the mapping at high density of topological structure of baryonic matter to a nuclear effective field theory that implements hidden symmetries emergent from strong nuclear correlations. The theory constructed is found to be consistent with no conflicts with the presently available [...] Read more.
We describe the mapping at high density of topological structure of baryonic matter to a nuclear effective field theory that implements hidden symmetries emergent from strong nuclear correlations. The theory constructed is found to be consistent with no conflicts with the presently available observations in both normal nuclear matter and compact-star matter. The hidden symmetries involved are “local flavor symmetry” of the vector mesons identified to be (Seiberg-)dual to the gluons of QCD and hidden “quantum scale symmetry” with an IR fixed point with a “genuine dilaton (GD)” characterized by non-vanishing pion and dilaton decay constants. Both the skyrmion topology for Nf2 baryons and the fractional quantum Hall (FQH) droplet topology for Nf=1 baryons are unified in the “homogeneous/hidden” Wess–Zumino term in the hidden local symmetry (HLS) Lagrangian. The possible indispensable role of the FQH droplets in going beyond the density regime of compact stars approaching scale-chiral restoration is explored by moving toward the limit where both the dilaton and the pion go massless. Full article
(This article belongs to the Special Issue The Nuclear Physics of Neutron Stars)
Show Figures

Figure 1

53 pages, 2604 KiB  
Review
Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model
by Mikhail Konstantinovich Volkov, Aleksey Aleksandrovich Pivovarov and Kanat Nurlan
Symmetry 2022, 14(2), 308; https://doi.org/10.3390/sym14020308 - 2 Feb 2022
Cited by 12 | Viewed by 2268
Abstract
The U(3)×U(3) chiral symmetric NJL model describing pseudoscalar, vector, and axial-vector mesons in both the ground state and first radially excited states is shortly presented in this review. In this model, it is possible to [...] Read more.
The U(3)×U(3) chiral symmetric NJL model describing pseudoscalar, vector, and axial-vector mesons in both the ground state and first radially excited states is shortly presented in this review. In this model, it is possible to describe a large number of low-energy interactions of mesons, τ lepton decays into mesons, and processes of meson production in electron–positron annihilations in satisfactory agreement with the experiments. In describing a number of processes, it turned out to be necessary to take into account the interactions of mesons in the final state. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

8 pages, 249 KiB  
Article
Chiral Dirac Equation and Its Spacetime and CPT Symmetries
by Timothy B. Watson and Zdzislaw E. Musielak
Symmetry 2021, 13(9), 1608; https://doi.org/10.3390/sym13091608 - 2 Sep 2021
Cited by 1 | Viewed by 2370
Abstract
The Dirac equation with chiral symmetry is derived using the irreducible representations of the Poincaré group, the Lagrangian formalism, and a novel method of projection operators that takes as its starting point the minimal assumption of four linearly independent physical states. We thereby [...] Read more.
The Dirac equation with chiral symmetry is derived using the irreducible representations of the Poincaré group, the Lagrangian formalism, and a novel method of projection operators that takes as its starting point the minimal assumption of four linearly independent physical states. We thereby demonstrate the fundamental nature of this form of the Dirac equation. The resulting equation is then examined within the context of spacetime and CPT symmetries with a discussion of the implications for the general formulation of physical theories. Full article
(This article belongs to the Section Physics)
22 pages, 581 KiB  
Article
The K¯N Interaction in Higher Partial Waves
by Albert Feijoo, Daniel Gazda, Volodymyr Magas and Àngels Ramos
Symmetry 2021, 13(8), 1434; https://doi.org/10.3390/sym13081434 - 5 Aug 2021
Cited by 7 | Viewed by 2152
Abstract
We present a chiral K¯N interaction model that has been developed and optimized in order to account for the experimental data of inelastic K¯N reaction channels that open at higher energies. In particular, we study the effect of the [...] Read more.
We present a chiral K¯N interaction model that has been developed and optimized in order to account for the experimental data of inelastic K¯N reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves. Full article
Show Figures

Figure 1

11 pages, 308 KiB  
Review
Chiral Perturbation Theory at NNNLO
by Nils Hermansson-Truedsson
Symmetry 2020, 12(8), 1262; https://doi.org/10.3390/sym12081262 - 30 Jul 2020
Cited by 7 | Viewed by 2473
Abstract
Chiral perturbation theory is a much successful effective field theory of quantum chromodynamics at low energies. The effective Lagrangian is constructed systematically order by order in powers of the momentum p2, and until now the leading order (LO), next-to leading order [...] Read more.
Chiral perturbation theory is a much successful effective field theory of quantum chromodynamics at low energies. The effective Lagrangian is constructed systematically order by order in powers of the momentum p2, and until now the leading order (LO), next-to leading order (NLO), next-to-next-to leading order (NNLO) and next-to-next-to-next-to leading order (NNNLO) have been studied. In the following review we consider the construction of the Lagrangian and in particular focus on the NNNLO case. We in addition review and discuss the pion mass and decay constant at the same order, which are fundamental quantities to study for chiral perturbation theory. Due to the large number of terms in the Lagrangian and hence low energy constants arising at NNNLO, some remarks are made about the predictivity of this effective field theory. Full article
Show Figures

Figure 1

34 pages, 1839 KiB  
Review
Aspects on Effective Theories and the QCD Transition
by Angel Gómez Nicola
Symmetry 2020, 12(6), 945; https://doi.org/10.3390/sym12060945 - 3 Jun 2020
Cited by 5 | Viewed by 3280
Abstract
We review recent advances in the understanding of the Quantum Chromodynamics (QCD) transition and its nature, paying special attention to the analysis of chiral symmetry restoration within different approaches based on effective theories. After presenting some of the main aspects of the current [...] Read more.
We review recent advances in the understanding of the Quantum Chromodynamics (QCD) transition and its nature, paying special attention to the analysis of chiral symmetry restoration within different approaches based on effective theories. After presenting some of the main aspects of the current knowledge of the phase diagram from the theoretical, experimental and lattice sides, we discuss some recent problems where approaches relying on effective theories have been particularly useful. In particular, the combination of ideas such as Chiral Perturbation Theory, unitarity and Ward Identities allows us to describe successfully several observables of interest. This is particularly relevant for quantities expected to be dominated by the light meson components of the hadron gas such as the scalar and topological susceptibilities. In addition, ward identities and effective Lagrangians provide systematic results regarding chiral and U ( 1 ) A partner degeneration properties which are of great importance for the interplay between those two transitions and the nature of chiral symmetry restoration. Special attention is paid to the connection of this theoretical framework with lattice simulations. Full article
Show Figures

Figure 1

8 pages, 236 KiB  
Article
Chiral Perturbation Theory vs. Linear Sigma Model in a Chiral Imbalance Medium
by Alexander Andrianov, Vladimir Andrianov and Domenec Espriu
Particles 2020, 3(1), 15-22; https://doi.org/10.3390/particles3010002 - 8 Jan 2020
Cited by 13 | Viewed by 2512
Abstract
We compare the chiral perturbation theory (ChPT) and the linear sigma model (LSM) as realizations of low energy quantum chromodynamics (QCD) for light mesons in a chirally-imbalanced medium. The relations between the low-energy constants of the chiral Lagrangian and the corresponding constants of [...] Read more.
We compare the chiral perturbation theory (ChPT) and the linear sigma model (LSM) as realizations of low energy quantum chromodynamics (QCD) for light mesons in a chirally-imbalanced medium. The relations between the low-energy constants of the chiral Lagrangian and the corresponding constants of the linear sigma model are established as well as the expressions for the decay constant of π -meson in the medium and for the mass of the a 0 . In the large N c count taken from QCD the correspondence of ChPT and LSM is remarkably good and provides a solid ground for the search of chiral imbalance manifestations in pion physics. A possible experimental detection of chiral imbalance (and therefore a phase with local parity breaking) is outlined in the charged pion decays inside the fireball. Full article
Back to TopTop