Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = icebridge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4783 KiB  
Article
Retrieval of Snow Depths on Arctic Sea Ice in the Cold Season from FY-3D/MWRI Data
by Qianhui Yin, Yijun He and Deyong Sun
Remote Sens. 2024, 16(5), 821; https://doi.org/10.3390/rs16050821 - 27 Feb 2024
Viewed by 718
Abstract
Snow depth is a crucial factor in the formation of snow, and its fluctuations play a significant role in the Earth’s climate system. The existing snow depth algorithms currently lack systematic quantitative evaluation, and most of them are not suitable for direct application [...] Read more.
Snow depth is a crucial factor in the formation of snow, and its fluctuations play a significant role in the Earth’s climate system. The existing snow depth algorithms currently lack systematic quantitative evaluation, and most of them are not suitable for direct application to Chinese satellites. Therefore, a quantitative evaluation of four existing snow depth algorithms from the Advanced Microwave Scanning Radiometer 2 (AMSR2) was conducted by comparing their estimates with the measured dataset from the Operation IceBridge project (OIB). The study found that the algorithm developed by Rostosky et al. outperforms the other three algorithms in terms of correlation. However, it is unable to accurately retrieve both high and low snow depths. On the other hand, the algorithms developed by Comiso et al. and Li et al. demonstrated strong performance in correlation and statistical characteristics. Based on these results, these two algorithms were fused to enhance the accuracy of the final algorithm. The algorithm was applied to FengYun-3D/Microwave Radiation Imager (FY-3D/MWRI) data after calibration to develop a snow depth retrieval algorithm suitable for MWRI. Validation using the 2019 OIB data indicated that the algorithm had a bias and RMSE of 1 cm and 9 cm, respectively, for first-year ice (FYI) and 3 cm and 9 cm, respectively, for multi-year ice (MYI). Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

19 pages, 13668 KiB  
Article
Intercomparisons and Evaluations of Satellite-Derived Arctic Sea Ice Thickness Products
by Feifan Chen, Deshuai Wang, Yu Zhang, Yi Zhou and Changsheng Chen
Remote Sens. 2024, 16(3), 508; https://doi.org/10.3390/rs16030508 - 29 Jan 2024
Cited by 2 | Viewed by 1362
Abstract
Currently, Arctic sea ice thickness (SIT) data with extensive spatiotemporal coverage primarily comes from satellite observations, including CryoSat-2, Soil Moisture and Ocean Salinity (SMOS), and the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The studies of the intercomparison and evaluation of multi-source satellite [...] Read more.
Currently, Arctic sea ice thickness (SIT) data with extensive spatiotemporal coverage primarily comes from satellite observations, including CryoSat-2, Soil Moisture and Ocean Salinity (SMOS), and the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The studies of the intercomparison and evaluation of multi-source satellite products in recent years are limited. In this study, three latest version products of ICESat-2, CryoSat-2, and CS2SMOS (a merged product of CryoSat-2 and SMOS) were examined from October to April, between 2018 and 2022. Three types of observation including airborne data from the Operation IceBridge (OIB) and IceBird, and in situ data from Beaufort Gyre Exploration Project (BGEP) are selected as the reference in the evaluation. The intercomparison results show that the mean SIT is generally largest in ICESat-2, second largest in CryoSat-2, and smallest in CS2SMOS. The SIT in CryoSat-2 is closer to the SIT in ICESat-2. The thickness displayed by the three satellite products starts to increase at different freezing months, varying between October and November. The three satellite products demonstrated the strongest agreements in SIT in the Beaufort Sea and Central Arctic regions, and exhibited the most distinct differences in the Barents Sea. In the evaluation with OIB data, three satellite-derived SIT were generally underestimated and CS2SMOS demonstrates the closest match. The evaluation using IceBird data indicates an underestimation for all satellites, with CryoSat-2 showing the best agreement. In the assessment with BGEP data, ICESat-2 displayed a more pronounced degree of overestimation or underestimation compared to the other two satellites, and CS2SMOS exhibited the optimal agreement. Based on the comprehensive consideration, CS2SMOS demonstrated the best performance with the airborne and in situ observational data, followed by CryoSat-2 and ICESat-2. The intercomparison and evaluation results of satellite products can contribute to a further understanding of the accuracies and uncertainties of the latest version SIT retrieval and the appropriate selection and utilization of satellite products. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Sea Ice)
Show Figures

Figure 1

17 pages, 7840 KiB  
Technical Note
Arctic Sea Ice Surface Temperature Inversion Using FY-3D/MWRI Brightness Temperature Data
by Xin Meng, Haihua Chen, Jun Liu, Kun Ni and Lele Li
Remote Sens. 2024, 16(3), 490; https://doi.org/10.3390/rs16030490 - 26 Jan 2024
Viewed by 955
Abstract
The Arctic plays a crucial role in the intricate workings of the global climate system. With the rapid development of information technology, satellite remote sensing technology has emerged as the main method for sea ice surface temperature (IST) observation. To obtain Arctic IST, [...] Read more.
The Arctic plays a crucial role in the intricate workings of the global climate system. With the rapid development of information technology, satellite remote sensing technology has emerged as the main method for sea ice surface temperature (IST) observation. To obtain Arctic IST, we used the FengYun-3D Microwave Radiation Imager (FY-3D/MWRI) brightness temperature (Tb) data for IST inversion using multiple linear regressions. Measured data on IST parameters in the Arctic are difficult to obtain. We used the Moderate-Resolution Imaging Spectroradiometer (MODIS) MYD29 IST data as the baseline to obtain the coefficients for the MWRI IST inversion function. The relation between MWRI Tb data and MODIS MYD29 IST product was established and the microwave IST inversion equation was obtained for the months of January to December 2019. Based on the R2 results and the IST inversion results, we compared and analyzed the MWRI IST data from the months of January to April, November, and December with the Operation IceBridge KT19 IR Surface Temperature data and the Northern High Latitude Level 3 Sea and Sea Ice Surface Temperature (NHL L3 SST/IST). We found that compared MWRI IST with NHL L3 IST, the correlation coefficients (Corr) > 0.72, mean bias ranged from −1.82 °C to −0.67 °C, and the standard deviation (Std) ranged from 3.61 °C to 4.54 °C; comparing MWRI IST with KT19 IST, the Corr was 0.69, the bias was 0.51 °C, and the Std was 4.34 °C. The obtained error conforms to the precision requirement. From these results, we conclude that the FY-3D/MWRI Tb data are suitable for IST retrieval in the Arctic using multiple linear regressions. Full article
Show Figures

Figure 1

14 pages, 6131 KiB  
Article
Improvement of Ice Surface Temperature Retrieval by Integrating Landsat 8/TIRS and Operation IceBridge Observations
by Lijuan Song, Yifan Wu, Jiaxing Gong, Pei Fan, Xiaopo Zheng and Xi Zhao
Remote Sens. 2023, 15(18), 4577; https://doi.org/10.3390/rs15184577 - 17 Sep 2023
Cited by 1 | Viewed by 1458
Abstract
Accurate retrieval of ice surface temperature (IST) over the Arctic ice-water mixture zone (IWMZ) is significantly essential for monitoring the change of the polar sea ice environment. Previous researchers have focused on evaluating the accuracy of IST retrieval in pack ice regions, possibly [...] Read more.
Accurate retrieval of ice surface temperature (IST) over the Arctic ice-water mixture zone (IWMZ) is significantly essential for monitoring the change of the polar sea ice environment. Previous researchers have focused on evaluating the accuracy of IST retrieval in pack ice regions, possibly on account of the availability of in situ measurement data. Few of them have assessed the accuracy of IST retrieval on IWMZ. This study utilized Landsat 8/TIRS and Operation IceBridge observations (OIB) to evaluate the accuracy of the current IST retrieval method in IWMZ and proposed an adjustment method for improving the overall accuracy. An initial comparison shows that Landsat 8 IST and OIB IST have minor differences in the pack ice region with RMSE of 0.475 K, MAE of 0.370 K and cold bias of −0.256 K. In the thin ice region, however, the differences are more significant, with RMSE of 0.952 K, MAE of 0.776 K and warm bias of 0.703 K. We suggest that this phenomenon is because the current ice-water classification method misclassified thin ice as water. To address this issue, an adjusted method is proposed to refine the classification of features within the IWMZ and thus improve the accuracy of IST retrieval using Landsat 8 imagery. The results demonstrate that the accuracy of the retrieved IST in the two cases was improved in the thin ice region, with RMSE decreasing by about 0.146 K, Bias decreasing by about 0.311 K, and MAE decreasing by about 0.129 K. After the adjustment, high accuracy was achieved for both pack ice and thin ice in IWMZ. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring for Arctic Region)
Show Figures

Figure 1

24 pages, 10588 KiB  
Article
Evaluation and Application of SMRT Model for L-Band Brightness Temperature Simulation in Arctic Sea Ice
by Yanfei Fan, Lele Li, Haihua Chen and Lei Guan
Remote Sens. 2023, 15(15), 3889; https://doi.org/10.3390/rs15153889 - 5 Aug 2023
Cited by 1 | Viewed by 1210
Abstract
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature [...] Read more.
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature (TB) in Arctic sea ice. The snow microwave radiative transfer (SMRT) model, developed with the support of the European Space Agency in 2018, has been used to simulate high-frequency TB in polar regions and has obtained good results, but no studies have shown whether it can be used appropriately in the L-band. Therefore, in this study, we systematically evaluate the ability of the SMRT model to simulate L-band TB in the Arctic sea ice and snow environment, and we show that the results are significantly optimized by improving the simulation method. In this paper, we first consider the thermal insulation effect of snow by adding the thermodynamic equation, then use a reasonable salinity profile formula for multi-layer model simulation to solve the problem of excessive L-band penetration in the SMRT single-layer model, and finally add ice lead correction to resolve the large influence it has on the results. The improved SMRT model is evaluated using Operation IceBridge (OIB) data from 2012 to 2015 and compared with the snow-corrected classical L-band radiative transfer model for Arctic sea ice proposed in 2010 (KA2010). The results show that the SMRT model has better simulation results, and the correlation coefficient (R) between SMRT-simulated TB and Soil Moisture and Ocean Salinity (SMOS) satellite TB is 0.65, and the RMSE is 3.11 K. Finally, the SMRT model with the improved simulation method is applied to the whole Arctic from November 2014 to April 2015, and the simulated R is 0.63, and the RMSE is 5.22 K. The results show that the SMRT multi-layer model is feasible for simulating L-band TB in the Arctic sea ice and snow environment, which provides a basis for the retrieval of Arctic parameters. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Sea Ice)
Show Figures

Figure 1

26 pages, 13399 KiB  
Article
Estimation of Arctic Sea Ice Thickness from Chinese HY-2B Radar Altimetry Data
by Maofei Jiang, Wenqing Zhong, Ke Xu and Yongjun Jia
Remote Sens. 2023, 15(5), 1180; https://doi.org/10.3390/rs15051180 - 21 Feb 2023
Cited by 2 | Viewed by 2217
Abstract
Sea ice thickness (SIT) is an important parameter in the study of climate change. During the past 20 years, satellite altimetry has been widely used to observe sea ice thickness. The Chinese Haiyang-2B (HY-2B) radar altimeter, launched in October 2018, can provide data [...] Read more.
Sea ice thickness (SIT) is an important parameter in the study of climate change. During the past 20 years, satellite altimetry has been widely used to observe sea ice thickness. The Chinese Haiyang-2B (HY-2B) radar altimeter, launched in October 2018, can provide data up to 80.6° latitude and can be used as a supplementary means to observe polar sea ice. Reliable HY-2B SIT products will contribute to the sea ice community. In this study, we aimed to assess the Arctic sea ice thickness retrieval ability of the HY-2B radar altimetry data. We processed the HY-2B radar altimetry data from January 2019 to April 2022 and used the processed data to retrieve the Arctic SIT. The Alfred Wegener Institute (AWI) CryoSat-2 (CS-2) SIT products were used to calibrate the HY-2B SIT estimates with a linear regression method. The Goddard Space Flight Center (GSFC) CS-2, Jet Propulsion Laboratory (JPL), and GSFC ICESat-2 (IS-2) SIT products were used to validate the HY-2B calibrated SIT estimates. The HY-2B calibrated SIT estimates have good, consistent spatial distributions with the CS-2 and IS-2 SIT products. The comparison with the IS-2 and IS-2 SIT products shows the root-mean-square error (RMSE) and bias for the HY-2B SIT estimates are significantly reduced after calibration. The HY-2B SIT estimates were also validated using the ice thickness data from Operation IceBridge (OIB) and the ice draft data from the Beaufort Gyre Exploration Project (BGEP). Finally, the monthly variations of the HY-2B SIT estimates were analyzed. Results show that the HY-2B calibrated SIT estimates are reliable, especially when the SIT values are lower than 3 m. The HY-2B altimetry data is a possible source for sea ice thickness data at lower latitudes and will help us better understand the sea ice response to climate change. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry)
Show Figures

Figure 1

25 pages, 29040 KiB  
Article
Mapping Arctic Sea-Ice Surface Roughness with Multi-Angle Imaging SpectroRadiometer
by Thomas Johnson, Michel Tsamados, Jan-Peter Muller and Julienne Stroeve
Remote Sens. 2022, 14(24), 6249; https://doi.org/10.3390/rs14246249 - 9 Dec 2022
Cited by 5 | Viewed by 3259
Abstract
Sea-ice surface roughness (SIR) is a crucial parameter in climate and oceanographic studies, constraining momentum transfer between the atmosphere and ocean, providing preconditioning for summer-melt pond extent, and being related to ice age and thickness. High-resolution roughness estimates from airborne laser measurements are [...] Read more.
Sea-ice surface roughness (SIR) is a crucial parameter in climate and oceanographic studies, constraining momentum transfer between the atmosphere and ocean, providing preconditioning for summer-melt pond extent, and being related to ice age and thickness. High-resolution roughness estimates from airborne laser measurements are limited in spatial and temporal coverage while pan-Arctic satellite roughness does not extend over multi-decadal timescales. Launched on the Terra satellite in 1999, the NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument acquires optical imagery from nine near-simultaneous camera view zenith angles. Extending on previous work to model surface roughness from specular anisotropy, a training dataset of cloud-free angular reflectance signatures and surface roughness, defined as the standard deviation of the within-pixel lidar elevations, from near-coincident operation IceBridge (OIB) airborne laser data is generated and is modelled using support vector regression (SVR) with a radial basis function (RBF) kernel selected. Blocked k-fold cross-validation is implemented to tune hyperparameters using grid optimisation and to assess model performance, with an R2 (coefficient of determination) of 0.43 and MAE (mean absolute error) of 0.041 m. Product performance is assessed through independent validation by comparison with unseen similarly generated surface-roughness characterisations from pre-IceBridge missions (Pearson’s r averaged over six scenes, r = 0.58, p < 0.005), and with AWI CS2-SMOS sea-ice thickness (Spearman’s rank, rs = 0.66, p < 0.001), a known roughness proxy. We present a derived sea-ice roughness product at 1.1 km resolution (2000–2020) over the seasonal period of OIB operation and a corresponding time-series analysis. Both our instantaneous swaths and pan-Arctic monthly mosaics show considerable potential in detecting surface-ice characteristics such as deformed rough ice, thin refrozen leads, and polynyas. Full article
(This article belongs to the Special Issue Remote Sensing of Changing Arctic Sea Ice)
Show Figures

Figure 1

16 pages, 2482 KiB  
Article
Using Deep Learning to Model Elevation Differences between Radar and Laser Altimetry
by Alex Horton, Martin Ewart, Noel Gourmelen, Xavier Fettweis and Amos Storkey
Remote Sens. 2022, 14(24), 6210; https://doi.org/10.3390/rs14246210 - 8 Dec 2022
Viewed by 2079
Abstract
Satellite and airborne observations of surface elevation are critical in understanding climatic and glaciological processes and quantifying their impact on changes in ice masses and sea level contribution. With the growing number of dedicated airborne campaigns and experimental and operational satellite missions, the [...] Read more.
Satellite and airborne observations of surface elevation are critical in understanding climatic and glaciological processes and quantifying their impact on changes in ice masses and sea level contribution. With the growing number of dedicated airborne campaigns and experimental and operational satellite missions, the science community has access to unprecedented and ever-increasing data. Combining elevation datasets allows potentially greater spatial-temporal coverage and improved accuracy; however, combining data from different sensor types and acquisition modes is difficult by differences in intrinsic sensor properties and processing methods. This study focuses on the combination of elevation measurements derived from ICESat-2 and Operation IceBridge LIDAR instruments and from CryoSat-2’s novel interferometric radar altimeter over Greenland. We develop a deep neural network based on sub-waveform information from CryoSat-2, elevation differences between radar and LIDAR, and additional inputs representing local geophysical information. A time series of maps are created showing observed LIDAR-radar differences and neural network model predictions. Mean LIDAR vs. interferometric radar adjustments and the broad spatial and temporal trends thereof are recreated by the neural network. The neural network also predicts radar-LIDAR differences with respect to waveform parameters better than a simple linear model; however, point level adjustments and the magnitudes of the spatial and temporal trends are underestimated. Full article
(This article belongs to the Special Issue Multi-Source Data with Remote Sensing Techniques)
Show Figures

Figure 1

13 pages, 4434 KiB  
Technical Note
Arctic Sea-Ice Surface Elevation Distribution from NASA’s Operation IceBridge ATM Data
by Donghui Yi, Alejandro Egido, Walter H. F. Smith, Laurence Connor, Christopher Buchhaupt and Dexin Zhang
Remote Sens. 2022, 14(13), 3011; https://doi.org/10.3390/rs14133011 - 23 Jun 2022
Cited by 2 | Viewed by 1559
Abstract
In this paper, we characterize the sea-ice elevation distribution by using NASA’s Operation IceBridge (OIB) Airborne Topographic Mapper (ATM) L1B data over the Arctic Ocean during 94 Spring campaigns between 2009 and 2019. The ultimate objective of this analysis is to better understand [...] Read more.
In this paper, we characterize the sea-ice elevation distribution by using NASA’s Operation IceBridge (OIB) Airborne Topographic Mapper (ATM) L1B data over the Arctic Ocean during 94 Spring campaigns between 2009 and 2019. The ultimate objective of this analysis is to better understand sea-ice topography to improve the estimation of the sea-ice freeboard for nadir-looking altimeters. We first introduce the use of an exponentially modified Gaussian (EMG) distribution to fit the surface elevation probability density function (PDF). The characteristic function of the EMG distribution can be integrated in the modeling of radar altimeter waveforms. Our results indicate that the Arctic sea-ice elevation PDF is dominantly positively skewed and the EMG distribution is better suited to fit the PDFs than the classical Gaussian or lognormal PDFs. We characterize the elevation correlation characteristics by computing the autocorrelation function (ACF) and correlation length (CL) of the ATM measurements. To support the radar altimeter waveform retracking over sea ice, we perform this study typically on 1.5 km ATM along-track segments that reflect the footprint diameter size of radar altimeters. During the studied period, the mean CL values range from 20 to 30 m, which is about 2% of the radar altimeter footprint diameter (1.5 km). Full article
(This article belongs to the Topic Advances in Environmental Remote Sensing)
Show Figures

Graphical abstract

19 pages, 7795 KiB  
Article
Decadal Changes in Greenland Ice Sheet Firn Aquifers from Radar Scatterometer
by Xinyi Shang, Xiao Cheng, Lei Zheng, Qi Liang and Zhaohui Chi
Remote Sens. 2022, 14(9), 2134; https://doi.org/10.3390/rs14092134 - 29 Apr 2022
Cited by 5 | Viewed by 2185
Abstract
Surface meltwater runoff is believed to be the main cause of the alarming mass loss in the Greenland Ice Sheet (GrIS); however, recent research has shown that a large amount of meltwater is not directly drained or refrozen but stored in the form [...] Read more.
Surface meltwater runoff is believed to be the main cause of the alarming mass loss in the Greenland Ice Sheet (GrIS); however, recent research has shown that a large amount of meltwater is not directly drained or refrozen but stored in the form of firn aquifers (FAs) in the interior of the GrIS. Monitoring the changes in FAs over the GrIS is of great importance to evaluate the stability and mass balance of the ice sheet. This is challenging because FAs are not visible on the surface and the direct measurements are lacking. A new method is proposed to map FAs during the 2010–2020 period by using the C-band Advanced Scatterometer (ASCAT) data based on the Random Forests classification algorithm with the aid of measurements from the NASA Operation IceBridge (OIB) program. Melt days (MD), melt intensity (MI), and winter mean backscatter (WM) parameters derived from the ASCAT data are used as the input vectors for the Random Forests classification algorithm. The accuracy of the classification model is assessed by ten-fold cross-validation, and the overall accuracy and Kappa coefficient are 97.49% and 0.72 respectively. The results show that FAs reached the maximum in 2015, and the accumulative area of FAs from 2010 to 2020 is 56,477 km2, which is 3.3% of the GrIS area. This study provides a way to investigate the long-term dynamics in FAs which have great significance for understanding the state of subsurface firn and subglacial hydrological systems. Full article
(This article belongs to the Special Issue Remote Sensing of Ice Loss Tracking at the Poles)
Show Figures

Graphical abstract

24 pages, 52501 KiB  
Article
A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice Thicknesses of Cryosat-2 Data
by Zhaoqing Dong, Lijian Shi, Mingsen Lin and Tao Zeng
Remote Sens. 2022, 14(4), 1041; https://doi.org/10.3390/rs14041041 - 21 Feb 2022
Cited by 1 | Viewed by 2738
Abstract
Arctic sea ice and snow affect the energy balance of the global climate system through the radiation budget. Accurate determination of the snow cover over Arctic sea ice is significant for the retrieval of the sea ice thickness (SIT). In this study, we [...] Read more.
Arctic sea ice and snow affect the energy balance of the global climate system through the radiation budget. Accurate determination of the snow cover over Arctic sea ice is significant for the retrieval of the sea ice thickness (SIT). In this study, we developed a new snow depth retrieval method over Arctic sea ice with a long short-term memory (LSTM) deep learning algorithm based on Operation IceBridge (OIB) snow depth data and brightness temperature data of AMSR-2 passive microwave radiometers. We compared climatology products (modified W99 and AWI), altimeter products (Kwok) and microwave radiometer products (Bremen, Neural Network and LSTM). The climatology products and altimeter products are completely independent of the OIB data used for training, while microwave radiometer products are not completely independent of the OIB data. We also compared the SITs retrieved from the above different snow depth products based on Cryosat-2 radar altimeter data. First, the snow depth spatial patterns for all products are in broad agreement, but the temporal evolution patterns are distinct. Snow products of microwave radiometers, such as Bremen, Neural Network and LSTM snow depth products, show thicker snow in early winter with respect to the climatology snow depth products and the altimeter snow depth product, especially in the multiyear ice (MYI) region. In addition, the differences in all snow depth products are relatively large in the early winter and relatively small in spring. Compared with the OIB and IceBird observation data (April 2019), the snow depth retrieved by the LSTM algorithm is better than that retrieved by the other algorithms in terms of accuracy, with a correlation of 0.55 (0.90), a root mean square error (RMSE) of 0.06 m (0.05 m) and a mean absolute error (MAE) of 0.05 m (0.04 m). The spatial pattern and seasonal variation of the SITs retrieved from different snow depths are basically consistent. The total sea ice decreases first and then thickens as the seasons change. Compared with the OIB SIT in April 2019, the SIT retrieved by the LSTM snow depth is superior to that retrieved by the other SIT products in terms of accuracy, with the highest correlation of 0.46, the lowest RMSE of 0.59 m and the lowest MAE of 0.44 m. In general, it is promising to retrieve Arctic snow depth using the LSTM algorithm, but the retrieval of snow depth over MYI still needs to be verified with more measured data, especially in early winter. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Arctic Environments)
Show Figures

Figure 1

20 pages, 70360 KiB  
Article
DEM Generation with ICESat-2 Altimetry Data for the Three Antarctic Ice Shelves: Ross, Filchner–Ronne and Amery
by Tong Geng, Shengkai Zhang, Feng Xiao, Jiaxing Li, Yue Xuan, Xiao Li and Fei Li
Remote Sens. 2021, 13(24), 5137; https://doi.org/10.3390/rs13245137 - 17 Dec 2021
Cited by 1 | Viewed by 2948
Abstract
The ice shelf is an important component of the Antarctic system, and the interaction between the ice sheet and the ocean often proceeds through mass variations of the ice shelf. The digital elevation model (DEM) of the ice shelf is particularly important for [...] Read more.
The ice shelf is an important component of the Antarctic system, and the interaction between the ice sheet and the ocean often proceeds through mass variations of the ice shelf. The digital elevation model (DEM) of the ice shelf is particularly important for ice shelf elevation change and mass balance estimation. With the development of satellite altimetry technology, it became an important data source for DEM research of Antarctica. The National Aeronautics and Space Administration (NASA) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) launched in 2018 is a significant improvement in along-track sampling rate and measurement accuracy compared with previous altimetry satellites. This study uses ordinary kriging interpolation to present new DEMs (ICESat-2 DEM hereinafter) for the three ice shelves (Ross, Filchner–Ronne and Amery) in Antarctica with ICESat-2 altimetry data. Two variogram models (linear and spherical) of ordinary kriging interpolation are compared in this paper. The result shows that the spherical model generally shows better performance and lower standard deviation (STD) than the linear models. The precision of the ultimate DEM was evaluated by NASA Operation IceBridge (OIB) data and compared with five previously published Antarctic DEM products (REMA, TanDEM-X PolarDEM, Slater DEM, Helm DEM, and Bamber DEM). The comparison reveals that the mean difference between ICESat-2 DEM of the Ross ice shelf and OIB is −0.016 m with a STD of 0.918 m, and the mean difference between ICESat-2 DEM of the Filchner–Ronne ice shelf and OIB is −0.533 m with a STD of 0.718 m. The three ICESat-2 DEMs show higher spatial resolution and elevation accuracy than five previously published Antarctic DEMs. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

18 pages, 13943 KiB  
Article
Spatiotemporal Analysis of Sea Ice Leads in the Arctic Ocean Retrieved from IceBridge Laxon Line Data 2012–2018
by Dexuan Sha, Younghyun Koo, Xin Miao, Anusha Srirenganathan, Hai Lan, Shorojit Biswas, Qian Liu, Alberto M. Mestas-Nuñez, Hongjie Xie and Chaowei Yang
Remote Sens. 2021, 13(20), 4177; https://doi.org/10.3390/rs13204177 - 19 Oct 2021
Viewed by 3183
Abstract
The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads which dominate the vertical exchange of energy, especially in cold seasons, despite covering only a small fraction of the surface. Motivated by the need of a spatiotemporal analysis [...] Read more.
The ocean and atmosphere exert stresses on sea ice that create elongated cracks and leads which dominate the vertical exchange of energy, especially in cold seasons, despite covering only a small fraction of the surface. Motivated by the need of a spatiotemporal analysis of sea ice lead distribution, a practical workflow was developed to classify the high spatial resolution aerial images DMS (Digital Mapping System) along the Laxon Line in the NASA IceBridge Mission. Four sea ice types (thick ice, thin ice, open water, and shadow) were identified, and relevant sea ice lead parameters were derived for the period of 2012–2018. The spatiotemporal variations of lead fraction along the Laxon Line were verified by ATM (Airborne Topographic Mapper) surface height data and correlated with coarse spatial resolution sea ice motion, air temperature, and wind data through multiple regression models. We found that the freeboard data derived from sea ice leads were compatible with other products. The temperature and ice motion vorticity were the leading factors of the formation of sea ice leads, followed by wind vorticity and kinetic moments of ice motion. Full article
(This article belongs to the Topic Climate Change and Environmental Sustainability)
Show Figures

Figure 1

31 pages, 7201 KiB  
Article
Retrieval of Snow Depth on Arctic Sea Ice from the FY3B/MWRI
by Lele Li, Haihua Chen and Lei Guan
Remote Sens. 2021, 13(8), 1457; https://doi.org/10.3390/rs13081457 - 9 Apr 2021
Cited by 13 | Viewed by 3398
Abstract
Given their high albedo and low thermal conductivity, snow and sea ice are considered key reasons for amplified warming in the Arctic. Snow-covered sea ice is a more effective insulator, which greatly limits the energy and momentum exchange between the atmosphere and surface, [...] Read more.
Given their high albedo and low thermal conductivity, snow and sea ice are considered key reasons for amplified warming in the Arctic. Snow-covered sea ice is a more effective insulator, which greatly limits the energy and momentum exchange between the atmosphere and surface, and further controls the thermal dynamic processes of snow and ice. In this study, using the Microwave Emission Model of Layered Snowpacks (MEMLS), the sensitivities of the brightness temperatures (TBs) from the FengYun-3B/MicroWave Radiometer Imager (FY3B/MWRI) to changes in snow depth were simulated, on both first-year and multiyear ice in the Arctic. Further, the correlation coefficients between the TBs and snow depths in different atmospheric and sea ice environments were investigated. Based on the simulation results, the most sensitive factors to snow depth, including channels of MWRI and their combination form, were determined for snow depth retrieval. Finally, using the 2012–2013 Operational IceBridge (OIB) snow depth data, retrieval algorithms of snow depth were developed for the Arctic on first-year and multiyear ice, separately. Validation using the 2011 OIB data indicates that the bias and standard deviation (Std) of the algorithm are 2.89 cm and 2.6 cm on first-year ice (FYI), respectively, and 1.44 cm and 4.53 cm on multiyear ice (MYI), respectively. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Graphical abstract

13 pages, 10195 KiB  
Technical Note
Arctic Sea Ice Freeboard Retrieval from Envisat Altimetry Data
by Shengkai Zhang, Yue Xuan, Jiaxing Li, Tong Geng, Xiao Li and Feng Xiao
Remote Sens. 2021, 13(8), 1414; https://doi.org/10.3390/rs13081414 - 7 Apr 2021
Cited by 9 | Viewed by 2157
Abstract
Arctic sea ice variations are sensitive to Arctic environmental changes and global changes. Freeboard and thickness are two important parameters in sea ice change research. Satellite altimetry can provide long-time and large-scale sea ice monitoring. We estimated the Arctic sea ice freeboard and [...] Read more.
Arctic sea ice variations are sensitive to Arctic environmental changes and global changes. Freeboard and thickness are two important parameters in sea ice change research. Satellite altimetry can provide long-time and large-scale sea ice monitoring. We estimated the Arctic sea ice freeboard and its variations for the period from 2002 to 2012 from Envisat satellite altimetry data. To remove geoid undulations, we reprocessed the Envisat data using a newly developed mean sea surface (MSS) model, named DTU18. Residuals in the static geoid were removed by using the moving average technique. We then determined the local sea surface height and sea ice freeboard from the Envisat elevation profiles. We validated our freeboard estimates using two radar freeboard products from the European Space Agency (ESA) Climate Change Initiative (CCI) and the Alfred Wegener Institute (AWI), as well as the Operation IceBridge (OIB) sea ice freeboard product. The overall differences between our estimates and the CCI and AWI data were 0.11 ± 0.14 m and 0.12 ± 0.14 m, respectively. Our estimates show good agreement with the three products for areas of freeboard larger than 0.2 m and smaller than 0.3 m. For areas of freeboard larger than 0.3 m, our estimates correlate better with OIB freeboard than with CCI and AWI. The variations in the Arctic sea ice thickness are discussed. The ice freeboard reached its minimum in 2008 during the research period. Sharp decreases were found in the winters of 2005 and 2007. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Figure 1

Back to TopTop