Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,134)

Search Parameters:
Keywords = detection equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1692 KiB  
Article
Adaptive Measurement and Parameter Estimation for Low-SNR PRBC-PAM Signal Based on Adjusting Zero Value and Chaotic State Ratio
by Minghui Lv, Xiaopeng Yan, Ke Wang, Xinhong Hao and Jian Dai
Mathematics 2024, 12(20), 3203; https://doi.org/10.3390/math12203203 (registering DOI) - 12 Oct 2024
Abstract
Accurately estimating the modulation parameters of pseudorandom binary code–pulse amplitude modulation (PRBC–PAM) signals damaged by strong noise poses a significant challenge in emitter identification and countermeasure. Traditionally, weak signal detection methods based on chaos theory can handle situations with low signal-to-noise ratio, but [...] Read more.
Accurately estimating the modulation parameters of pseudorandom binary code–pulse amplitude modulation (PRBC–PAM) signals damaged by strong noise poses a significant challenge in emitter identification and countermeasure. Traditionally, weak signal detection methods based on chaos theory can handle situations with low signal-to-noise ratio, but most of them are developed for simple sin/cos waveform and cannot face PRBC–PAM signals commonly used in ultra-low altitude performance equipment. To address the issue, this article proposes a novel adaptive detection and estimation method utilizing the in-depth analysis of the Duffing oscillator’s behaviour and output characteristics. Firstly, the short-time Fourier transform (STFT) is used for chaotic state identification and ternary processing. Then, two novel approaches are proposed, including the adjusting zero value (AZV) method and the chaotic state ratio (CSR) method. The proposed weak signal detection system exhibits unique capability to adaptively modify its internal periodic driving force frequency, thus altering the difference frequency to estimate the signal parameters effectively. Furthermore, the accuracy of the proposed method is substantiated in carrier frequency estimation under varying SNR conditions through extensive experiments, demonstrating that the method maintains high precision in carrier frequency estimation and a low bit error rate in both the pseudorandom sequence and carrier frequency, even at an SNR of −30 dB. Full article
17 pages, 950 KiB  
Article
Fault Detection in Industrial Equipment through Analysis of Time Series Stationarity
by Dinis Falcão, Francisco Reis, José Farinha, Nuno Lavado and Mateus Mendes
Algorithms 2024, 17(10), 455; https://doi.org/10.3390/a17100455 (registering DOI) - 12 Oct 2024
Abstract
Predictive maintenance has gained importance due to industrialization. Harnessing advanced technologies like sensors and data analytics enables proactive interventions, preventing unplanned downtime, reducing costs, and enhancing workplace safety. They play a crucial role in optimizing industrial operations, ensuring the efficiency, reliability, and longevity [...] Read more.
Predictive maintenance has gained importance due to industrialization. Harnessing advanced technologies like sensors and data analytics enables proactive interventions, preventing unplanned downtime, reducing costs, and enhancing workplace safety. They play a crucial role in optimizing industrial operations, ensuring the efficiency, reliability, and longevity of equipment, which have become increasingly vital in the context of industrialization. The analysis of time series’ stationarity is a powerful and agnostic approach to studying variations and trends that may indicate imminent failures in equipment, thus contributing to the effectiveness of predictive maintenance in industrial environments. The present paper explores the use of the Augmented Dickey–Fuller p-value temporal variation as a possible method for determining trends in sensor time series and thus anticipating possible failures of a wood chip pump in the paper industry. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
24 pages, 10818 KiB  
Article
ADL-YOLOv8: A Field Crop Weed Detection Model Based on Improved YOLOv8
by Zhiyu Jia, Ming Zhang, Chang Yuan, Qinghua Liu, Hongrui Liu, Xiulin Qiu, Weiguo Zhao and Jinlong Shi
Agronomy 2024, 14(10), 2355; https://doi.org/10.3390/agronomy14102355 (registering DOI) - 12 Oct 2024
Abstract
This study presents an improved weed detection model, ADL-YOLOv8, designed to enhance detection accuracy for small targets while achieving model lightweighting. It addresses the challenge of attaining both high accuracy and low memory usage in current intelligent weeding equipment. By overcoming this issue, [...] Read more.
This study presents an improved weed detection model, ADL-YOLOv8, designed to enhance detection accuracy for small targets while achieving model lightweighting. It addresses the challenge of attaining both high accuracy and low memory usage in current intelligent weeding equipment. By overcoming this issue, the research not only reduces the hardware costs of automated impurity removal equipment but also enhances software recognition accuracy, contributing to reduced pesticide use and the promotion of sustainable agriculture. The ADL-YOLOv8 model incorporates a lighter AKConv network for better processing of specific features, an ultra-lightweight DySample upsampling module to improve accuracy and efficiency, and the LSKA-Attention mechanism for enhanced detection, particularly of small targets. On the same dataset, ADL-YOLOv8 demonstrated a 2.2% increase in precision, a 2.45% rise in recall, a 3.07% boost in [email protected], and a 1.9% enhancement in [email protected]. The model’s size was cut by 15.77%, and its computational complexity was reduced by 10.98%. These findings indicate that ADL-YOLOv8 not only exceeds the original YOLOv8n model but also surpasses the newer YOLOv9t and YOLOv10n in overall performance. The improved algorithm model makes the hardware cost required for embedded terminals lower. Full article
(This article belongs to the Special Issue Robotics and Automation in Farming)
Show Figures

Figure 1

14 pages, 5623 KiB  
Article
Ultrasonic Guided Wave Health Monitoring of High-Temperature Aircraft Structures Based on Variational Mode Decomposition and Fuzzy Entropy
by Feiting Zhang, Kaifu Zhang, Hui Cheng, Dongyue Gao and Keyi Cai
Actuators 2024, 13(10), 411; https://doi.org/10.3390/act13100411 (registering DOI) - 12 Oct 2024
Abstract
This paper presents an innovative approach to high-temperature health monitoring of aircraft structures utilizing an ultrasonic guided wave transmission and reception system integrated with a zirconia heat buffer layer. Aiming to address the challenges posed by environmental thermal noise and the installation of [...] Read more.
This paper presents an innovative approach to high-temperature health monitoring of aircraft structures utilizing an ultrasonic guided wave transmission and reception system integrated with a zirconia heat buffer layer. Aiming to address the challenges posed by environmental thermal noise and the installation of heat buffers, which can introduce structural nonlinearities into guided wave signals, a composite guided wave consisting of longitudinal and Lamb waves was proposed for online damage detection within thermal protection systems. To effectively analyze these complex signals, a hybrid damage monitoring technique combining variational mode decomposition (VMD) and fuzzy entropy (FEN) was introduced. The VMD was employed to isolate the principal components of the guided wave signals, while the fuzzy entropy of these components served as a quantitative damage factor, characterizing the extent of the structural damage. Furthermore, this study validated the feasibility of piezoelectric probes equipped with heat buffer layers for both exciting and receiving ultrasonic guided wave signals in a dual heat buffer layer, a one-transmit-one-receive configuration. The experimental results demonstrated the efficacy of the proposed VMD-FEN damage factor for real-time monitoring of damage in aircraft thermal protection systems, both at ambient and elevated temperatures (up to 150 °C), showcasing its potential for enhancing the safety and reliability of aerospace structures operating under extreme thermal conditions. Full article
(This article belongs to the Section Aircraft Actuators)
Show Figures

Figure 1

14 pages, 2741 KiB  
Article
High-Sensitivity RT-LAMP for Molecular Detection of O’nyong-nyong (Alphavirus onyong)
by David Faísca-Silva, Gonçalo Seixas, Mónica Nunes and Ricardo Parreira
Pathogens 2024, 13(10), 892; https://doi.org/10.3390/pathogens13100892 (registering DOI) - 11 Oct 2024
Viewed by 248
Abstract
Mosquitoes serve as vectors for many arthropod-borne viruses (arboviruses) that are responsible for millions of human infections and thousands of deaths each year. Among these arboviruses, O’nyong-nyong virus (ONNV) is an African alphavirus mainly transmitted by Anopheles mosquitoes. ONNV can be detected through [...] Read more.
Mosquitoes serve as vectors for many arthropod-borne viruses (arboviruses) that are responsible for millions of human infections and thousands of deaths each year. Among these arboviruses, O’nyong-nyong virus (ONNV) is an African alphavirus mainly transmitted by Anopheles mosquitoes. ONNV can be detected through serological or molecular tests, the first showing cross-reactivity to co-circulating alphaviruses and requiring technically demanding confirmation, while the latter, usually based on real-time PCR, are costly and demand specific equipment. Isothermal amplification approaches, such as Loop-Mediated Isothermal Amplification (LAMP), should therefore provide a cost-effective, sensitive, and specific alternative for virus detection, suitable for the resource-limited regions where ONNV circulates up to the present time. Here, we describe the development and optimization of a rapid and highly sensitive (10 pfu/reaction) RT-LAMP assay for ONNV detection. Additionally, we demonstrate that it is possible to bypass the RNA extraction step, reducing sample handling time and costs. The final RT-LAMPONNV is a promising field detection tool for ONNV, enabling a better understanding of its impact and serving as a point-of-care diagnostic method. Full article
Show Figures

Figure 1

19 pages, 5453 KiB  
Article
Design, Analysis, and Optimization Testing of a Novel Modular Walking Device for Pipeline Robots
by Naiyu Shi, He Li, Ting Xu, Hongliang Hua, Junhong Ye and Zheng Chen
Machines 2024, 12(10), 718; https://doi.org/10.3390/machines12100718 - 11 Oct 2024
Viewed by 198
Abstract
This article investigates the limitations associated with traditional wheel-type pipeline walking devices, which are characterized by a single movement mode and an inability to navigate complex or irregular pipeline structures. A modular walking device (MWD) designed for pipeline robots was developed utilizing structural [...] Read more.
This article investigates the limitations associated with traditional wheel-type pipeline walking devices, which are characterized by a single movement mode and an inability to navigate complex or irregular pipeline structures. A modular walking device (MWD) designed for pipeline robots was developed utilizing structural and mechanical analysis techniques. The reliability of the mechanical analysis was validated through single-factor dynamic testing. To analyze and optimize the factors influencing the maneuverability and obstacle-crossing capabilities of the MWD, a three-factor, three-level orthogonal testing method was utilized. The factors examined included the rotational speed of the walking wheel (RS), the pre-tightening force of the wheel brackets (PF), and the height of the annular obstacle (OH). The evaluation metrics used were the slip rate and passability. The results indicated that a parameter combination of RS at 70 rpm, PF at 30 N, and OH at 10 mm produced a slip rate of 11.6% ± 1.5%. During the obstacle traversal process, the remainder of the device maintained a safe distance from the obstacles, with only the walking wheel making contact. The verification testing also confirmed that the MWD is capable of executing three distinct modes of motion: rectilinear, rotational, and helical. The MWD designed and developed in this study can switch between multiple motion modes and successfully overcome obstacles within 15 mm, providing a new equipment for universities to enhance mechanized pipeline detection technology. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
Recurrence Quantification Analysis Based Methodology in Automatic Aerobic Threshold Detection: Applicability and Accuracy across Age Groups, Exercise Protocols and Health Conditions
by Giovanna Zimatore, Cassandra Serantoni, Maria Chiara Gallotta, Marco Meucci, Laurent Mourot, Dafne Ferrari, Carlo Baldari, Marco De Spirito, Giuseppe Maulucci and Laura Guidetti
Appl. Sci. 2024, 14(20), 9216; https://doi.org/10.3390/app14209216 - 10 Oct 2024
Viewed by 359
Abstract
A new method based on the Recurrence Quantification Analysis (RQA) of the heart rate (HR) offers an objective, efficient alternative to traditional methods for Aerobic Threshold (AerT) identification that have practical limitations due to the complexity of equipment and interpretation. This study aims [...] Read more.
A new method based on the Recurrence Quantification Analysis (RQA) of the heart rate (HR) offers an objective, efficient alternative to traditional methods for Aerobic Threshold (AerT) identification that have practical limitations due to the complexity of equipment and interpretation. This study aims to validate the RQA-based method’s applicability across varied demographics, exercise protocols, and health status. Data from 123 cardiopulmonary exercise tests were analyzed, and participants were categorized into four groups: athletes, young athletes, obese individuals, and cardiac patients. Each participant’s AerT was assessed using both traditional ventilatory equivalent methods and the automatic RQA-based method. Ordinary Least Products (OLP) regression analysis revealed strong correlations (r > 0.77) between the RQA-based and traditional methods in both oxygen consumption (VO2) and HR at the AerT. Mean percentage differences in HR were below 2.5%, and the Technical Error for HR at AerT was under 8%. The study validates the RQA-based method, directly applied to HR time series, as a reliable tool for the automatic detection of the AerT, demonstrating its accuracy across diverse age groups and fitness levels. These findings suggest a versatile, cost-effective, non-invasive, and objective tool for personalized exercise prescription and health risk stratification, thereby fulfilling the study’s goal of broadening the method’s applicability. Full article
(This article belongs to the Special Issue AI-Based Biomedical Signal Processing)
Show Figures

Figure 1

24 pages, 7287 KiB  
Article
Lightweight Design for Infrared Dim and Small Target Detection in Complex Environments
by Yan Chang, Decao Ma, Yao Ding, Kefu Chen and Daming Zhou
Remote Sens. 2024, 16(20), 3761; https://doi.org/10.3390/rs16203761 - 10 Oct 2024
Viewed by 308
Abstract
In the intricate and dynamic infrared imaging environment, the detection of infrared dim and small targets becomes notably challenging due to their feeble radiation intensity, intricate background noise, and high interference characteristics. To tackle this issue, this paper introduces a lightweight detection and [...] Read more.
In the intricate and dynamic infrared imaging environment, the detection of infrared dim and small targets becomes notably challenging due to their feeble radiation intensity, intricate background noise, and high interference characteristics. To tackle this issue, this paper introduces a lightweight detection and recognition algorithm, named YOLOv5-IR, and further presents an even more lightweight version, YOLOv5-IRL. Firstly, a lightweight network structure incorporating spatial and channel attention mechanisms is proposed. Secondly, a detection head equipped with an attention mechanism is designed to intensify focus on small target information. Lastly, an adaptive weighted loss function is devised to improve detection performance for low-quality samples. Building upon these advancements, the network size can be further compressed to create the more lightweight YOLOv5-IRL version, which is better suited for deployment on resource-constrained mobile platforms. Experimental results on infrared dim and small target detection datasets with complex backgrounds indicate that, compared to the baseline model YOLOv5, the proposed YOLOv5-IR and YOLOv5-IRL detection algorithms reduce model parameter counts by 42.9% and 45.6%, shorten detection time by 13.6% and 16.9%, and enhance mAP0.5 by 2.4% and 1.8%, respectively. These findings demonstrate that the proposed algorithms effectively elevate detection efficiency, meeting future demands for infrared dim and small target detection. Full article
Show Figures

Figure 1

17 pages, 5244 KiB  
Article
Visual Modeling Method for Ship Piping Network Programs in Engine Simulators
by Xiaoyu Wu, Zhibin He, Shufeng Liu and Zhongkai Yu
Appl. Sci. 2024, 14(20), 9194; https://doi.org/10.3390/app14209194 - 10 Oct 2024
Viewed by 268
Abstract
Nowadays, engine room simulators have become an important tool for maritime training, but programming engine room simulators often involves handling large amounts of data, making the process inefficient. This paper proposes an innovative visual modeling method for the ship pipeline network program in [...] Read more.
Nowadays, engine room simulators have become an important tool for maritime training, but programming engine room simulators often involves handling large amounts of data, making the process inefficient. This paper proposes an innovative visual modeling method for the ship pipeline network program in engine room simulators, aimed at addressing the heavy programming tasks associated with traditional text-based design and calculation methods when dealing with complex and large-scale pipeline systems. By creating Scalable Vector Graphics (SVG) images and using Windows Presentation Foundation (WPF) to place controls, an intuitive graphical user interface is built, allowing programmers to easily operate through the graphical interface. Subsequently, You Only Look Once version 5 (YOLOv5) object detection technology is used to identify the completed SVG images and WPF controls, generating corresponding Comma-Separated Values (CSV) files, which are then used as data input via C# (C Sharp). Through automated data processing and equipment recognition, compared to traditional manual design processes (such as using Matlab or C++ for pipeline design), this method reduces human errors and improves programming accuracy. Customization of key pipeline characteristics (such as maximum flow and flow direction) enhances the accuracy and applicability of the pipeline network model. The intuitive user interface design also allows nonprofessional users to easily design and optimize pipeline systems. The results show that this tool not only improves the efficiency of data processing and calculation but also demonstrates excellent performance and broad application prospects in the design and optimization of ship pipeline systems. In the future, this tool is expected to be more widely promoted in ship pipeline network education and practical applications, driving the field towards more efficient and intelligent development. Full article
Show Figures

Figure 1

15 pages, 2371 KiB  
Article
Evaluation of Two Particle Number (PN) Counters with Different Test Protocols for the Periodic Technical Inspection (PTI) of Gasoline Vehicles
by Anastasios Melas, Jacopo Franzetti, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Sensors 2024, 24(20), 6509; https://doi.org/10.3390/s24206509 - 10 Oct 2024
Viewed by 208
Abstract
Thousands of particle number (PN) counters have been introduced to the European market, following the implementation of PN tests during the periodic technical inspection (PTI) of diesel vehicles equipped with particulate filters. Expanding the PN-PTI test to gasoline vehicles may face several challenges [...] Read more.
Thousands of particle number (PN) counters have been introduced to the European market, following the implementation of PN tests during the periodic technical inspection (PTI) of diesel vehicles equipped with particulate filters. Expanding the PN-PTI test to gasoline vehicles may face several challenges due to the different exhaust aerosol characteristics. In this study, two PN-PTI instruments, type-examined for diesel vehicles, measured fifteen petrol passenger cars with different test protocols: low and high idling, with or without additional load, and sharp accelerations. The instruments, one based on diffusion charging and the other on condensation particle counting, demonstrated good linearity compared to the reference instrumentation with R-squared values of 0.93 and 0.92, respectively. However, in a considerable number of tests, they registered higher particle concentrations due to the presence of high concentrations below their theoretical 23 nm cut-off size. The evaluation of the different test protocols showed that gasoline direct injection engine vehicles without particulate filters (GPFs) generally emitted an order of magnitude or higher PN compared to those with GPFs. However, high variations in concentration levels were observed for each vehicle. Port-fuel injection vehicles without GPFs mostly emitted PN concentrations near the lower detection limit of the PN-PTI instruments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 4646 KiB  
Article
Comparative Approach to Performance Estimation of Pulsed Wave Doppler Equipment Based on Kiviat Diagram
by Giorgia Fiori, Andrea Scorza, Maurizio Schmid, Silvia Conforto and Salvatore Andrea Sciuto
Sensors 2024, 24(19), 6491; https://doi.org/10.3390/s24196491 - 9 Oct 2024
Viewed by 335
Abstract
Quality assessment of ultrasound medical systems is a demanding task due to the high number of parameters to quantify their performance: in the present study, a Kiviat diagram-based integrated approach was proposed to effectively combine the contribution of some experimental parameters and quantify [...] Read more.
Quality assessment of ultrasound medical systems is a demanding task due to the high number of parameters to quantify their performance: in the present study, a Kiviat diagram-based integrated approach was proposed to effectively combine the contribution of some experimental parameters and quantify the overall performance of pulsed wave Doppler (PWD) systems for clinical applications. Four test parameters were defined and assessed through custom-written measurement methods based on image analysis, implemented in the MATLAB environment, and applied to spectral images of a flow phantom, i.e., average maximum velocity sensitivity (AMVS), velocity measurements accuracy (VeMeA), lowest detectable signal (LDS), and the velocity profile discrepancy index (VPDI). The parameters above were scaled in a standard range to represent the four vertices of a Kiviat plot, whose area was considered the overall quality index of the ultrasound system in PWD mode. Five brand-new ultrasound diagnostic systems, equipped with linear array probes, were tested in two different working conditions using a commercial flow phantom as a reference. The promising results confirm the robustness of AMVS, VeMeA, and LDS parameters while suggesting further investigations on the VPDI. Full article
Show Figures

Figure 1

16 pages, 1828 KiB  
Article
Out-of-Distribution Detection with Memory-Augmented Variational Autoencoder
by Faezeh Ataeiasad, David Elizondo, Saúl Calderón Ramírez, Sarah Greenfield and Lipika Deka
Mathematics 2024, 12(19), 3153; https://doi.org/10.3390/math12193153 - 9 Oct 2024
Viewed by 382
Abstract
This paper proposes a novel method capable of both detecting OOD data and generating in-distribution data samples. To achieve this, a VAE model is adopted and augmented with a memory module, providing capacities for identifying OOD data and synthesising new in-distribution samples. The [...] Read more.
This paper proposes a novel method capable of both detecting OOD data and generating in-distribution data samples. To achieve this, a VAE model is adopted and augmented with a memory module, providing capacities for identifying OOD data and synthesising new in-distribution samples. The proposed VAE is trained on normal data and the memory stores prototypical patterns of the normal data distribution. At test time, the input is encoded by the VAE encoder; this encoding is used as a query to retrieve related memory items, which are then integrated with the input encoding and passed to the decoder for reconstruction. Normal samples reconstruct well and yield low reconstruction errors, while OOD inputs produce high reconstruction errors as their encodings get replaced by retrieved normal patterns. Prior works use memory modules for OOD detection with autoencoders, but this method leverages a VAE architecture to enable generation abilities. Experiments conducted with CIFAR-10 and MNIST datasets show that the memory-augmented VAE consistently outperforms the baseline, particularly where OOD data resembles normal patterns. This notable improvement is due to the enhanced latent space representation provided by the VAE. Overall, the memory-equipped VAE framework excels in identifying OOD and generating creative examples effectively. Full article
(This article belongs to the Special Issue Advanced Computational Intelligence)
Show Figures

Figure 1

20 pages, 36201 KiB  
Article
CPDet: Circle-Permutation-Aware Object Detection for Heat Exchanger Cleaning
by Jinshuo Liang, Yiqiang Wu, Yu Qin, Haoyu Wang, Xiaomao Li, Yan Peng and Xie Xie
Appl. Sci. 2024, 14(19), 9115; https://doi.org/10.3390/app14199115 - 9 Oct 2024
Viewed by 348
Abstract
Shell–tube heat exchangers are commonly used equipment in large-scale industrial systems of wastewater heat exchange to reclaim the thermal energy generated during industrial processes. However, the internal surfaces of the heat exchanger tubes often accumulate fouling, which subsequently reduces their heat transfer efficiency. [...] Read more.
Shell–tube heat exchangers are commonly used equipment in large-scale industrial systems of wastewater heat exchange to reclaim the thermal energy generated during industrial processes. However, the internal surfaces of the heat exchanger tubes often accumulate fouling, which subsequently reduces their heat transfer efficiency. Therefore, regular cleaning is essential. We aim to detect circle holes on the end surface of the heat exchange tubes to further achieve automated positioning and cleaning tubes. Notably, these holes exhibit a regular distribution. To this end, we propose a circle-permutation-aware object detector for heat exchanger cleaning to sufficiently exploit prior information of the original inputs. Specifically, the interval prior to the extraction module extracts interval information among circle holes based on prior statistics, yielding prior interval context. The following interval prior fusion module slices original images into circle domain and background domain maps according to the prior interval context. For the circle domain map, prior-guided sparse attention using prior a circle–hole diameter as the step divides the circle domain map into patches and performs patch-wise self-attention. The background domain map is multiplied by a hyperparameter weak coefficient matrix. In this way, our method fully leverages prior information to selectively weigh the original inputs to achieve more effective hole detection. In addition, to adapt the hole shape, we adopt the circle representation instead of the rectangle one. Extensive experiments demonstrate that our method achieves state-of-the-art performance and significantly boosts the YOLOv8 baseline by 5.24% mAP50 and 5.25% mAP50:95. Full article
Show Figures

Figure 1

15 pages, 3178 KiB  
Article
Quantifying Nesting Behavior Metrics of Broiler Breeder Hens with Computationally Efficient Image Processing Algorithms and Big Data Analytics
by Aravind Mandiga, Guoming Li, Jeanna L. Wilson, Tianming Liu, Venkat Umesh Chandra Bodempudi and Jacob Hunter Mason
AgriEngineering 2024, 6(4), 3672-3685; https://doi.org/10.3390/agriengineering6040209 - 8 Oct 2024
Viewed by 344
Abstract
Nesting behaviors are important to understand facility design, resource allowance, animal welfare, and the health of broiler breeder hens. How to automatically extract informative nesting behavior metrics of broiler breeder hens remains a question. The objective of this work was to quantify the [...] Read more.
Nesting behaviors are important to understand facility design, resource allowance, animal welfare, and the health of broiler breeder hens. How to automatically extract informative nesting behavior metrics of broiler breeder hens remains a question. The objective of this work was to quantify the nesting behavior metrics of broiler breeder hens using computationally efficient image algorithms and big data analytics. Here, 20 broiler breeder hens and 1–2 roosters were raised in an experimental pen, and four pens equipped with six-nest-slot nest boxes were used for analyzing the nesting behaviors of broiler hens over the experimental period. Cameras were installed on the top of the nest boxes to monitor the hens’ behaviors, such as the time spent in the nest slot, frequency of visits to the nest slot, simultaneous nesting pattern, hourly time spent by the hens in each nest slot, and time spent before and after feed withdrawal, and videos were continuously recorded for nine days for nine hours a day when the hens were 56 weeks of age. Image processing algorithms, including template matching, thresholding, and contour detection, were developed and applied to quantify the hen nesting behavior metrics frame by frame. The results showed that the hens spent significantly different amounts of time and frequencies in different nest slots (p < 0.001). A decrease in the time spent in all nest slots from 1 pm to 9 pm was observed. The nest slots were not used 60.1% of the time. Overall, the proposed method is a helpful tool to quantify the nesting behavior metrics of broiler breeder hens and support precision broiler breeder management. Full article
(This article belongs to the Special Issue The Future of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

12 pages, 1792 KiB  
Article
3D Printing Materials Mimicking Human Tissues after Uptake of Iodinated Contrast Agents for Anthropomorphic Radiology Phantoms
by Peter Homolka, Lara Breyer and Friedrich Semturs
Biomimetics 2024, 9(10), 606; https://doi.org/10.3390/biomimetics9100606 - 8 Oct 2024
Viewed by 577
Abstract
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine [...] Read more.
(1) Background: 3D printable materials with accurately defined iodine content enable the development and production of radiological phantoms that simulate human tissues, including lesions after contrast administration in medical imaging with X-rays. These phantoms provide accurate, stable and reproducible models with defined iodine concentrations, and 3D printing allows maximum flexibility and minimal development and production time, allowing the simulation of anatomically correct anthropomorphic replication of lesions and the production of calibration and QA standards in a typical medical research facility. (2) Methods: Standard printing resins were doped with an iodine contrast agent and printed using a consumer 3D printer, both (resins and printer) available from major online marketplaces, to produce printed specimens with iodine contents ranging from 0 to 3.0% by weight, equivalent to 0 to 3.85% elemental iodine per volume, covering the typical levels found in patients. The printed samples were scanned in a micro-CT scanner to measure the properties of the materials in the range of the iodine concentrations used. (3) Results: Both mass density and attenuation show a linear dependence on iodine concentration (R2 = 1.00), allowing highly accurate, stable, and predictable results. (4) Conclusions: Standard 3D printing resins can be doped with liquids, avoiding the problem of sedimentation, resulting in perfectly homogeneous prints with accurate dopant content. Iodine contrast agents are perfectly suited to dope resins with appropriate iodine concentrations to radiologically mimic tissues after iodine uptake. In combination with computer-aided design, this can be used to produce printed objects with precisely defined iodine concentrations in the range of up to a few percent of elemental iodine, with high precision and anthropomorphic shapes. Applications include radiographic phantoms for detectability studies and calibration standards in projective X-ray imaging modalities, such as contrast-enhanced dual energy mammography (abbreviated CEDEM, CEDM, TICEM, or CESM depending on the equipment manufacturer), and 3-dimensional modalities like CT, including spectral and dual energy CT (DECT), and breast tomosynthesis. Full article
(This article belongs to the Special Issue Bio-Inspired Additive Manufacturing Materials and Structures)
Show Figures

Figure 1

Back to TopTop