Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (895)

Search Parameters:
Keywords = lab-on-a-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4143 KiB  
Review
Advances of Fluorescent Nanodiamond Platforms for Intracellular and On-Chip Biosensing
by Taisuke Shimada, Yasuyuki Ueda, Yoshinobu Baba and Hiroshi Yukawa
Biosensors 2024, 14(7), 340; https://doi.org/10.3390/bios14070340 - 12 Jul 2024
Viewed by 390
Abstract
Intracellular and extracellular sensing of physical and chemical variables is important for disease diagnosis and the understanding of cellular biology. Optical sensing utilizing fluorescent nanodiamonds (FNDs) is promising for probing intracellular and extracellular variables owing to their biocompatibility, photostability, and sensitivity to physicochemical [...] Read more.
Intracellular and extracellular sensing of physical and chemical variables is important for disease diagnosis and the understanding of cellular biology. Optical sensing utilizing fluorescent nanodiamonds (FNDs) is promising for probing intracellular and extracellular variables owing to their biocompatibility, photostability, and sensitivity to physicochemical quantities. Based on the potential of FNDs, we outlined the optical properties, biocompatibility, surface chemistry of FNDs and their applications in intracellular biosensing. This review also introduces biosensing platforms that combine FNDs and lab-on-a-chip approaches to control the extracellular environment and improve sample/reagent handling and sensing performance. Full article
Show Figures

Figure 1

15 pages, 4922 KiB  
Article
Independent Concentration Manipulation Using Sidewall-Driven Micromixer
by Toshio Takayama and Hayato Maki
Micromachines 2024, 15(7), 869; https://doi.org/10.3390/mi15070869 - 30 Jun 2024
Viewed by 429
Abstract
Lab-on-a-chip technology has been developed to streamline biochemical experiments by providing experimental environments in microscopic areas. Due to the difficulty of mixing chemicals in such small channels, various micromixers have been created. Our proposed sidewall-driven micromixer offers easy fabrication and precise control over [...] Read more.
Lab-on-a-chip technology has been developed to streamline biochemical experiments by providing experimental environments in microscopic areas. Due to the difficulty of mixing chemicals in such small channels, various micromixers have been created. Our proposed sidewall-driven micromixer offers easy fabrication and precise control over mixing concentrations. In our previous study, we successfully generated concentration gradients by simultaneously mixing multiple chambers using a single actuator. However, it is not possible to mix different chemicals in each chamber. In this study, we developed a sidewall-driven micromixer that enables independent mixing in each chamber by installing one actuator per chamber. Experimental results showed that different conditions were achieved in each chamber using both microbead-mixture water and colored water. Thus, this mixer can be used to manipulate concentrations regardless of whether the mixing targets are particles or fluids. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

10 pages, 225 KiB  
Commentary
Bridging the Gap: Integrating 3D Bioprinting and Microfluidics for Advanced Multi-Organ Models in Biomedical Research
by Marco De Spirito, Valentina Palmieri, Giordano Perini and Massimiliano Papi
Bioengineering 2024, 11(7), 664; https://doi.org/10.3390/bioengineering11070664 - 28 Jun 2024
Viewed by 372
Abstract
Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D [...] Read more.
Recent advancements in 3D bioprinting and microfluidic lab-on-chip systems offer promising solutions to the limitations of traditional animal models in biomedical research. Three-dimensional bioprinting enables the creation of complex, patient-specific tissue models that mimic human physiology more accurately than animal models. These 3D bioprinted tissues, when integrated with microfluidic systems, can replicate the dynamic environment of the human body, allowing for the development of multi-organ models. This integration facilitates more precise drug screening and personalized therapy development by simulating interactions between different organ systems. Such innovations not only improve predictive accuracy but also address ethical concerns associated with animal testing, aligning with the three Rs principle. Future directions include enhancing bioprinting resolution, developing advanced bioinks, and incorporating AI for optimized system design. These technologies hold the potential to revolutionize drug development, regenerative medicine, and disease modeling, leading to more effective, personalized, and humane treatments. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
21 pages, 5441 KiB  
Article
Non-Faradaic Impedimetric Detection of Heavy Metal Ions via a Hybrid Nanoparticle-DNAzyme Biosensor
by Chrysi Panagopoulou, Evangelos Skotadis, Evangelos Aslanidis, Georgia Tzourmana, Annita Rapesi, Charalampos Tsioustas, Maria Kainourgiaki, Georgios Kleitsiotis, George Tsekenis and Dimitrios Tsoukalas
Biosensors 2024, 14(7), 321; https://doi.org/10.3390/bios14070321 - 27 Jun 2024
Viewed by 588
Abstract
Due to rapid industrialization, novel water-quality monitoring techniques for the detection of highly toxic and hazardous heavy metal ions are essential. Herein, a hybrid noble nanoparticle/DNAzyme electrochemical biosensor is proposed for the simultaneous and label-free detection of Pb2+ and Cr3+ in [...] Read more.
Due to rapid industrialization, novel water-quality monitoring techniques for the detection of highly toxic and hazardous heavy metal ions are essential. Herein, a hybrid noble nanoparticle/DNAzyme electrochemical biosensor is proposed for the simultaneous and label-free detection of Pb2+ and Cr3+ in aqueous solutions. The sensor is based on the combination of a two-dimensional naked-platinum nanoparticle film and DNAzymes, whose double-helix configuration disassembles into smaller fragments in the presence of target-specific heavy metal ions. The electrochemical behavior of the fabricated sensor was investigated with non-faradaic electrochemical impedance spectroscopy (EIS), resulting in the successful detection of Pb2+ and Cr3+ well below their maximum permitted levels in tap water. So far, there has been no report on the successful detection of heavy metal ions utilizing the non-faradaic electrochemical impedance spectroscopy technique based on advanced nanomaterials paired with DNAzymes. This is also one of the few reports on the successful detection of chromium (III) via a sensor incorporating DNAzymes. Full article
(This article belongs to the Special Issue Recent Advances in Nano-Biomaterial-Based Biosensors)
Show Figures

Figure 1

18 pages, 7591 KiB  
Article
3D Printing of High-Porosity Membranes with Submicron Pores for Microfluidics
by Julia K. Hoskins and Min Zou
Nanomanufacturing 2024, 4(3), 120-137; https://doi.org/10.3390/nanomanufacturing4030009 - 27 Jun 2024
Viewed by 296
Abstract
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development [...] Read more.
In this study, we investigate the potential of two-photon lithography (2PL) as a solution to the challenges encountered in conventional membrane fabrication techniques, aiming to fabricate tailor-made membranes with high-resolution submicron pore structures suitable for advanced applications. This approach led to the development of fabrication techniques and printed membranes that can be adapted to various lab-on-a-chip (LOC) devices. Membranes were fabricated with pore diameters as small as 0.57 µm and porosities of 4.5%, as well as with larger pores of approximately 3.73 µm in diameter and very high porosities that reached up to 60%. Direct 3D printing of membranes offers a pathway for fabricating structures tailored to specific applications in microfluidics, enabling more efficient separation processes at miniature scales. This research represents a significant step towards bridging the gap between membrane technology and microfluidics, promising enhanced capabilities for a wide array of applications in biotechnology, chemical analysis, and beyond. Full article
Show Figures

Figure 1

12 pages, 1425 KiB  
Article
Increasing Optical Path Lengths in Micro-Fluidic Devices Using a Multi-Pass Cell
by Victor Argueta-Diaz, McKenna Owens and Ahmed Al Ramadan
Micromachines 2024, 15(7), 820; https://doi.org/10.3390/mi15070820 - 25 Jun 2024
Viewed by 655
Abstract
This study presents a novel absorption cell with a circular geometry that can be integrated into microfluidic devices for optical spectroscopy applications. The absorption cell is made of PDMS/SU8 and offers an optical path length that is 8.5 times its diameter, resulting in [...] Read more.
This study presents a novel absorption cell with a circular geometry that can be integrated into microfluidic devices for optical spectroscopy applications. The absorption cell is made of PDMS/SU8 and offers an optical path length that is 8.5 times its diameter, resulting in a significant increase in the sensitivity of the measurements. Overall, this design provides a reliable and efficient solution for optical spectroscopy in microfluidic systems, enabling the precise detection and analysis of small quantities of analytes. Full article
Show Figures

Figure 1

16 pages, 3777 KiB  
Article
Analytical Solution for Transient Electroosmotic and Pressure-Driven Flows in Microtubes
by Yu Feng, Hang Yi and Ruguan Liu
Fluids 2024, 9(6), 140; https://doi.org/10.3390/fluids9060140 - 11 Jun 2024
Viewed by 970
Abstract
This study focuses on deriving and presenting an infinite series as the analytical solution for transient electroosmotic and pressure-driven flows in microtubes. Such a mathematical presentation of fluid dynamics under simultaneous electric field and pressure gradients leverages governing equations derived from the generalized [...] Read more.
This study focuses on deriving and presenting an infinite series as the analytical solution for transient electroosmotic and pressure-driven flows in microtubes. Such a mathematical presentation of fluid dynamics under simultaneous electric field and pressure gradients leverages governing equations derived from the generalized continuity and momentum equations simplified for laminar and axisymmetric flow. Velocity profile developments, apparent slip-induced flow rates, and shear stress distributions were analyzed by varying values of the ratio of microtube radius to Debye length and the electroosmotic slip velocity. Additionally, the “retarded time” in terms of hydraulic diameter, kinematic viscosity, and slip-induced flow rate was derived. A simpler polynomial series approximation for steady electroosmotic flow is also proposed for engineering convenience. The analytical solutions obtained in this study not only enhance the fundamental understanding of the electroosmotic flow characteristics within microtubes, emphasizing the interplay between electroosmotic and pressure-driven mechanisms, but also serve as a benchmark for validating computational fluid dynamics models for electroosmotic flow simulations in more complex flow domains. Moreover, the analytical approach aids in the parametric analysis, providing deeper insights into the impact of physical parameters on electroosmotic and pressure-driven flow behavior, which is critical for optimizing device performance in practical applications. These findings also offer insightful implications for diagnostic and therapeutic strategies in healthcare, particularly enhancing the capabilities of lab-on-a-chip technologies and paving the way for future research in the development and optimization of microfluidic systems. Full article
(This article belongs to the Special Issue Physics and Applications of Microfluidics)
Show Figures

Figure 1

15 pages, 3222 KiB  
Review
The Importance of Maintaining and Improving a Healthy Gut Microbiota in Athletes as a Preventive Strategy to Improve Heat Tolerance and Acclimatization
by Sergi Cinca-Morros and Jesús Álvarez-Herms
Microorganisms 2024, 12(6), 1160; https://doi.org/10.3390/microorganisms12061160 - 6 Jun 2024
Viewed by 1040
Abstract
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of [...] Read more.
Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes. Full article
(This article belongs to the Special Issue Intestinal Dysbiosis)
Show Figures

Figure 1

8 pages, 3631 KiB  
Communication
Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors
by Zhaoxun Wang, Wei Wei, Menglun Zhang, Xuexin Duan, Quanning Li, Xuejiao Chen, Qingrui Yang and Wei Pang
Micromachines 2024, 15(6), 716; https://doi.org/10.3390/mi15060716 - 29 May 2024
Viewed by 2452
Abstract
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave [...] Read more.
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave actuator array with a rotor and a fluid coupling layer in between. On a driving mechanism level, high-frequency Lamb waves of 380 MHz generate strong acoustic streaming effects over an extremely short distance; on a mechanical design level, each Lamb wave actuator incorporates a reflector on one side of the actuator, while an acoustic opening is incorporated on the other side to limit wave energy leakage; and on electrical design level, the electrodes placed on the two sides of the film enhance the capacitance in the vertical direction, which facilitates impedance matching within a smaller area. As a result, the Lamb-wave-driven solution features a much lower driving voltage and a smaller size compared with conventional surface acoustic-wave-driven solutions. For an improved motor performance, actuator array configurations, rotor sizes, and liquid coupling layer thicknesses are examined via simulations and experiments. The results show the micromotor with a rotor with a diameter of 5 mm can achieve a maximum angular velocity of 250 rpm with an input voltage of 6 V. The proposed micromotor is a new prototype for acoustic-wave-driven actuators and demonstrates potential for lab-on-a-chip applications. Full article
Show Figures

Figure 1

129 KiB  
Abstract
A Simple Paper-Based Microfluidic Device for the Rapid Detection of Inorganic Chemicals
by Buthaina A. Al Mashrea, Maitha Alrashdi, Nemat Dek Al-Bab, Mohamad Al-Farooq, Hajar Abdalla, Kifah Al Taqaz, Amin Botmah, Mussab Ahmed, Ayad Turky, Ahmed Almehdi and Samar Damiati
Proceedings 2024, 104(1), 3; https://doi.org/10.3390/proceedings2024104003 - 28 May 2024
Viewed by 37
Abstract
Microfluidic technology, also known as lab-on-a-chip, enables the fabrication of low-cost, user-friendly, and portable detection devices. Microfluidic chips can be utilized for detecting biological and chemical analytes in various liquid samples, including water or biofluids such as urine, blood, and sweat. The specific [...] Read more.
Microfluidic technology, also known as lab-on-a-chip, enables the fabrication of low-cost, user-friendly, and portable detection devices. Microfluidic chips can be utilized for detecting biological and chemical analytes in various liquid samples, including water or biofluids such as urine, blood, and sweat. The specific and quantitative detection of ions has garnered increased attention in recent years due to their potential harm to environmental and human health. Inorganic ions are special chemicals that hold positive or negative charges with relatively small molecular weights. Among the various types of microfluidic platforms, paper-based systems are favored as simple analytical tools that rely on the generation of hydrophilic–hydrophobic contrast on filter paper. In this study, a paper-based microfluidic device was developed as an analytical tool for quantifying several ions, such as iron (Fe3+). The reaction spot was created by simply melting a wax crayon to form hydrophobic barriers that define hydrophilic zones. After spotting Fe3+ samples and potassium thiocyanate (KSCN) as a detection reagent on the reaction zone, an immediate and obvious color change was observed with different ion concentrations ranging between 50 and 500 ppm. While the naked-eye detection of color change was easy at high concentrations, quantifying ion concentrations in samples required the use of a smartphone camera. The captured images were then analyzed using ImageJ software (Java 1.8.0-internal (32-bit)). The developed paper-based microfluidic device exhibited good performance in quantifying Fe3+ ions in samples. Indeed, this simple platform is easy to store and transport, and allows the transportation of aqueous solutions without the need for external pumping or a power supply. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
13 pages, 5705 KiB  
Article
Transportation of Objects on an Inclined Plane Oscillating in the Longitudinal Direction Applying Dynamic Dry Friction Manipulations
by Ribal El Banna, Kristina Liutkauskienė, Vaidas Lukoševičius, Algimantas Fedaravičius and Sigitas Kilikevičius
Appl. Sci. 2024, 14(11), 4474; https://doi.org/10.3390/app14114474 - 24 May 2024
Viewed by 416
Abstract
A transportation system requires an asymmetry to achieve objects’ motion on an oscillating surface. Transportation methods based on vibrational techniques usually employ different types of asymmetries, such as temporal (time) asymmetry, kinematic asymmetry, wave asymmetry or power asymmetry. However, transporting an object on [...] Read more.
A transportation system requires an asymmetry to achieve objects’ motion on an oscillating surface. Transportation methods based on vibrational techniques usually employ different types of asymmetries, such as temporal (time) asymmetry, kinematic asymmetry, wave asymmetry or power asymmetry. However, transporting an object on an inclined angle requires a relatively high net frictional force over each period of vibrational cycles due to the gravitational potential energy exerted on the object. This paper investigates the transportation of an object upward on an inclined plane that harmonically oscillates in its longitudinal direction. The novelty of this research is attributed to the upward motion of the object on the inclined plane, which is achieved by creating an additional asymmetry of the system through dry friction dynamic manipulations. For this reason, periodic dynamic dry friction manipulations have been employed to create the asymmetry of frictional conditions, resulting in a net frictional force that outweighs the gravitational force. A mathematical model has been developed using the Lagrange method, which describes the moving object’s motion. Moreover, the theoretical findings and results confirmed that the object’s velocity and direction can be controlled by dynamic dry friction manipulations. To demonstrate the technical feasibility of the proposed method, an experimental investigation was carried out where the results demonstrated that the control parameters significantly influence the characteristics of the directional motion of the moving object. This transportation method is beneficial for various modern industries engaged in transportation and manipulation tasks with objects spanning a broad range of sizes, including those operating at small scales for applications in lab-on-a-chip technology, micro-assembly lines, micro-feeder systems and other delicate component manipulation systems. The presented research advances the classical theories of vibrational transportation on inclined surfaces. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

12 pages, 1127 KiB  
Article
Optimization of Microfluidics for Point-of-Care Blood Sensing
by Amirmahdi Tavakolidakhrabadi, Matt Stark, Ulrike Bacher, Myriam Legros and Cedric Bessire
Biosensors 2024, 14(6), 266; https://doi.org/10.3390/bios14060266 - 23 May 2024
Viewed by 742
Abstract
Blood tests are widely used in modern medicine to diagnose certain illnesses and evaluate the overall health of a patient. To enable testing in resource-limited areas, there has been increasing interest in point-of-care (PoC) testing devices. To process blood samples, liquid mixing with [...] Read more.
Blood tests are widely used in modern medicine to diagnose certain illnesses and evaluate the overall health of a patient. To enable testing in resource-limited areas, there has been increasing interest in point-of-care (PoC) testing devices. To process blood samples, liquid mixing with active pumps is usually required, making PoC blood testing expensive and bulky. We explored the possibility of processing approximately 2 μL of whole blood for image flow cytometry using capillary structures that allowed test times of a few minutes without active pumps. Capillary pump structures with five different pillar shapes were simulated using Ansys Fluent to determine which resulted in the fastest whole blood uptake. The simulation results showed a strong influence of the capillary pump pillar shape on the chip filling time. Long and thin structures with a high aspect ratio exhibited faster filling times. Microfluidic chips using the simulated pump design with the most efficient blood uptake were fabricated with polydimethylsiloxane (PDMS) and polyethylene oxide (PEO). The chip filling times were tested with 2 μL of both water and whole blood, resulting in uptake times of 24 s for water and 111 s for blood. The simulated blood plasma results deviated from the experimental filling times by about 35% without accounting for any cell-induced effects. By comparing the flow speed induced by different pump pillar geometries, this study offers insights for the design and optimization of passive microfluidic devices for inhomogenous liquids such as whole blood in sensing applications. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

21 pages, 3675 KiB  
Article
Composting of Biowaste Generated in University Canteens and Rural Households: Converting Waste into a Valuable Product
by Carolina F. T. Baptista, Rafaela P. Rodrigues and Margarida J. Quina
Sustainability 2024, 16(11), 4368; https://doi.org/10.3390/su16114368 - 22 May 2024
Viewed by 603
Abstract
The growing production of biowaste is causing serious environmental concerns, and composting has emerged as an environmentally friendly solution. This approach contributes to the real circular economy of biowaste, avoiding landfill disposal. This process is flexible as it can be carried out on [...] Read more.
The growing production of biowaste is causing serious environmental concerns, and composting has emerged as an environmentally friendly solution. This approach contributes to the real circular economy of biowaste, avoiding landfill disposal. This process is flexible as it can be carried out on a domestic or industrial scale. This work focused on the formulation and monitoring of two different composting processes (on a laboratory and domestic scale), to recover biowaste from a university canteen and a rural household, as well as evaluating the quality of the final composts. Three different mixtures of canteen food waste (CFW) and olive wood chips (OWC) were tested at lab scale (CFW:OWC 100:0, 40:60, and 60:40%), with two replicates carried out on the second mixture; a single mixture was tested at the domestic experiment (40:60%). The results showed that both processes reached thermophilic temperatures, with a peak of 65 °C on the lab scale and 75 °C recorded in the domestic composting. Reaching thermophilic temperatures is essential in composting, to maximize the rate of organic matter (OM) decomposition and improve compost quality (e.g., stability and maturation). The moisture content (MC) of biowaste proved to be a critical parameter since the high MC of CFW led to the inhibition of the aerobic process in the mixture without OWC (100% of CFW). On the contrary, a large quantity of OWC (60:40%) showed lower biodegradability due to the presence of lignocellulosic compounds. Analysis of the quality of the final compost revealed that although domestic composting was a process with a low level of control, it allowed obtaining quality compost for agronomic applications, similar to that produced on a laboratory scale. All final composts (after 120 days) were stable and mature, according to the oxygen uptake rate (OUR) and the germination index (GI). Indeed, OUR complied with the regulatory limits (15 and 25 mmolO2/kgOM.h) to be considered soil correctives or organic fertilizers, evidencing the stability of the materials. All composts are non-phytotoxic (GI above 80%), meaning that they are suitable for plant growth. The composts produced retained a significant amount of carbon (40–70%), with a high value for returning carbon to the soil in stable OM forms. Thus, when applied to the soil, a significant amount of carbon is carried to this compartment, making a valuable contribution to closing the carbon cycle and avoiding the emission of CO2 into the atmosphere. Overall, it was possible to conclude that biowaste from university canteens and households can be recovered by composting, as long as it is mixed with a bulking agent (such as OWC), which promotes the process and improves the properties of the composts. Full article
Show Figures

Figure 1

14 pages, 3537 KiB  
Article
A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications
by Salomão Moraes da Silva Junior, Luiz Eduardo Bento Ribeiro, Fabiano Fruett, Johan Stiens, Jacobus Willibrordus Swart and Stanislav Moshkalev
Micromachines 2024, 15(6), 672; https://doi.org/10.3390/mi15060672 - 22 May 2024
Viewed by 685
Abstract
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, [...] Read more.
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0–6.0 mm, velocity of 0.66–2.51 mm/s, and volume of 1.07 nL–113.46 nL. Experimental results demonstrated that the microsensor’s performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

12 pages, 3982 KiB  
Article
Development of a Flexible Sensor-Integrated Tissue Patch to Monitor Early Organ Rejection Processes Using Impedance Spectroscopy
by Peter Ertl, Tibor Wladimir, Drago Sticker, Patrick Schuller, Mario Rothbauer, Georg Wieselthaler and Martin Frauenlob
Biosensors 2024, 14(5), 253; https://doi.org/10.3390/bios14050253 - 17 May 2024
Viewed by 1132
Abstract
Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial [...] Read more.
Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial biopsies (EMB). This study introduces a rapid prototyping approach to organ rejection monitoring via a sensor-integrated flexible patch, employing electrical impedance spectroscopy (EIS) for the non-invasive, continuous assessment of resistive and capacitive changes indicative of tissue rejection processes. Utilizing titanium-dioxide-coated electrodes for contactless impedance sensing, this method aims to mitigate the limitations associated with EMB, including procedural risks and the psychological burden on patients. The biosensor’s design features, including electrode passivation and three-dimensional microelectrode protrusions, facilitate effective monitoring of cardiac rejection by aligning with the heart’s curvature and responding to muscle contractions. Evaluation of sensor performance utilized SPICE simulations, scanning electron microscopy, and cyclic voltammetry, alongside experimental validation using chicken heart tissue to simulate healthy and rejected states. The study highlights the potential of EIS in reducing the need for invasive biopsy procedures and offering a promising avenue for early detection and monitoring of organ rejection, with implications for patient care and healthcare resource utilization. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Graphical abstract

Back to TopTop