Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501
Abstract
:1. Introduction
2. Methods
2.1. Numerical Code
2.2. Mrk 501 as a Case Study
2.3. Computation of Time-Average SED
2.4. Generation of Time Series
3. Results on Variability
3.1. Particle Energy Injection Rate and Magnetic Field Strength
3.2. Power-Law Slope of Particle Distribution
4. Predictions for CTAO
5. Predictions for IceCube
6. Summary and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACF | Autocorrelation Function |
BAT | Burst Alert Telescope |
CTA | Cherenkov Telescope Array |
EBL | Extragalactic Background Light |
HE | High Energies |
HSP | High-Synchrotron Peaked |
IC | Inverse Compton |
KS | Kolmogorov–Smirnov |
LAT | Large Area Telescope |
LC | Light Curve |
LCR | Light Curve Repository |
LP | Log Parabola |
MCMC | Markov Chain Monte Carlo |
PC | Photon Counting |
PSD | Power Spectral Density |
SED | Spectral Energy Distribution |
SHO | Stochastically driven damped simple Harmonic Oscillator |
SSC | Synchrotron-Self Compton |
TS | Time Series |
VHE | Very High Energies |
WEBT | Whole-Earth Blazar Telescope |
WT | Windowed Timing |
XRT | X-ray Telescope |
Appendix A
Appendix B
Appendix C
- In the context of Gaussian fitting methods, the covariance matrix is used in the generalized N-dimensional Gaussian log-likelihood for datasets y and X, parametrized by . This likelihood is given byIts elements, , are called kernel functions and are calculated by the celerite method.We compute the standardized residuals of the Gaussian fit, which must correspond to white noise. By connecting the celerite process to moving averages we express the residuals in terms of the upper triangular Cholesky factorization of the covariance matrix, as provided by the celerite process, and the zero-meaned observational data asFitting a normal distribution to the resulting histogram via the chi-square method, the desired result should be a Gaussian with mean , a standard deviation of , and a value of 1.
- We calculated the deviation of our results from a normal distribution via the Kolmogorov–Smirnov (KS) test. The null-hypothesis in this test is that the results do not originate from the same distribution. This is quantified by p-values, which describe the likelihood of an event. Values smaller than 0.05 imply that the null hypothesis is true only 5% of the time. Therefore, p values greater than confirm the hypothesis that our residuals stem from a normal distribution.
- We showed the residuals’ Autocorrelation Function (ACF) and the 95% confidence limits of white noise, proving that almost the entirety of the ACF resided within that limit. Thus, our model selection appropriately captured the correlation behavior.
- We plotted the PSDs of the MCMC process and calculated the slope above the breakpoint. Values of and corresponded to red noise or Brownian motion and white noise, respectively. Such combinations have been previously observed in the study of the time variability of blazars with an empirical break frequency of around 150 days for OJ 287 [91], 25 days for 3C 66A [92], and 43 days for PKS2155-304 [92]. We report a value of for Mrk 501.
Source Name | KS p-Value | PSD Slope | [Days] | |||
---|---|---|---|---|---|---|
Mrk 501 | 2.95 | 0.98 | 0.96 | 0.2 |
Appendix D
Appendix E
Appendix F
1 | https://github.com/mariapetro/LeHaMoC/ (accessed on 15 January 2024). |
2 | https://tools.ssdc.asi.it/SED/ (accessed on 15 January 2024). |
3 | https://swift.gsfc.nasa.gov/results/bs157mon/ (accessed on 15 May 2024). |
4 | https://www.swift.ac.uk/user_objects/ (accessed on 15 May 2024). |
5 | See note 4 above. |
6 | Attempts fitting data from 10 GHz to VHE -rays with a single-zone model do not yield meaningful solutions. |
7 | Both the mean cadence and time step are in the observer’s frame, as they are based on direct observational results. LeHaMoC performs calculations in the comoving frame of the blob in time-steps of 1 intrinsic light-crossing time. However, transformations between the comoving and the observer’s frame, do not change the relative values of our generated TS. Therefore, we can use them despite the different reference frames. |
8 | The optical depth transitions from ≈10 at the initial average state to at the peak of the TS. |
9 | https://docs.gammapy.org/1.2/ (accessed on 1 June 2024). |
10 | We assume the source always to be centered at the field of view of the array. |
11 | Other empirical models such as a power law or an exponential cut-off power law could not adequately describe the data (resulting in larger residuals at the lower and higher energy cutoffs). |
12 | https://johannesbuchner.github.io/UltraNest/ (accessed on 15 July 2024). |
13 |
References
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; et al. An Exceptional Very High Energy Gamma-ray Flare of PKS 2155-304. Astrophys. J. 2007, 664, L71–L74. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Gamma-ray Light Curves and Variability of Bright Fermi-detected Blazars. Astrophys. J. 2010, 722, 520–542. [Google Scholar] [CrossRef]
- Bloom, S.D.; Marscher, A.P. An Analysis of the Synchrotron Self-Compton Model for the Multi–Wave Band Spectra of Blazars. Astrophys. J. 1996, 461, 657. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Kirk, J.G. Variability in the synchrotron self-Compton model of blazar emission. Astron. Astrophys. 1997, 320, 19–25. [Google Scholar] [CrossRef]
- Dermer, C.D.; Schlickeiser, R.; Mastichiadis, A. High-energy gamma radiation from extragalactic radio sources. Astron. Astrophys. 1992, 256, L27–L30. [Google Scholar]
- Ghisellini, G.; Madau, P. On the origin of the gamma-ray emission in blazars. Mon. Not. R. Astron. Soc. 1996, 280, 67–76. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Moraitis, K. On the rapid TeV flaring activity of Markarian 501. Astron. Astrophys. 2008, 491, L37–L40. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Barkov, M.V.; Khangulyan, D. Scenarios for Ultrafast Gamma-ray Variability in AGN. Astrophys. J. 2017, 841, 61. [Google Scholar] [CrossRef]
- Krawczynski, H.; Coppi, P.S.; Aharonian, F. Time-dependent modelling of the Markarian 501 X-ray and TeV gamma-ray data taken during 1997 March and April. Mon. Not. R. Astron. Soc. 2002, 336, 721–735. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Petropoulou, M.; Dimitrakoudis, S. Mrk 421 as a case study for TeV and X-ray variability in leptohadronic models. Mon. Not. R. Astron. Soc. 2013, 434, 2684–2695. [Google Scholar] [CrossRef]
- Djannati-Atai, A.; Piron, F.; Barrau, A.; Iacoucci, L.; Punch, M.; Tavernet, J.P.; Bazer-Bachi, R.; Cabot, H.; Chounet, L.M.; Debiais, G.; et al. Very High Energy Gamma-ray spectral properties of MKN 501 from CAT Čerenkov telescope observations in 1997. Astron. Astrophys. 1999, 350, 17–24. [Google Scholar] [CrossRef]
- Petropoulou, M.; Mastichiadis, A.; Vasilopoulos, G.; Paneque, D.; Becerra González, J.; Zanias, F. TeV pion bumps in the gamma-ray spectra of flaring blazars. Astron. Astrophys. 2024, 685, A110. [Google Scholar] [CrossRef]
- Shukla, A.; Chitnis, V.R.; Singh, B.B.; Acharya, B.S.; Anupama, G.C.; Bhattacharjee, P.; Britto, R.J.; Mannheim, K.; Prabhu, T.P.; Saha, L.; et al. Multi-frequency, Multi-epoch Study of Mrk 501: Hints for a Two-component Nature of the Emission. Astrophys. J. 2015, 798, 2. [Google Scholar] [CrossRef]
- Stathopoulos, S.I.; Petropoulou, M.; Vasilopoulos, G.; Mastichiadis, A. LeHaMoC: A versatile time-dependent lepto-hadronic modeling code for high-energy astrophysical sources. Astron. Astrophys. 2024, 683, A225. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef]
- Hovatta, T.; Valtaoja, E.; Tornikoski, M.; Lähteenmäki, A. Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies. Astron. Astrophys. 2009, 494, 527–537. [Google Scholar] [CrossRef]
- Acciari, V.A. et al. [MAGIC Collaboration] Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity. Astron. Astrophys. 2020, 637, A86. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Angeles Camacho, J.R.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; et al. Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC. Astrophys. J. 2022, 929, 125. [Google Scholar] [CrossRef]
- Biteau, J.; Williams, D.A. The Extragalactic Background Light, the Hubble Constant, and Anomalies: Conclusions from 20 Years of TeV Gamma-ray Observations. Astrophys. J. 2015, 812, 60. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Multiwavelength observations of Mrk 501 in 2008. Astron. Astrophys. 2015, 573, A50. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009. Astron. Astrophys. 2017, 603, A31. [Google Scholar] [CrossRef]
- Arbet-Engels, A.; Baack, D.; Balbo, M.; Biland, A.; Bretz, T.; Buss, J.; Dorner, D.; Eisenberger, L.; Elsaesser, D.; Hildebrand, D.; et al. Long-term multi-band photometric monitoring of Mrk 501. Astron. Astrophys. 2021, 655, A93. [Google Scholar] [CrossRef]
- Liodakis, I.; Marscher, A.P.; Agudo, I.; Berdyugin, A.V.; Bernardos, M.I.; Bonnoli, G.; Borman, G.A.; Casadio, C.; Casanova, V.; Cavazzuti, E.; et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 2022, 611, 677–681. [Google Scholar] [CrossRef]
- Abe, S. et al. [MAGIC Collaboration] Insights into the broadband emission of the TeV blazar Mrk 501 during the first X-ray polarization measurements. Astron. Astrophys. 2024, 685, A117. [Google Scholar] [CrossRef]
- Pian, E.; Vacanti, G.; Tagliaferri, G.; Ghisellini, G.; Maraschi, L.; Treves, A.; Urry, C.M.; Fiore, F.; Giommi, P.; Palazzi, E.; et al. BeppoSAX Observations of Unprecedented Synchrotron Activity in the BL Lacertae Object Markarian 501. Astrophys. J. 1998, 492, L17–L20. [Google Scholar] [CrossRef]
- Tavecchio, F.; Maraschi, L.; Pian, E.; Chiappetti, L.; Celotti, A.; Fossati, G.; Ghisellini, G.; Palazzi, E.; Raiteri, C.M.; Sambruna, R.M.; et al. Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX. Astrophys. J. 2001, 554, 725–733. [Google Scholar] [CrossRef]
- Costamante, L.; Ghisellini, G.; Giommi, P.; Tagliaferri, G.; Celotti, A.; Chiaberge, M.; Fossati, G.; Maraschi, L.; Tavecchio, F.; Treves, A.; et al. Extreme synchrotron BL Lac objects. Stretching the blazar sequence. Astron. Astrophys. 2001, 371, 512–526. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Akhperjanian, A.G.; Barrio, J.A.; Bernlöhr, K.; Bolz, O.; Börst, H.; Bojahr, H.; Contreras, J.L.; Cortina, J.; Denninghoff, S.; et al. Reanalysis of the high energy cutoff of the 1997 Mkn 501 TeV energy spectrum. Astron. Astrophys. 2001, 366, 62–67. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Extreme HBL behavior of Markarian 501 during 2012. Astron. Astrophys. 2018, 620, A181. [Google Scholar] [CrossRef]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Bleve, C.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A.K.; Camarri, P.; Cao, Z.; et al. Long-term Monitoring of Mrk 501 for its Very High Energy γ Emission and a Flare in 2011 October. Astrophys. J. 2012, 758, 2. [Google Scholar] [CrossRef]
- Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Becker, J.K.; et al. Simultaneous Multiwavelength Observation of Mkn 501 in a Low State in 2006. Astrophys. J. 2009, 705, 1624–1631. [Google Scholar] [CrossRef]
- Godambe, S.V.; Rannot, R.C.; Chandra, P.; Yadav, K.K.; Tickoo, A.K.; Venugopal, K.; Bhatt, N.; Bhattacharyya, S.; Chanchalani, K.; Dhar, V.K.; et al. Very high energy γ-ray observations of Mrk 501 using the TACTIC imaging γ-ray telescope during 2005 06. J. Phys. G Nucl. Phys. 2008, 35, 065202. [Google Scholar] [CrossRef]
- Acharyya, A.; Adams, C.B.; Archer, A.; Bangale, P.; Bartkoske, J.T.; Batista, P.; Benbow, W.; Brill, A.; Brose, R.; Buckley, J.H.; et al. VTSCat: The VERITAS Catalog of Gamma-ray Observations. Res. Notes Am. Astron. Soc. 2023, 7, 6. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. 2FHL: The Second Catalog of Hard Fermi-LAT Sources. Astrophys. J. Suppl. Ser. 2016, 222, 5. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. Fermi Large Area Telescope First Source Catalog. Astrophys. J. Suppl. Ser. 2010, 188, 405–436. [Google Scholar] [CrossRef]
- Nolan, P.L.; Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; et al. Fermi Large Area Telescope Second Source Catalog. Astrophys. J. Suppl. Ser. 2012, 199, 31. [Google Scholar] [CrossRef]
- Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef]
- Giommi, P.; Capalbi, M.; Fiocchi, M.; Memola, E.; Perri, M.; Piranomonte, S.; Rebecchi, S.; Massaro, E. A Catalog of 157 X-ray Spectra and 84 Spectral Energy Distributions of Blazars Observed with BeppoSAX. In Proceedings of the Blazar Astrophysics with BeppoSAX and Other Observatories; Giommi, P., Massaro, E., Palumbo, G., Eds.; ESA-ESRIN: Frascati, Italy, 2002; p. 63. [Google Scholar] [CrossRef]
- Verrecchia, F.; Giommi, P.; Santolamazza, P.; in’t Zand, J.J.M.; Granata, S.; Schuurmans, J.J. The BeppoSAX WFC source catalogue. In Proceedings of the Multicolored Landscape of Compact Objects and Their Explosive Origins; di Salvo, T., Israel, G.L., Piersant, L., Burderi, L., Matt, G., Tornambe, A., Menna, M.T., Eds.; American Institute of Physics Conference Series; AIP: Long Island, NY, USA, 2007; Volume 924, pp. 923–927. [Google Scholar] [CrossRef]
- Thiersen, H.; Zacharias, M.; Böttcher, M. Characterising the Long-Term Variability of Blazars in Leptonic Models. Galaxies 2019, 7, 35. [Google Scholar] [CrossRef]
- Rodrigues, X.; Paliya, V.S.; Garrappa, S.; Omeliukh, A.; Franckowiak, A.; Winter, W. Leptohadronic multi-messenger modeling of 324 gamma-ray blazars. Astron. Astrophys. 2024, 681, A119. [Google Scholar] [CrossRef]
- Abe, H.; Abe, S.; Acciari, V.A.; Agudo, I.; Aniello, T.; Ansoldi, S.; Antonelli, L.A.; Arbet-Engels, A.; Arcaro, C.; Artero, M.; et al. Multimessenger Characterization of Markarian 501 during Historically Low X-ray and γ-ray Activity. Astrophys. J. Suppl. Ser. 2023, 266, 37. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, Y.; Deng, J.; Chen, Z.; Ma, C. Unveiling the Emission and Variation Mechanism of Mrk 501: Using the Multi-Wavelength Data at Different Time Scale. Universe 2024, 10, 114. [Google Scholar] [CrossRef]
- Katarzyński, K.; Sol, H.; Kus, A. The multifrequency emission of Mrk 501. From radio to TeV gamma-rays. Astron. Astrophys. 2001, 367, 809–825. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 2013, 125, 306. [Google Scholar] [CrossRef]
- Guilbert, P.W.; Fabian, A.C.; Rees, M.J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 1983, 205, 593–603. [Google Scholar] [CrossRef]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Foreman-Mackey, D.; Agol, E.; Ambikasaran, S.; Angus, R. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series. Astron. J. 2017, 154, 220. [Google Scholar] [CrossRef]
- Foreman-Mackey, D. Scalable Backpropagation for Gaussian Processes using Celerite. Res. Notes Am. Astron. Soc. 2018, 2, 31. [Google Scholar] [CrossRef]
- Abdollahi, S.; Ajello, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Berretta, A.; Bissaldi, E.; Bonino, R.; et al. The Fermi-LAT Lightcurve Repository. Astrophys. J. Suppl. Ser. 2023, 265, 31. [Google Scholar] [CrossRef]
- Yang, S.; Yan, D.; Zhang, P.; Dai, B.; Zhang, L. Gaussian Process Modeling Fermi-LAT γ-ray Blazar Variability: A Sample of Blazars with γ-ray Quasi-periodicities. Astrophys. J. 2021, 907, 105. [Google Scholar] [CrossRef]
- Covino, S.; Landoni, M.; Sandrinelli, A.; Treves, A. Looking at Blazar Light-curve Periodicities with Gaussian Processes. Astrophys. J. 2020, 895, 122. [Google Scholar] [CrossRef]
- Burke, C.J.; Shen, Y.; Chen, Y.C.; Scaringi, S.; Faucher-Giguere, C.A.; Liu, X.; Yang, Q. Optical Variability of the Dwarf AGN NGC 4395 from the Transiting Exoplanet Survey Satellite. Astrophys. J. 2020, 899, 136. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, D.; Zhang, L. Characterizing the γ-ray Variability of Active Galactic Nuclei with the Stochastic Process Method. Astrophys. J. 2022, 930, 157. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, D.; Zhang, L. Gaussian Process Modeling Blazar Multiwavelength Variability: Indirectly Resolving Jet Structure. Astrophys. J. 2023, 944, 103. [Google Scholar] [CrossRef]
- Finke, J.D.; Dermer, C.D.; Böttcher, M. Synchrotron Self-Compton Analysis of TeV X-ray-Selected BL Lacertae Objects. Astrophys. J. 2008, 686, 181–194. [Google Scholar] [CrossRef]
- Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; et al. Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmology Astropart. Phys. 2021, 2021, 48. [Google Scholar] [CrossRef]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef]
- Kirk, J.G.; Rieger, F.M.; Mastichiadis, A. Particle acceleration and synchrotron emission in blazar jets. Astron. Astrophys. 1998, 333, 452–458. [Google Scholar] [CrossRef]
- Tammi, J.; Duffy, P. Particle-acceleration time-scales in TeV blazar flares. Mon. Not. R. Astron. Soc. 2009, 393, 1063–1069. [Google Scholar] [CrossRef]
- Donath, A.; Terrier, R.; Remy, Q.; Sinha, A.; Nigro, C.; Pintore, F.; Khélifi, B.; Olivera-Nieto, L.; Ruiz, J.E.; Brügge, K.; et al. Gammapy: A Python package for gamma-ray astronomy. Astron. Astrophys. 2023, 678, A157. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 1979, 228, 939–947. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube Collaboration] Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef]
- Abbasi, R. et al. [IceCube Collaboration] IceCube Data for Neutrino Point-Source Searches Years 2008–2018. arXiv 2021, arXiv:2101.0983633. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. Astrophys. J. 2017, 835, 151. [Google Scholar] [CrossRef]
- Celotti, A.; Ghisellini, G. The power of blazar jets. Mon. Not. R. Astron. Soc. 2008, 385, 283–300. [Google Scholar] [CrossRef]
- Barth, A.J.; Ho, L.C.; Sargent, W.L.W. Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501. Astrophys. J. 2002, 566, L13–L16. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P.; Mastichiadis, A.; Resconi, E. Photohadronic origin of γ-ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. R. Astron. Soc. 2015, 448, 2412–2429. [Google Scholar] [CrossRef]
- Zdziarski, A.A.; Bottcher, M. Hadronic models of blazars require a change of the accretion paradigm. Mon. Not. R. Astron. Soc. 2015, 450, L21–L25. [Google Scholar] [CrossRef]
- Dimitrakoudis, S.; Mastichiadis, A.; Protheroe, R.J.; Reimer, A. The time-dependent one-zone hadronic model. First principles. Astron. Astrophys. 2012, 546, A120. [Google Scholar] [CrossRef]
- Petropoulou, M.; Psarras, F.; Giannios, D. Hadronic signatures from magnetically dominated baryon-loaded AGN jets. Mon. Not. R. Astron. Soc. 2023, 518, 2719–2734. [Google Scholar] [CrossRef]
- Polkas, M.; Petropoulou, M.; Vasilopoulos, G.; Mastichiadis, A.; Urry, C.M.; Coppi, P.; Bailyn, C. A numerical study of long-term multiwavelength blazar variability. Mon. Not. R. Astron. Soc. 2021, 505, 6103–6120. [Google Scholar] [CrossRef]
- Emmanoulopoulos, D.; McHardy, I.M.; Papadakis, I.E. Generating artificial light curves: Revisited and updated. Mon. Not. R. Astron. Soc. 2013, 433, 907–927. [Google Scholar] [CrossRef]
- Timmer, J.; König, M. On generating power law noise. Astron. Astrophys. 1995, 300, 707. [Google Scholar]
- Schreiber, T.; Schmitz, A. Improved Surrogate Data for Nonlinearity Tests. Phys. Rev. Lett. 1996, 77, 635–638. [Google Scholar] [CrossRef]
- Karaferias, A.S.; Vasilopoulos, G.; Petropoulou, M.; Jenke, P.A.; Wilson-Hodge, C.A.; Malacaria, C. A Bayesian approach for torque modelling of BeXRB pulsars with application to super-Eddington accretors. Mon. Not. R. Astron. Soc. 2023, 520, 281–299. [Google Scholar] [CrossRef]
- Wise, D.K.; Bristow-Johnson, R. Performance of low-order polynomial interpolators in the presence of oversampled input. In Proceedings of the Audio Engineering Society Convention 107, New York, NY, USA, 24–27 September 1999; Audio Engineering Society: New York, NY, USA, 1999. [Google Scholar]
- Giommi, P.; Perri, M.; Capalbi, M.; D’Elia, V.; Barres de Almeida, U.; Brandt, C.H.; Pollock, A.M.T.; Arneodo, F.; Di Giovanni, A.; Chang, Y.L.; et al. X-ray spectra, light curves and SEDs of blazars frequently observed by Swift. Mon. Not. R. Astron. Soc. 2021, 507, 5690–5702. [Google Scholar] [CrossRef]
- Stathopoulos, S.I.; Petropoulou, M.; Giommi, P.; Vasilopoulos, G.; Padovani, P.; Mastichiadis, A. High-energy neutrinos from X-rays flares of blazars frequently observed by the Swift X-ray Telescope. Mon. Not. R. Astron. Soc. 2022, 510, 4063–4079. [Google Scholar] [CrossRef]
- Buchner, J. UltraNest—A robust, general purpose Bayesian inference engine. J. Open Source Softw. 2021, 6, 3001. [Google Scholar] [CrossRef]
- Karavola, D.; Petropoulou, M. A closer look at the electromagnetic signatures of Bethe-Heitler pair production process in blazars. J. Cosmology Astropart. Phys. 2024, 2024, 006. [Google Scholar] [CrossRef]
- Mastichiadis, A.; Kirk, J.G. Self-consistent particle acceleration in active galactic nuclei. Astron. Astrophys. 1995, 295, 613. [Google Scholar]
- Mastichiadis, A.; Petropoulou, M. Hadronic X-ray Flares from Blazars. Astrophys. J. 2021, 906, 131. [Google Scholar] [CrossRef]
- Chatzis, M.; Petropoulou, M.; Vasilopoulos, G. Radio emission from colliding outflows in high-mass X-ray binaries with strongly magnetized neutron stars. Mon. Not. R. Astron. Soc. 2022, 509, 2532–2550. [Google Scholar] [CrossRef]
- Goyal, A.; Stawarz, Ł.; Zola, S.; Marchenko, V.; Soida, M.; Nilsson, K.; Ciprini, S.; Baran, A.; Ostrowski, M.; Wiita, P.J.; et al. Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ 287 on Timescales Ranging from Decades to Hours. Astrophys. J. 2018, 863, 175. [Google Scholar] [CrossRef]
- Sobolewska, M.A.; Siemiginowska, A.; Kelly, B.C.; Nalewajko, K. Stochastic Modeling of the Fermi/LAT γ-ray Blazar Variability. Astrophys. J. 2014, 786, 143. [Google Scholar] [CrossRef]
Parameter Description | Parameter Symbol | Value | Uniform Priors |
---|---|---|---|
Blob radius | |||
Magnetic field strength | |||
Doppler factor | |||
Min. electron Lorentz factor | |||
Max. electron Lorentz factor | |||
Electron compactness 1 | |||
Electron power law index |
Parameter Description | Parameter Symbol | Value |
---|---|---|
Min. proton Lorentz factor | ||
Max. proton Lorentz factor 1 | ||
Proton power law index | ||
Injected proton luminosity | [erg/s] | ≤ |
Source Name | 1 | 2 | ||
---|---|---|---|---|
Mrk 501 |
Log-Parabola Parameter | Leptohadronic (43 Days) | Leptonic (43 Days) | Leptohadronic (11 Days) | Leptonic (11 Days) |
---|---|---|---|---|
1 | ||||
IceCube Configuration | Season (MJD) |
---|---|
IC40 | 54,562–54,971 |
IC59 | 54,971–55,347 |
IC79 | 55,347–55,694 |
IC86-I | 55,694–56,062 |
IC86-II | >56,062 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzis, M.; Stathopoulos, S.I.; Petropoulou, M.; Vasilopoulos, G. Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501. Universe 2024, 10, 392. https://doi.org/10.3390/universe10100392
Chatzis M, Stathopoulos SI, Petropoulou M, Vasilopoulos G. Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501. Universe. 2024; 10(10):392. https://doi.org/10.3390/universe10100392
Chicago/Turabian StyleChatzis, Margaritis, Stamatios I. Stathopoulos, Maria Petropoulou, and Georgios Vasilopoulos. 2024. "Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501" Universe 10, no. 10: 392. https://doi.org/10.3390/universe10100392