Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,138)

Search Parameters:
Keywords = gamma rays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3604 KiB  
Article
Off-Axis Color Characteristics of Binary Neutron Star Merger Events: Applications for Space Multi-Band Variable Object Monitor and James Webb Space Telescope
by Hongyu Gong, Daming Wei and Zhiping Jin
Universe 2024, 10(10), 403; https://doi.org/10.3390/universe10100403 (registering DOI) - 19 Oct 2024
Abstract
With advancements in gravitational wave detection technology, an increasing number of binary neutron star (BNS) merger events are expected to be detected. Due to the narrow opening angle of jet cores, many BNS merger events occur off-axis, resulting in numerous gamma-ray bursts (GRBs) [...] Read more.
With advancements in gravitational wave detection technology, an increasing number of binary neutron star (BNS) merger events are expected to be detected. Due to the narrow opening angle of jet cores, many BNS merger events occur off-axis, resulting in numerous gamma-ray bursts (GRBs) going undetected. Models suggest that kilonovae, which can be observed off-axis, offer more opportunities to be detected in the optical/near-infrared band as electromagnetic counterparts of BNS merger events. In this study, we calculate kilonova emission using a three-dimensional semi-analytical code and model the GRB afterglow emission with the open-source Python package afterglowpy at various inclination angles. Our results show that it is possible to identify the kilonova signal from the observed color evolution of BNS merger events. We also deduce the optimal observing window for SVOM/VT and JWST/NIRCam, which depends on the viewing angle, jet opening angle, and circumburst density. These parameters can be cross-checked with the multi-band afterglow fitting. We suggest that kilonovae are more likely to be identified at larger inclination angles, which can also help determine whether the observed signals without accompanying GRBs originate from BNS mergers. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

10 pages, 4132 KiB  
Article
Ion Beam-Induced Luminescence (IBIL) for Studying Manufacturing Conditions in Ceramics: An Application to Ceramic Body Tiles
by Victoria Corregidor, José Luis Ruvalcaba-Sil, Maria Isabel Prudêncio, Maria Isabel Dias and Luís C. Alves
Materials 2024, 17(20), 5075; https://doi.org/10.3390/ma17205075 - 17 Oct 2024
Viewed by 309
Abstract
The first experimental results obtained by the ion beam-induced luminescence technique from the ceramic bodies of ancient tiles are reported in this work. The photon emission from the ceramic bodies is related to the starting minerals and the manufacturing conditions, particularly the firing [...] Read more.
The first experimental results obtained by the ion beam-induced luminescence technique from the ceramic bodies of ancient tiles are reported in this work. The photon emission from the ceramic bodies is related to the starting minerals and the manufacturing conditions, particularly the firing temperature and cooling processes. Moreover, the results indicate that this non-destructive technique, performed under a helium-rich atmosphere instead of an in-vacuum setup and with acquisition times of only a few seconds, presents a promising alternative to traditional, often destructive, compositional characterisation methods. Additionally, by adding other ion beam-based techniques such as PIXE (Particle-Induced X-ray Emission) and PIGE (Particle-Induced Gamma-ray Emission), compositional information from light elements such as Na can also be inferred, helping to also identify the raw materials used. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Geophysical Monitoring Technologies for the Entire Life Cycle of CO2 Geological Sequestration
by Chenyang Li and Xiaoli Zhang
Processes 2024, 12(10), 2258; https://doi.org/10.3390/pr12102258 - 16 Oct 2024
Viewed by 414
Abstract
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, [...] Read more.
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, and logging technologies. Among these methods, seismic monitoring techniques encompass high-resolution P-Cable three-dimensional seismic systems, delayed vertical seismic profiling technology, and four-dimensional distributed acoustic sensing (DAS). These methods are utilized to monitor interlayer strain induced by CO2 injection, thereby indirectly determining the injection volume, distribution range, and potential diffusion pathways of the CO2 plume. In contrast, fiber optic monitoring primarily involves distributed fiber optic sensing (DFOS), which can be further classified into distributed acoustic sensing (DAS) and distributed temperature sensing (DTS). This technology serves to complement seismic monitoring in observing interlayer strain resulting from CO2 injection. The logging techniques utilized for monitoring CO2 geological sequestration include neutron logging methods, such as thermal neutron imaging and pulsed neutron gamma-ray spectroscopy, which are primarily employed to assess the sequestration volume and state of CO2 plumes within a reservoir. Seismic monitoring technology provides a broader monitoring scale (ranging from dozens of meters to kilometers), while logging techniques operate at centimeter to meter scales; however, their results can be significantly affected by the heterogeneity of a reservoir. Full article
Show Figures

Figure 1

12 pages, 2841 KiB  
Article
Development of a New Image Reconstruction Method Using Bayesian Estimation with Limited View-Angle Projection Data for BNCT-SPECT
by Fan Lu, Haruka Inamoto, Shuto Takeishi, Shingo Tamaki, Sachie Kusaka and Isao Murata
Appl. Sci. 2024, 14(20), 9411; https://doi.org/10.3390/app14209411 - 15 Oct 2024
Viewed by 335
Abstract
Boron Neutron Capture Therapy (BNCT) is an emerging radiation treatment for cancer, and its challenges are being explored. Systems capable of capturing real-time observations of this treatment’s effectiveness, particularly BNCT-SPECT methods that measure gamma rays emitted instantaneously from outside the body during nuclear [...] Read more.
Boron Neutron Capture Therapy (BNCT) is an emerging radiation treatment for cancer, and its challenges are being explored. Systems capable of capturing real-time observations of this treatment’s effectiveness, particularly BNCT-SPECT methods that measure gamma rays emitted instantaneously from outside the body during nuclear reactions and that reconstruct images using Single Photon Emission Computed Tomography (SPECT) techniques, remain unavailable. BNCT-SPECT development is hindered by two main factors, the first being the projection angle. Unlike conventional SPECT, the projection angle range which is achievable by rotating a detector array cannot exceed approximately 90 degrees. Consequently, Fourier-based image reconstruction methods, requiring projections from at least 180 degrees, do not apply to BNCT-SPECT. The second limitation is the measurement time. Given these challenges, we developed a new sequential approximation image reconstruction method using Bayesian estimation, which is effective under the stringent BNCT-SPECT conditions. We also compared the proposed method with the existing Maximum Likelihood-Expectation Maximization (ML-EM) image reconstruction method. Numerical experiments were conducted by obtaining BNCT-SPECT projection data from true images and reconstructing images using both the proposed and ML-EM methods from the resulting sinograms. Performance comparisons were conducted using a dedicated program applying Bayesian estimation and this showed promise as a new image reconstruction method useful under BNCT-SPECT conditions. Full article
Show Figures

Figure 1

17 pages, 1594 KiB  
Article
Accelerated Aging Effects Observed In Vitro after an Exposure to Gamma-Rays Delivered at Very Low and Continuous Dose-Rate Equivalent to 1–5 Weeks in International Space Station
by Juliette Restier-Verlet, Mélanie L. Ferlazzo, Adeline Granzotto, Joëlle Al-Choboq, Camélia Bellemou, Maxime Estavoyer, Florentin Lecomte, Michel Bourguignon, Laurent Pujo-Menjouet and Nicolas Foray
Cells 2024, 13(20), 1703; https://doi.org/10.3390/cells13201703 - 15 Oct 2024
Viewed by 302
Abstract
Radiation impacting astronauts in their spacecraft come from a “bath” of high-energy rays (0.1–0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a “stochastic rain” of low-energy particles from the shielding and impacting surface tissues like skin [...] Read more.
Radiation impacting astronauts in their spacecraft come from a “bath” of high-energy rays (0.1–0.5 mGy per mission day) that reaches deep tissues like the heart and bones and a “stochastic rain” of low-energy particles from the shielding and impacting surface tissues like skin and lenses. However, these two components cannot be reproduced on Earth together. The MarsSimulator facility (Toulouse University, France) emits, thanks to a bag containing thorium salts, a continuous exposure of 120 mSv/y, corresponding to that prevailing in the International Space Station (ISS). By using immunofluorescence, we assessed DNA double-strand breaks (DSB) induced by 1–5 weeks exposure in ISS of human tissues evoked above, identified at risk for space exploration. All the tissues tested elicited DSBs that accumulated proportionally to the dose at a tissue-dependent rate (about 40 DSB/Gy for skin, 3 times more for lens). For the lens, bones, and radiosensitive skin cells tested, perinuclear localization of phosphorylated forms of ataxia telangiectasia mutated protein (pATM) was observed during the 1st to 3rd week of exposure. Since pATM crowns were shown to reflect accelerated aging, these findings suggest that a low dose rate of 120 mSv/y may accelerate the senescence process of the tested tissues. A mathematical model of pATM crown formation and disappearance has been proposed. Further investigations are needed to document these results in order to better evaluate the risks related to space exploration. Full article
Show Figures

Figure 1

35 pages, 7319 KiB  
Article
Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501
by Margaritis Chatzis, Stamatios I. Stathopoulos, Maria Petropoulou and Georgios Vasilopoulos
Universe 2024, 10(10), 392; https://doi.org/10.3390/universe10100392 - 10 Oct 2024
Viewed by 338
Abstract
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time [...] Read more.
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time series for key model parameters, like magnetic field strength and the power-law index of radiating particles, which were motivated from a simulated time series with statistical properties describing the observed GeV gamma-ray flux. We chose the TeV blazar Mrk 501 as our test case, as it had been the study ground for extensive investigations during individual flaring events. Using the code LeHaMoC, we computed the electromagnetic and neutrino emissions for a period of several years that contained several flares of interest. We show that for both of those particle distributions the power-law index variations that were tied to moderate changes in the magnetic field strength of the emitting region might naturally lead to hard X-ray flares with very-high-energy γ-ray counterparts. We found spectral differences measurable by the Cherenkov Telescope Array Observatory at sub-TeV energies, and we computed the neutrino fluence over 14.5 years. The latter predicted ∼0.2 muon and anti-muon neutrinos, consistent with the non-detection of high-energy neutrinos from Mrk 501. Full article
(This article belongs to the Section Compact Objects)
Show Figures

Figure 1

9 pages, 3828 KiB  
Article
Long-Term Afterglow Measurement of Scintillators after Gamma Irradiation
by Ladislav Viererbl, Hana Assmann Vratislavská and Antonín Kolros
J. Nucl. Eng. 2024, 5(4), 436-444; https://doi.org/10.3390/jne5040027 - 5 Oct 2024
Viewed by 357
Abstract
The long-term afterglow of scintillators is an important aspect, especially when the light signal from a scintillator is evaluated in the current mode. Scintillators used for radiation detection exhibit an afterglow, which usually comes from multiple components that have different decay times. A [...] Read more.
The long-term afterglow of scintillators is an important aspect, especially when the light signal from a scintillator is evaluated in the current mode. Scintillators used for radiation detection exhibit an afterglow, which usually comes from multiple components that have different decay times. A high level of afterglow usually has a negative influence on the detection parameters for the energy resolution in spectrometry measurements or X-ray and neutron imaging. The paper deals with the long-term afterglow of some types of scintillators, which is more significant for integral measurement when the current is measured in a photodetector. The range of decay times studied was in the order of tens of seconds to days. Seven types of scintillators were examined: BGO, CaF2(Eu), CdWO4, CsI(Tl), LiI(Eu), NaI(Tl), and plastic scintillator. The scintillators were excited by gamma-ray radiation. After irradiation, the detection unit, along with the scintillator, was moved to a laboratory where the anode current of the photomultiplier tube was measured using a picoammeter for at least a day. The measurements showed that CdWO4 and plastic scintillators have relatively low long-term afterglow signals in comparison to the other scintillators studied. Full article
Show Figures

Figure 1

17 pages, 506 KiB  
Article
Polarization from a Radially Stratified GRB Outflow
by Augusto César Caligula do Espírito Santo Pedreira, Nissim Fraija, Antonio Galván-Gámez, Boris Betancourt Kamenetskaia, Simone Dichiara, Maria G. Dainotti, Rosa L. Becerra and Peter Veres
Galaxies 2024, 12(5), 60; https://doi.org/10.3390/galaxies12050060 - 4 Oct 2024
Viewed by 337
Abstract
While the dominant radiation mechanism of gamma-ray bursts (GRBs) remains a question of debate, synchrotron emission is one of the foremost candidates to describe the multi-wavelength afterglow observations. As such, it is expected that GRBs should present some degree of polarization across their [...] Read more.
While the dominant radiation mechanism of gamma-ray bursts (GRBs) remains a question of debate, synchrotron emission is one of the foremost candidates to describe the multi-wavelength afterglow observations. As such, it is expected that GRBs should present some degree of polarization across their evolution—presenting a feasible means of probing these bursts’ energetic and angular properties. Although obtaining polarization data is difficult due to the inherent complexities regarding GRB observations, advances are being made, and theoretical modeling of synchrotron polarization is now more relevant than ever. In this manuscript, we present the polarization for a fiduciary model, where the synchrotron FS emission evolving in the radiative–adiabatic regime is described by a radially stratified off-axis outflow. This is parameterized with a power-law velocity distribution and decelerated in a constant-density and wind-like external environment. We apply this theoretical polarization model for two select GRBs, presenting upper limits in their polarization—GRB 170817A, a known off-axis GRB with radio polarization upper limits, and GRB 190014C, an on-axis case, where the burst was seen from within the half-opening angle of the jet, with observed optical polarization—in an attempt to constrain their magnetic field geometry in the emitting region. Full article
Show Figures

Figure 1

16 pages, 5371 KiB  
Article
Perovskite Nanocrystal-Coated Inorganic Scintillator-Based Fiber-Optic Gamma-ray Sensor with Higher Light Yields
by Seokhyeon Jegal, Siwon Song, Jae Hyung Park, Jinhong Kim, Seunghyeon Kim, Sangjun Lee, Cheol Ho Pyeon, Sin Kim and Bongsoo Lee
Photonics 2024, 11(10), 936; https://doi.org/10.3390/photonics11100936 - 4 Oct 2024
Viewed by 537
Abstract
Radiation possesses inherent physical characteristics, such as penetrability and radionuclide energy, which enable its widespread applicability in fields such as medicine, industry, environment, security, and research. Advancements in scintillator-based radiation detection technology have led to revolutionary changes by ensuring the safe use and [...] Read more.
Radiation possesses inherent physical characteristics, such as penetrability and radionuclide energy, which enable its widespread applicability in fields such as medicine, industry, environment, security, and research. Advancements in scintillator-based radiation detection technology have led to revolutionary changes by ensuring the safe use and precise measurement of radiation. Nevertheless, certain fields require higher scintillation yields to obtain more refined and detailed results. Therefore, in this study, we explored inorganic scintillators coated with perovskite nanomaterials to detect gamma rays with high light yields. By mixing perovskite with a polymer, we improved the intrinsic characteristics of quantum dots, which otherwise failed to maintain their performance over time. On this basis, we investigated the interactions among inorganic scintillators and a mixed material (CsPbBr3 + PMMA) and confirmed an increase in the scintillation yield and measurement trends. Furthermore, optimized scintillation yield measurement experiments facilitated gamma spectroscopy, demonstrating the validity of our approach through the analysis of the peak channel increases in the energy spectra of various gamma sources in relation to the increased scintillation yield. Full article
Show Figures

Figure 1

21 pages, 4283 KiB  
Article
Beta-Hydroxybutyric Acid as a Template for the X-ray Powder Diffraction Analysis of Gamma-Hydroxybutyric Acid
by Domenica Marabello, Carlo Canepa, Alma Cioci and Paola Benzi
Molecules 2024, 29(19), 4678; https://doi.org/10.3390/molecules29194678 - 2 Oct 2024
Viewed by 397
Abstract
In this paper, we report the possibility of using the X-ray powder diffraction (XRPD) technique to detect gamma-hydroxybutyric acid (GHB) in the form of its sodium salt in different beverages, but because it is not possible to freely buy GHB, beta-hydroxybutyric acid (BHB) [...] Read more.
In this paper, we report the possibility of using the X-ray powder diffraction (XRPD) technique to detect gamma-hydroxybutyric acid (GHB) in the form of its sodium salt in different beverages, but because it is not possible to freely buy GHB, beta-hydroxybutyric acid (BHB) and its sodium salt (NaBHB) were used as a model to fine-tune an X-ray diffraction method for the qualitative analysis of the sodium salt of GHB. The method requires only a small quantity of beverage and an easy sample preparation that consists only of the addition of NaOH to the drink and a subsequent drying step. The dry residue obtained can be easily analyzed with XRPD using a single-crystal X-ray diffractometer, which exploits its high sensitivity and allows for very fast pattern collection. Several beverages with different NaBHB:NaOH molar ratios were tested, and the results showed that NaBHB was detected in all drinks analyzed when the NaBHB:NaOH molar ratio was 1:50, using a characteristic peak at very low 2θ values, which also permitted the detection of its presence in complex beverage matrices. Moreover, depending on the amount of NaOH added, shifting and/or splitting of the characteristic NaBHB salt peak was observed, and the origin of this behavior was investigated. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

8 pages, 285 KiB  
Article
Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission
by Theodora Papavasileiou, Odysseas Kosmas and Theocharis Kosmas
Particles 2024, 7(4), 879-886; https://doi.org/10.3390/particles7040052 - 1 Oct 2024
Viewed by 391
Abstract
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary [...] Read more.
Black hole X-ray binary systems consist of a black hole accreting mass from its binary companion, forming an accretion disk. As a result, twin relativistic plasma ejections (jets) are launched towards opposite and perpendicular directions. Moreover, multiple broadband emission observations from X-ray binary systems range from radio to high-energy gamma rays. The emission mechanisms exhibit thermal origins from the disk, stellar companion, and non-thermal jet-related components (i.e., synchrotron emission, inverse comptonization of less energetic photons, etc.). In many attempts at fitting the emitted spectra, a static black hole is often assumed regarding the accretion disk modeling, ignoring the Kerr metric properties that significantly impact the geometry around the usually rotating black hole. In this work, we study the possible implications of the spin inclusion in predictions of the X-ray binary spectrum. We mainly focus on the most significant aspect inserted by the Kerr geometry, the innermost stable circular orbit radius dictating the disk’s inner boundary. The outcome suggests a higher-peaked and hardened X-ray spectrum from the accretion disk and a substantial increase in the inverse Compton component of disk-originated photons. Jet-photon absorption is also heavily affected at higher energy regimes dominated by hadron-induced emission mechanisms. Nevertheless, a complete investigation requires the full examination of the spin contribution and the resulting relativistic effects beyond the disk truncation. Full article
Show Figures

Figure 1

32 pages, 8140 KiB  
Article
Constraining the Initial Mass Function via Stellar Transients
by Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera and Andrea Lapi
Universe 2024, 10(10), 383; https://doi.org/10.3390/universe10100383 - 29 Sep 2024
Viewed by 451
Abstract
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, [...] Read more.
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim to determine the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple but flexible Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as a function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities via a Bayesian Markov Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination with a characteristic mass mc=0.100.08+0.24M and high-mass slope ξ=2.530.27+0.24 that are in accordance with the widely used IMF parameterizations (e.g., Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution allows us to constrain the maximum metallicity of LGRB progenitors to Zmax=0.120.05+0.29Z. We also find which progenitor fraction actually leads to SN Ia or LGRB emission (e.g., due to binary interaction or jet-launching conditions), put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with the galactic environment and cosmic history, and the properties of SN Ia, CCSN, and LGRB progenitors, especially considering the wealth of data incoming in the future. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

15 pages, 5831 KiB  
Article
Effect of Simulated Cosmic Radiation on Cytomegalovirus Reactivation and Lytic Replication
by Satish K. Mehta, Douglass M. Diak, Sara Bustos-Lopez, Mayra Nelman-Gonzalez, Xi Chen, Ianik Plante, Stephen J. Stray, Ritesh Tandon and Brian E. Crucian
Int. J. Mol. Sci. 2024, 25(19), 10337; https://doi.org/10.3390/ijms251910337 - 26 Sep 2024
Viewed by 508
Abstract
Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as [...] Read more.
Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein–Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station. Given the prevalence of latent CMV and the known propensity of space radiation to cause alterations in many cellular processes, we undertook this study to understand the role of GCR in reactivating latent CMV. Latently infected Kasumi cells with CMV were irradiated with 137Cs gamma rays, 150 MeV protons, 600 MeV/n carbon ions, 600 MeV/n iron ions, proton ions, and simulated GCR. The CMV copy number increased significantly in the cells exposed to radiation as compared with the non-irradiated controls. Viral genome sequencing did not reveal significant nucleotide differences among the compared groups. However, transcriptome analysis showed the upregulation of transcription of the UL49 ORF, implicating it in the switch from latent to lytic replication. These findings support our hypothesis that GCR may be a strong contributor to the reactivation of CMV infection seen in ISS crew members. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 6928 KiB  
Review
Problems of Measuring Gas Content in Oil in a Two-Phase Flow: A Review
by Cezary Edling and Paweł Śliwiński
Energies 2024, 17(19), 4800; https://doi.org/10.3390/en17194800 - 25 Sep 2024
Viewed by 371
Abstract
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment [...] Read more.
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment of their advantages and disadvantages and of whether they meet criteria such as the degree of filling, the size and number of bubbles, verification, the absence of additional pressure drops, simplicity, and repeatability. In the review, the following methods were examined: the classic trapping method, a modified trapping method, a trapping method using hydrostatic pressure loss, the pressure loss due to frictional flow resistance, the pressure loss with a rapid increase in diameter, the pressure drop in a Venturi tube, the pressure drop in an orifice, a method using the Coriolis effect, the electrical resistance method, the electrical conductivity method, the electromagnetic method, the electrical capacitance method, the thermal anemometry method, the liquid–solid contact electrification method, the photographic method, holography, light scattering, sound dispersion, the ultrasonic transit-time method, X-ray radiation, gamma radiation, neutron radiation, and fiber-optic methods. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

18 pages, 12466 KiB  
Article
X-ray Fluorescence Microscopy to Develop Elemental Classifiers and Investigate Elemental Signatures in BALB/c Mouse Intestine a Week after Exposure to 8 Gy of Gamma Rays
by Anthony Smith, Katrina Dobinda, Si Chen, Peter Zieba, Tatjana Paunesku, Zequn Sun and Gayle E. Woloschak
Int. J. Mol. Sci. 2024, 25(19), 10256; https://doi.org/10.3390/ijms251910256 - 24 Sep 2024
Viewed by 390
Abstract
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from [...] Read more.
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS. Full article
(This article belongs to the Special Issue Molecular Research of Biomedical X-ray Fluorescence Imaging (XFI))
Show Figures

Figure 1

Back to TopTop