Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = fine fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12123 KiB  
Article
Simulation of Fire Occurrence Based on Historical Data in Future Climate Scenarios and Its Practical Verification
by Mingyu Wang, Liqing Si, Feng Chen, Lifu Shu, Fengjun Zhao and Weike Li
Fire 2024, 7(10), 346; https://doi.org/10.3390/fire7100346 - 28 Sep 2024
Abstract
Forest fire is one of the dominant disturbances in the forests of Heilongjiang Province, China, and is one of the most rapid response predictors that indicate the impact of climate change on forests. This study calculated the Canadian FWI (Fire Weather Index) and [...] Read more.
Forest fire is one of the dominant disturbances in the forests of Heilongjiang Province, China, and is one of the most rapid response predictors that indicate the impact of climate change on forests. This study calculated the Canadian FWI (Fire Weather Index) and its components from meteorological record over past years, and a linear model was built from the monthly mean FWI and monthly fire numbers. The significance test showed that fire numbers and FWI had a very pronounced correlation, and monthly mean FWI was suitable for predicting the monthly fire numbers in this region. Then FWI and its components were calculated from the SRES (IPCC Special Report on Emission Scenarios) A2 and B2 climatic scenarios, and the linear model was rebuilt to be suitable for the climatic scenarios. The results indicated that fire numbers would increase by 2.98–129.97% and −2.86–103.30% in the A2 and B2 climatic scenarios during 2020–2090, respectively. The monthly variation tendency of the FWI components is similar in the A2 and B2 climatic scenarios. The increasing fire risk is uneven across months in these two climatic scenarios. The monthly analysis showed that the FFMC (Fine Fuel Moisture Code) would increase dramatically in summer, and the decreasing precipitation in summer would contribute greatly to this tendency. The FWI would increase rapidly from the spring fire season to the autumn fire season, and the FWI would have the most rapid increase in speed in the spring fire season. DMC (Duff Moisture Code) and DC (Drought Code) have relatively balanced rates of increasing from spring to autumn. The change in the FWI in this region is uneven in space as well. In early 21st century, the FWI of the north of Heilongjiang Province would increase more rapidly than the south, whereas the FWI of the middle and south of Heilongjiang Province would gradually catch up with the increasing speed of the north from the middle of 21st century. The changes in the FWI across seasons and space would influence the fire management policy in this region, and the increasing fire numbers and variations in the FWI scross season and space suggest that suitable development of the management of fire sources and forest fuel should be conducted. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment)
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Smoke Emissions and Buoyant Plumes above Prescribed Burns in the Pinelands National Reserve, New Jersey
by Kenneth L. Clark, Michael R. Gallagher, Nicholas Skowronski, Warren E. Heilman, Joseph Charney, Matthew Patterson, Jason Cole, Eric Mueller and Rory Hadden
Fire 2024, 7(9), 330; https://doi.org/10.3390/fire7090330 - 21 Sep 2024
Abstract
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns [...] Read more.
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns influences above-canopy sensible heat flux and turbulent kinetic energy (TKE) in buoyant plumes, affecting the lofting and dispersion of smoke. A more comprehensive understanding of how enhanced energy fluxes and turbulence are related during the passage of flame fronts could improve efforts to mitigate the impacts of smoke emissions. Pre- and post-fire fuel loading measurements taken during 48 operational prescribed burns were used to estimate the combustion completeness factors (CC) and emissions of fine particulates (PM2.5), carbon dioxide (CO2), and carbon monoxide (CO) in pine- and oak-dominated stands in the Pinelands National Reserve of southern New Jersey. During 11 of the prescribed burns, sensible heat flux and turbulence statistics were measured by tower networks above the forest canopy. Fire behavior when fire fronts passed the towers ranged from low-intensity backing fires to high-intensity head fires with some crown torching. Consumption of forest-floor and understory vegetation was a near-linear function of pre-burn loading, and combustion of fine litter on the forest floor was the predominant source of emissions, even during head fires with some crowning activity. Tower measurements indicated that above-canopy sensible heat flux and TKE calculated at 1 min intervals during the passage of fire fronts were strongly influenced by fire behavior. Low-intensity backing fires, regardless of forest type, had weaker enhancement of above-canopy air temperature, vertical and horizontal wind velocities, sensible heat fluxes, and TKE compared to higher-intensity head and flanking fires. Sensible heat flux and TKE in buoyant plumes were unrelated during low-intensity burns but more tightly coupled during higher-intensity burns. The weak coupling during low-intensity backing fires resulted in reduced rates of smoke transport and dispersion, and likely in more prolonged periods of elevated surface concentrations. This research facilitates more accurate estimates of PM2.5, CO, and CO2 emissions from prescribed burns in the Pinelands, and it provides a better understanding of the relationships among fire behavior, sensible heat fluxes and turbulence, and smoke dispersion in pine- and oak-dominated forests. Full article
Show Figures

Figure 1

25 pages, 2705 KiB  
Review
Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review
by Queendarlyn Adaobi Nwabueze and Smith Leggett
Fuels 2024, 5(3), 508-532; https://doi.org/10.3390/fuels5030028 - 11 Sep 2024
Abstract
Addressing escalating energy demands and greenhouse gas emissions in the oil and gas industry has driven extensive efforts in carbon capture and utilization (CCU), focusing on power plants and industrial facilities. However, utilizing CO2 as a raw material to produce valuable chemicals, [...] Read more.
Addressing escalating energy demands and greenhouse gas emissions in the oil and gas industry has driven extensive efforts in carbon capture and utilization (CCU), focusing on power plants and industrial facilities. However, utilizing CO2 as a raw material to produce valuable chemicals, materials, and fuels for transportation may offer a more sustainable and long-term solution than sequestration alone. This approach also presents promising alternatives to traditional chemical feedstock in industries such as fine chemicals, pharmaceuticals, and polymers. This review comprehensively outlines the current state of CO2 capture technologies, exploring the associated challenges and opportunities regarding their efficiency and economic feasibility. Specifically, it examines the potential of technologies such as chemical looping, membrane separation, and adsorption processes, which are advancing the frontiers of CO2 capture by enhancing efficiency and reducing costs. Additionally, it explores the various methods of CO2 utilization, highlighting the potential benefits and applications. These methods hold potential for producing high-value chemicals and materials, offering new pathways for industries to reduce their carbon footprint. The integration of CO2 capture and utilization is also examined, emphasizing its potential as a cost-effective and efficient approach that mitigates climate change while converting CO2 into a valuable resource. Finally, the review outlines the challenges in designing, developing, and scaling up CO2 capture and utilization processes, providing a comprehensive perspective on the technical and economic challenges that need to be addressed. It provides a roadmap for technologies, suggesting that their successful deployment could result in significant environmental benefits and encourage innovation in sustainable practices within the energy and chemical sectors. Full article
Show Figures

Figure 1

21 pages, 8600 KiB  
Review
Progress of Experimental Studies on Oblique Detonation Waves Induced by Hyper-Velocity Projectiles
by Jiahao Shang, Guotun Hu, Qiu Wang, Gaoxiang Xiang and Wei Zhao
Aerospace 2024, 11(9), 715; https://doi.org/10.3390/aerospace11090715 - 2 Sep 2024
Viewed by 323
Abstract
Oblique detonation waves (ODWs) are hypersonic combustion phenomena induced by oblique shock waves. When applied to air-breathing engines, ODWs offer high thermal cycle efficiency, adaptability to a wide range of flight Mach numbers, and the advantage of a short combustion chamber, making them [...] Read more.
Oblique detonation waves (ODWs) are hypersonic combustion phenomena induced by oblique shock waves. When applied to air-breathing engines, ODWs offer high thermal cycle efficiency, adaptability to a wide range of flight Mach numbers, and the advantage of a short combustion chamber, making them highly promising for hypersonic propulsion applications. Despite numerous numerical studies on the heat release and multi-wave flow mechanisms of ODWs, practical applications of oblique detonation engines (ODEs) remain limited due to several technical challenges. These challenges include generating the required high-velocity test environments, achieving effective fuel and oxidant mixing, and measuring the flow field structure in hyper-velocity and high-temperature flows. These limitations hinder the development of ODEs, underscoring the importance of experimental research, particularly for understanding the initiation and propagation mechanisms of ODWs. One of the primary experimental techniques involves inducing oblique detonation using high-velocity models. This method is extensively used to study the initiation process, shock structure, initiation criteria, and ODW propagation. It is advantageous because the state of the experimental mixture is controllable, and the model state can be precisely measured. This paper reviews studies on oblique detonation induced by hyper-velocity projectiles, presenting advances in experimental methods, detonation wave structures, unsteady processes, and initiation characteristics. Additionally, we discuss the deficiencies in existing studies, noting that the current measurement methods fall short of the requirements for observing the ODW initiation process, propagation process, and fine structure. The application of advanced combustion diagnostic techniques and the exploration of the relationship between initiation processes and criteria are crucial for advancing our understanding of ODW initiation and stabilization mechanisms. Finally, we summarize the current state of experimental facilities and measurement techniques, providing suggestions for future research on the measurement of shock waves and chemical reaction zones. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion)
Show Figures

Figure 1

28 pages, 10215 KiB  
Review
Straw Tar Epoxy Resin for Carbon Fiber-Reinforced Plastic: A Review
by Zhanpeng Jiang, Jingyi He, Huijie Li, Yiming Liu, Jiuyin Pang, Chuanpeng Li and Guiquan Jiang
Polymers 2024, 16(17), 2433; https://doi.org/10.3390/polym16172433 - 28 Aug 2024
Viewed by 524
Abstract
The massive consumption of fossil fuels has led to the serious accumulation of carbon dioxide gas in the atmosphere and global warming. Bioconversion technologies that utilize biomass resources to produce chemical products are becoming widely accepted and highly recognized. The world is heavily [...] Read more.
The massive consumption of fossil fuels has led to the serious accumulation of carbon dioxide gas in the atmosphere and global warming. Bioconversion technologies that utilize biomass resources to produce chemical products are becoming widely accepted and highly recognized. The world is heavily dependent on petroleum-based products, which may raise serious concerns about future environmental security. Most commercially available epoxy resins (EPs) are synthesized by the condensation of bisphenol A (BPA), which not only affects the human endocrine system and metabolism, but is also costly to produce and environmentally polluting. In some cases, straw tar-based epoxy resins have been recognized as potential alternatives to bisphenol A-based epoxy resins, and are receiving increasing attention due to their important role in overcoming the above problems. Using straw tar and lignin as the main raw materials, phenol derivatives were extracted from the middle tar instead of bisphenol A. Bio-based epoxy resins were prepared by replacing epichlorohydrin with epoxylated lignin to press carbon fiber sheets, which is a kind of bio-based fine chemical product. This paper reviews the research progress of bio-based materials such as lignin modification, straw pyrolysis, lignin epoxidation, phenol derivative extraction, and synthesis of epoxy resin. It improves the performance of carbon fiber-reinforced plastic (CFRP) while taking into account the ecological and environmental protection, so that the epoxy resin is developed in the direction of non-toxic, harmless and high-performance characteristics, and it also provides a new idea for the development of bio-based carbon fibers. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

25 pages, 7409 KiB  
Article
The Role of Field Measurements of Fine Dead Fuel Moisture Content in the Canadian Fire Weather Index System—A Study Case in the Central Region of Portugal
by Daniela Alves, Miguel Almeida, Luís Reis, Jorge Raposo and Domingos Xavier Viegas
Forests 2024, 15(8), 1429; https://doi.org/10.3390/f15081429 - 14 Aug 2024
Viewed by 607
Abstract
The Canadian Fire Weather Index System (CFWIS), empirically developed for forests in Canada, estimates the fuel moisture content (mf) at different depths and loads through meteorological parameters. While it is often suggested that adapting an existing fire danger rating system [...] Read more.
The Canadian Fire Weather Index System (CFWIS), empirically developed for forests in Canada, estimates the fuel moisture content (mf) at different depths and loads through meteorological parameters. While it is often suggested that adapting an existing fire danger rating system like CFWIS for a new environment requires developing new relationships or modifying existing ones, it is worth considering if such adaptations are always necessary. Based on a dataset of field measurements for surface litter (Pinus pinaster) carried out in the central region of Portugal (2014–2023), we propose a correction of mf based on the Fine Fuel Moisture Code (FFMC) of the CFWIS. This moisture correction was used to determine the Initial Spread Index (ISI) directly and, subsequently, the Fire Weather Index (FWI). Fire records from the study region were used to analyze the performance of the corrected indices. We found that the moisture correction led to higher values and potentially more accurate indices under dry conditions but did not provide a significant improvement in predicting the number of fires and burned areas compared to the original indices. The results suggest that, in relation to fire activity, the CFWIS is sufficiently robust to variations in the fuel moisture content in the study region. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

17 pages, 5683 KiB  
Article
Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation
by Federico Ricci, Massimiliano Avana and Francesco Mariani
Energies 2024, 17(16), 3932; https://doi.org/10.3390/en17163932 - 8 Aug 2024
Viewed by 598
Abstract
The automotive industry is increasingly challenged to develop cleaner, more efficient solutions to comply with stringent emission standards. Hydrogen (H2)-powered internal combustion engines (ICEs) offer a promising alternative, with the potential to reduce carbon-based emissions and improve efficiency. However, hydrogen combustion [...] Read more.
The automotive industry is increasingly challenged to develop cleaner, more efficient solutions to comply with stringent emission standards. Hydrogen (H2)-powered internal combustion engines (ICEs) offer a promising alternative, with the potential to reduce carbon-based emissions and improve efficiency. However, hydrogen combustion presents two main challenges related to the calibration process: emissions control and measurement of the air excess coefficient (λ). Traditional lambda sensors struggle with hydrogen’s combustion dynamics, leading to potential inefficiencies and increased pollutant emissions. Consequently, the determination of engine performance could also be compromised. This study explores the feasibility of using machine learning (ML) to replace physical lambda sensors with virtual ones in hydrogen-fueled ICEs. The research was conducted on a single-cylinder spark-ignition (SI) engine, collecting data across a range of air excess coefficients from 1.6 to 3.0. An advanced hybrid model combining long short-term memory (LSTM) networks and convolutional neural networks (CNNs) was developed and fine-tuned to accurately predict the air–fuel ratio; its predictive performance was compared to that obtained with the backpropagation (BP) architecture. The optimal configuration was identified through iterative experimentation, focusing on the neuron count, number of hidden layers, and input variables. The results demonstrate that the LSTM + 1DCNN model successfully converged without overfitting; it also showed better prediction ability in terms of accuracy and robustness when compared with the backpropagation approach. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 1946 KiB  
Article
Data-Driven PM2.5 Exposure Prediction in Wildfire-Prone Regions and Respiratory Disease Mortality Risk Assessment
by Sadegh Khanmohammadi, Mehrdad Arashpour, Milad Bazli and Parisa Farzanehfar
Fire 2024, 7(8), 277; https://doi.org/10.3390/fire7080277 - 7 Aug 2024
Viewed by 523
Abstract
Wildfires generate substantial smoke containing fine particulate matter (PM2.5) that adversely impacts health. This study develops machine learning models integrating pre-wildfire factors like weather and fuel conditions with post-wildfire health impacts to provide a holistic understanding of smoke exposure risks. Various [...] Read more.
Wildfires generate substantial smoke containing fine particulate matter (PM2.5) that adversely impacts health. This study develops machine learning models integrating pre-wildfire factors like weather and fuel conditions with post-wildfire health impacts to provide a holistic understanding of smoke exposure risks. Various data-driven models including Support Vector Regression, Multi-layer Perceptron, and three tree-based ensemble algorithms (Random Forest, Extreme Gradient Boosting (XGBoost), and Natural Gradient Boosting (NGBoost)) are evaluated in this study. Ensemble models effectively predict PM2.5 levels based on temperature, humidity, wind, and fuel moisture, revealing the significant roles of radiation, temperature, and moisture. Further modelling links smoke exposure to deaths from chronic obstructive pulmonary disease (COPD) and lung cancer using age, sex, and pollution type as inputs. Ambient pollution is the primary driver of COPD mortality, while age has a greater influence on lung cancer deaths. This research advances atmospheric and health impact understanding, aiding forest fire prevention and management. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment)
Show Figures

Figure 1

17 pages, 5617 KiB  
Article
Impact of Thermochemical Treatments on Electrical Conductivity of Donor-Doped Strontium Titanate Sr(Ln)TiO3 Ceramics
by Aleksandr Bamburov, Ekaterina Kravchenko and Aleksey A. Yaremchenko
Materials 2024, 17(15), 3876; https://doi.org/10.3390/ma17153876 - 5 Aug 2024
Viewed by 535
Abstract
The remarkable stability, suitable thermomechanical characteristics, and acceptable electrical properties of donor-doped strontium titanates make them attractive materials for fuel electrodes, interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present study addresses the impact of processing and thermochemical treatment [...] Read more.
The remarkable stability, suitable thermomechanical characteristics, and acceptable electrical properties of donor-doped strontium titanates make them attractive materials for fuel electrodes, interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present study addresses the impact of processing and thermochemical treatment conditions on the electrical conductivity of SrTiO3-derived ceramics with moderate acceptor-type substitution in a strontium sublattice. A-site-deficient Sr0.85La0.10TiO3−δ and cation-stoichiometric Sr0.85Pr0.15TiO3+δ ceramics with varying microstructures and levels of reduction have been prepared and characterized by XRD, SEM, TGA, and electrical conductivity measurements under reducing conditions. The analysis of the collected data suggested that the reduction process of dense donor-doped SrTiO3 ceramics is limited by sluggish oxygen diffusion in the crystal lattice even at temperatures as high as 1300 °C. A higher degree of reduction and higher electrical conductivity can be obtained for porous structures under similar thermochemical treatment conditions. Metallic-like conductivity in dense reduced Sr0.85La0.10TiO3−δ corresponds to the state quenched from the processing temperature and is proportional to the concentration of Ti3+ in the lattice. Due to poor oxygen diffusivity in the bulk, dense Sr0.85La0.10TiO3−δ ceramics remain redox inactive and maintain a high level of conductivity under reducing conditions at temperatures below 1000 °C. While the behavior and properties of dense reduced Sr0.85Pr0.15TiO3+δ ceramics with a large grain size (10–40 µm) were found to be similar, decreasing grain size down to 1–3 µm results in an increasing role of resistive grain boundaries which, regardless of the degree of reduction, determine the semiconducting behavior and lower total electrical conductivity of fine-grained Sr0.85Pr0.15TiO3+δ ceramics. Oxidized porous Sr0.85Pr0.15TiO3+δ ceramics exhibit faster kinetics of reduction compared to the Sr0.85La0.10TiO3−δ counterpart at temperatures below 1000 °C, whereas equilibration kinetics of porous Sr0.85La0.10TiO3−δ structures can be facilitated by reductive pre-treatments at elevated temperatures. Full article
Show Figures

Figure 1

21 pages, 11564 KiB  
Article
Evaluation of Transport–Burnup Coupling Strategy in Double-Heterogeneity Problem
by Yunfei Zhang, Qian Zhang, Yang Zou, Bo Zhou, Rui Yan, Guifeng Zhu, Jian Guo and Ao Zhang
Energies 2024, 17(15), 3792; https://doi.org/10.3390/en17153792 - 1 Aug 2024
Viewed by 415
Abstract
The simulation of fuel composition requires coupled calculations of neutron transport and burnup. It is generally assumed that the neutron flux density and cross-sections remain constant within a burnup step. However, when there are strong absorber poisons present, the reaction rates of the [...] Read more.
The simulation of fuel composition requires coupled calculations of neutron transport and burnup. It is generally assumed that the neutron flux density and cross-sections remain constant within a burnup step. However, when there are strong absorber poisons present, the reaction rates of the absorbers change too rapidly over time, necessitating extremely fine step sizes to ensure computational accuracy, which in turn leads to low computational efficiency. As a type of accident tolerant fuel (ATF), fully ceramic micro-encapsulated (FCM) fuel is a promising new type of nuclear fuel. Accelerated algorithms for burnup calculations of FCM fuel containing gadolinium isotopes have been developed based on the ALPHA code, including the projected predictor–corrector (PPC), the log-linear rate (LLR), and the high-order predictor–corrector (HOPC) methods (including CE/LI, CE/QI, LE/LI, and LE/QI). The performances of different algorithms under the two forms of Gd2O3 existence were analyzed. The numerical results show that the LE/QI method performs the best overall. For Gd2O3 existing in both forms, the LE/QI algorithm can maintain accuracy with a burnup step size of up to 1.0 GWd/tU, keeping the infinite multiplication factor kinf within 100 pcm, and it exhibits high accuracy in simulating the atomic number densities of Gd-155 and Gd-157 throughout the burnup process. Full article
(This article belongs to the Special Issue Advanced Technologies in Nuclear Engineering)
Show Figures

Figure 1

26 pages, 8710 KiB  
Article
Enhancing Efficiency in Hybrid Marine Vessels through a Multi-Layer Optimization Energy Management System
by Hoai Vu Anh Truong, Tri Cuong Do and Tri Dung Dang
J. Mar. Sci. Eng. 2024, 12(8), 1295; https://doi.org/10.3390/jmse12081295 - 31 Jul 2024
Viewed by 471
Abstract
Configuring green power transmissions for heavy-industry marines is treated as a crucial request in an era of global energy and pollution crises. Following up on this hotspot trend, this paper examines the effectiveness of a modified optimization-based energy management strategy (OpEMS) for a [...] Read more.
Configuring green power transmissions for heavy-industry marines is treated as a crucial request in an era of global energy and pollution crises. Following up on this hotspot trend, this paper examines the effectiveness of a modified optimization-based energy management strategy (OpEMS) for a dual proton exchange membrane fuel cells (dPEMFCs)-battery-ultra-capacitors (UCs)-driven hybrid electric vessels (HEVs). At first, the summed power of the dual PEMFCs is defined by using the equivalent consumption minimum strategy (ECMS). Accordingly, a map search engine (MSE) is proposed to appropriately split power for each FC stack and maximize its total efficiency. The remaining power is then distributed to each battery and UC using an adaptive co-state, timely determined based on the state of charge (SOC) of each device. Due to the strict constraint of the energy storage devices’ (ESDs) SOC, one fine-corrected layer is suggested to enhance the SOC regulations. With the comparative simulations with a specific rule-based EMS and other approaches for splitting power to each PEMFC unit, the effectiveness of the proposed topology is eventually verified with the highest efficiency, approximately about 0.505, and well-regulated ESDs’ SOCs are obtained. Full article
(This article belongs to the Special Issue Advancements in Power Management Systems for Hybrid Electric Vessels)
Show Figures

Figure 1

18 pages, 9265 KiB  
Article
Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo
by Go Masuda, Satoshi Akuta, Weiqian Wang, Miho Suzuki, Yu Honda and Qingyue Wang
Materials 2024, 17(15), 3751; https://doi.org/10.3390/ma17153751 - 29 Jul 2024
Viewed by 461
Abstract
Although bamboo is widely distributed in Japan, its applications are very limited due to its poor combustion efficiency for fuel. In recent years, the expansion of abandoned bamboo forests has become a social issue. In this research, the possibility of a liquefaction process [...] Read more.
Although bamboo is widely distributed in Japan, its applications are very limited due to its poor combustion efficiency for fuel. In recent years, the expansion of abandoned bamboo forests has become a social issue. In this research, the possibility of a liquefaction process with fast and efficient liquefaction conditions using moso bamboo as raw material was examined. Adding 20 wt% ethylene carbonates to the conventional polyethylene glycol/glycerol mixed solvent system, the liquefaction time was successfully shortened from 120 to 60 min. At the same time, the amount of sulfuric acid used as a catalyst was reduced from 3 wt% to 2 wt%. Furthermore, polyurethane foam was prepared from the liquefied product under these conditions, and its physical properties were evaluated. In addition, the filler effects of rice husk biochar and moso bamboo fine meals for the polyurethane foams were characterized by using scanning electron microscopy (SEM) and thermogravimetry and differential thermal analysis (TG-DTA), and the water absorption and physical density were measured. As a result, the water absorption rate of bamboo fine meal-added foam and the thermal stability of rice husk biochar-added foam were improved. These results suggested that moso bamboo meals were made more hydrophilic, and the carbon content of rice husk biochar was increased. Full article
Show Figures

Figure 1

16 pages, 17736 KiB  
Article
Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria
by Sawanya Saetae, Francis Olawale Abulude, Mohammed Mohammed Ndamitso, Akinyinka Akinnusotu, Samuel Dare Oluwagbayide, Yutaka Matsumi, Kenta Kanegae, Kazuaki Kawamoto and Tomoki Nakayama
Atmosphere 2024, 15(7), 867; https://doi.org/10.3390/atmos15070867 - 22 Jul 2024
Viewed by 486
Abstract
The spatial–temporal variations of fine particulate matter (PM2.5) in Akure, a city in southwestern Nigeria, are examined based on multi-year continuous observations using low-cost PM2.5 sensors at six different sites. The average annual concentration of PM2.5 across these sites [...] Read more.
The spatial–temporal variations of fine particulate matter (PM2.5) in Akure, a city in southwestern Nigeria, are examined based on multi-year continuous observations using low-cost PM2.5 sensors at six different sites. The average annual concentration of PM2.5 across these sites was measured at 41.0 µg/m3, which surpassed both the Nigerian national air quality standard and the World Health Organization air quality guideline level. PM2.5 levels were significantly higher during the dry season (November–March), often exceeding hazardous levels (over 350 µg/m3), than during the wet season. The analyses of trends in air mass trajectories and satellite data on fire occurrences imply that the transport of dust and accumulation of PM2.5 originating from local/regional open burning activities played crucial roles in increased PM2.5 concentrations during the dry season. Further, site-to-site variations in the PM2.5 levels were observed, with relatively high concentrations at less urbanized sites, likely due to high local emissions from solid fuel combustion, waste burning, and unpaved road dust. Diurnal patterns showed morning and evening peaks at less urbanized sites, accounting for an estimated 51–77% of local emissions. These results highlight the importance of local emission sources in driving spatial–temporal PM2.5 variations within the city and the need for targeted mitigation strategies to address the significant air pollution challenges in Akure and similar regional cities in West Africa. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 2824 KiB  
Article
The Effect of Wood Species on Fine Particle and Gaseous Emissions from a Modern Wood Stove
by Henna Rinta-Kiikka, Karna Dahal, Juho Louhisalmi, Hanna Koponen, Olli Sippula, Kamil Krpec and Jarkko Tissari
Atmosphere 2024, 15(7), 839; https://doi.org/10.3390/atmos15070839 - 16 Jul 2024
Cited by 1 | Viewed by 624
Abstract
Residential wood combustion (RWC) is a significant source of gaseous and particulate emissions causing adverse health and environmental effects. Several factors affect emissions, but the effects of the fuel wood species on emissions are currently not well understood. In this study, the Nordic [...] Read more.
Residential wood combustion (RWC) is a significant source of gaseous and particulate emissions causing adverse health and environmental effects. Several factors affect emissions, but the effects of the fuel wood species on emissions are currently not well understood. In this study, the Nordic wood species (named BirchA, BirchB, Spruce, SpruceDry, Pine and Alder) were combusted in a modern stove, and the emissions were studied. The lowest emissions were obtained from the combustion of BirchA and the highest from Spruce and Alder. The fine particle mass (PM2.5) was mainly composed of elemental carbon (50–70% of PM2.5), which is typical in modern appliances. The lowest PAH concentrations were measured from BirchA (total PAH 107 µg/m3) and Pine (250 µg/m3). In the ignition batch, the PAH concentration was about 4-fold (416 µg/m3). The PAHs did not correlate with other organic compounds, and thus, volatile organic compounds (VOCs) or organic carbon (OC) concentrations cannot be used as an indicator of PAH emissions. Two birch species from different origins with a similar chemical composition but different density produced partially different emission profiles. This study indicates that emission differences may be due more to the physical properties of the wood and the combustion conditions than to the wood species themselves. Full article
Show Figures

Figure 1

16 pages, 5303 KiB  
Article
Assessing Particulate Emissions of Novel Synthetic Fuels and Fossil Fuels under Different Operating Conditions of a Marine Engine and the Impact of a Closed-Loop Scrubber
by Dennis Fischer, Wiktoria Vith and Jonas Lloyd Unger
J. Mar. Sci. Eng. 2024, 12(7), 1144; https://doi.org/10.3390/jmse12071144 - 8 Jul 2024
Viewed by 589
Abstract
Particle emissions from marine activities next to gaseous emissions have attracted increasing attention in recent years, whether in the form of black carbon for its contribution to global warming or as fine particulate matter posing a threat to human health. Coastal areas are [...] Read more.
Particle emissions from marine activities next to gaseous emissions have attracted increasing attention in recent years, whether in the form of black carbon for its contribution to global warming or as fine particulate matter posing a threat to human health. Coastal areas are particularly affected by this. Hence, there is a great need for shipping to explore alternative fuels that both reduce greenhouse gas emissions, as anticipated through IMO, and also have the potential to reduce particle emissions significantly. This paper presents a comparative study of the particulate emissions of two novel synthetic/biofuels (GTL and HVO), which might, in part, substitute traditionally used distillate liquid fuels (e.g., MDO). HFO particulate emissions, in combination with an EGCS, formed the baseline. The main emphasis was laid on particle concentration (PN) and particulate matter (PM) emissions, combining gravimetric and particle number measurements. Measurements were conducted on a 0.72 MW research engine at different loads (25%, 50%, and 75%). The results show that novel fuels produce slightly fewer emissions than diesel fuel. Results also exhibit a clear trend that particle formation decreases as engine load increases. The EGCS only moderately reduces particle emissions for all complaint fuels, which is related to the formation of very fine particles, especially at high engine loads. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

Back to TopTop