Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,220)

Search Parameters:
Keywords = lower bounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 404 KiB  
Article
Fractional-Order MFAC with Application to DC Motor Speed Control System
by Haizhen Wang, Huihua Jian, Jianhua Huang and Yonghong Lan
Mathematics 2025, 13(4), 610; https://doi.org/10.3390/math13040610 - 13 Feb 2025
Viewed by 253
Abstract
Model-free adaptive control (MFAC) can carry out various tasks using only I/O data, providing advantages such as lower operational costs, higher scalability and easier implementation. However, the robustness of MFAC remains an open problem. In this paper, a robust fractional-order model-free adaptive control [...] Read more.
Model-free adaptive control (MFAC) can carry out various tasks using only I/O data, providing advantages such as lower operational costs, higher scalability and easier implementation. However, the robustness of MFAC remains an open problem. In this paper, a robust fractional-order model-free adaptive control (RFOMFAC) scheme is proposed to address the robust tracking control issue for a class of uncertain discrete-time nonlinear systems with bounded measurement disturbance. First, we use a fractional-order dynamic data model relating the relationship between the output signal and the fractional-order input variables based on the compact form dynamic linearization. Then, the pseudo-partial derivative (PPD) is obtained using a higher-order estimation algorithm that includes more information about past input and output data. With the introduction of a reference equation, a fractional-order model-free adaptive control (FOMFAC) law is then proposed. Consequently, using a higher-order PPD-based FOMFAC law can improve the control performance. Furthermore, a modified RFOMFAC algorithm with decreasing gain is constructed. Theoretical analysis indicates that the proposed algorithm can effectively attenuate measurement disturbances. Finally, simulation results demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Advances and Applications for Data-Driven/Model-Free Control)
Show Figures

Figure 1

25 pages, 2478 KiB  
Article
Thermal Stability and Matrix Binding of Citrinin in the Thermal Processing of Starch-Rich Foods
by Lea Brückner, Florian Neuendorff, Katharina Hadenfeldt, Matthias Behrens, Benedikt Cramer and Hans-Ulrich Humpf
Toxins 2025, 17(2), 86; https://doi.org/10.3390/toxins17020086 - 13 Feb 2025
Viewed by 227
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or Monascus fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of [...] Read more.
Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or Monascus fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of CIT arising during food processing may provide an explanation for the discrepancy. This study deals with the thermal stability of CIT and the formation of reaction products of CIT with carbohydrates, followed by toxicological evaluations using cell culture models. HPLC-HRMS degradation curves of CIT heated in different matrix model systems were recorded, and the formation of decarboxycitrinin (DCIT), the main degradation product, was quantified. Additionally, chemical structures of reaction products of CIT with carbohydrates were tentatively identified using MS/MS spectra and stable isotope labelling. Subsequently, the degradation of CIT during biscuit baking was studied, and carbohydrate-bound forms of CIT were detected after enzymatic starch digestion. The formation of DCIT could explain the majority of CIT degradation, but, depending on the process, covalent binding to carbohydrates can also be highly relevant. Cytotoxicity of DCIT in IHKE-cells was found to be lower compared to CIT, while the toxicity as well as the intestinal metabolism of carbohydrate-bound CIT was not evaluated. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

16 pages, 6922 KiB  
Article
Thermodynamic Properties of Hydrogen Adsorbed on Graphite Surfaces at Temperatures Above 100 K: A Molecular Dynamics and Classical Density Functional Theory Study
by Vegard G. Jervell, Morten Hammer, Øivind Wilhelmsen and Thuat T. Trinh
Entropy 2025, 27(2), 184; https://doi.org/10.3390/e27020184 - 12 Feb 2025
Viewed by 376
Abstract
Improved technological solutions for the transport and storage of hydrogen are crucial for the widespread adoption of hydrogen as a clean energy carrier. Graphite-based materials have been identified as potential candidates due to their high surface area and ability to adsorb hydrogen molecules. [...] Read more.
Improved technological solutions for the transport and storage of hydrogen are crucial for the widespread adoption of hydrogen as a clean energy carrier. Graphite-based materials have been identified as potential candidates due to their high surface area and ability to adsorb hydrogen molecules. In this study, we investigate the adsorption and thermodynamic properties of hydrogen adsorbed on a graphite surface using molecular dynamics (MD) simulation and classical density functional theory (cDFT). We demonstrate how to use the MD parameters for graphite to derive an effective wall potential for hydrogen–graphite interactions that can be used in the cDFT calculations. The methodology results in good agreement between cDFT and MD, with the enthalpy and entropy of adsorption differing by 3.5% and 7%, respectively. We determine the enthalpy and entropy of adsorption at 298K to be in the ranges of −6.37 kJ mol−1 to −6.16 kJ mol−1 and −75.42 J mol−1 K−1 to −79.95 J mol−1 K−1, respectively. We find that the adsorbed hydrogen has a 12.4 J mol−1 K−1 to 11.4 J mol−1 K−1 lower heat capacity than the bulk hydrogen in the temperature range from 150 K to 400 K. This suggests that the adsorbed molecules are bound to adsorption sites that arrest nearly all the translational degrees of freedom. Full article
Show Figures

Figure 1

14 pages, 10819 KiB  
Article
Formation and Dynamics of Night-Time Cold Air Pools in Peri-Urban Topographic Basins: A Case Study of Coimbra, Portugal
by António Manuel Rochette Cordeiro
Meteorology 2025, 4(1), 4; https://doi.org/10.3390/meteorology4010004 - 11 Feb 2025
Viewed by 229
Abstract
This study investigates the formation of cold air pools during calm, anticyclonic winter nights in a topographic basin bounded by a medium-sized mountain to the east and near-flat terrain elsewhere. The main objective is to understand how local topography drives unique topoclimatic conditions—specifically [...] Read more.
This study investigates the formation of cold air pools during calm, anticyclonic winter nights in a topographic basin bounded by a medium-sized mountain to the east and near-flat terrain elsewhere. The main objective is to understand how local topography drives unique topoclimatic conditions—specifically cold air lakes and an inversion layer at approximately 100/120 m altitude—in a peri-urban depression where a major cement factory and several residential areas are located. To achieve this, the research design combined surface measurements (collected at 10:00 p.m., 3:00 a.m., 7:00 a.m., and 3:00 p.m.) using a motorized vehicle, with vertical measurements (at 7:00 a.m.) collected via two unmanned aerial vehicles (UAVs), with the three vehicles equipped with Tinytag data loggers. The Empirical Bayesian Kriging tool in ArcGIS Pro was employed to generate the surface temperature cartograms. The results show that shortly after sunset, a cold air layer of approximately 100–120 m thickness forms, with nocturnal air temperature variations of up to 8 °C on the night measurements. An inversion layer was detected at around 120–130 m, while near-zero wind speeds in the basin’s core facilitate the retention of cold air. Surface spatialization confirms earlier findings of a cold air lake and thermal belts on the basin’s perimeter, forming in the early evening and dissipating by late morning. A 3D visualization underscores the influence of the mountain in directing cold air downslope, leading to stabilization and stratification within the lower atmospheric layers. These findings carry significant health implications: air pollutants released by the cement plant tend to accumulate within the cold air pool and beneath the inversion layer, posing potential risks to nearby populations. Full article
Show Figures

Figure 1

17 pages, 3781 KiB  
Article
Research on Non-Random Vibration Analysis of Concrete Pump Truck Boom Based on Dynamic Excitation
by Weixin Zhou, Wubin Xu, Bing Li, Yuanbin Xiao, Xianyu Liu, Hanwen Zhang and Bo Xu
Appl. Sci. 2025, 15(4), 1770; https://doi.org/10.3390/app15041770 - 10 Feb 2025
Viewed by 300
Abstract
When pouring concrete overhead, a pump truck boom’s vibration has a big effect on how accurately the concrete is poured. This is especially true during fixed-point pouring, where the boom’s vibration is likely to cause the pouring position to deviate, which lowers the [...] Read more.
When pouring concrete overhead, a pump truck boom’s vibration has a big effect on how accurately the concrete is poured. This is especially true during fixed-point pouring, where the boom’s vibration is likely to cause the pouring position to deviate, which lowers the quality of the construction. It is difficult to forecast the dynamic reaction of the pump truck boom in a construction setting because of the constantly shifting external factors (wind speed, pipeline stress during pumping, etc.), which makes it difficult to guarantee casting accuracy. This study suggests a non-random vibration analysis technique for pump truck booms based on the interval process theory in order to address this issue. A dynamic excitation analysis method based on rigid–discrete coupling is proposed, taking into account the response influence of the material characteristics in the transportation process. The pumping process of concrete materials in the conveying pipeline is simulated using discrete element simulation technology to determine the system’s stress conditions under pumping conditions. The dynamic response characteristics of the pump truck boom under operating conditions are revealed by using non-random vibration analysis with the mathematical model that has been created based on the particular specifications of the pump truck boom. This study employs the Newmark-β technique for numerical computation to solve the dynamic equations and characterize the displacement response envelope under uncertain system parameter settings. The experimental findings demonstrate that the suggested approach may accurately capture the upper and lower bounds of the boom dynamic response, offering a trustworthy way to assess the dynamic behavior while pumping. The technique can reliably predict the dynamic displacement boundary and control the casting position deviation within a predefined range by accurately predicting the dynamic displacement range of the pump truck’s boom end and efficiently constructing the displacement envelope under uncertain dynamic excitation. For numerical computation, use the Newmark-β algorithm. This outcome confirms the substantial enhancement of the proposed method regarding pouring precision in construction settings, offering a novel solution and technical guidance for vibration control in engineering projects. Full article
Show Figures

Figure 1

26 pages, 31738 KiB  
Article
Bi-Objective Optimization of Techno-Economic and Environmental Performance for Membrane-Based CO2 Capture via Single-Stage Membrane Separation
by Nobuo Hara, Satoshi Taniguchi, Takehiro Yamaki, Thuy T. H. Nguyen and Sho Kataoka
Membranes 2025, 15(2), 57; https://doi.org/10.3390/membranes15020057 - 9 Feb 2025
Viewed by 394
Abstract
Various factors need to be considered in process design optimization to implement the complex processes of CO2 capture, utilization, and storage (CCUS). Here, bi-objective optimization of single-stage CO2 membrane separation was performed for two evaluation indexes: cost and CO2 emissions. [...] Read more.
Various factors need to be considered in process design optimization to implement the complex processes of CO2 capture, utilization, and storage (CCUS). Here, bi-objective optimization of single-stage CO2 membrane separation was performed for two evaluation indexes: cost and CO2 emissions. During optimization, the process flow configuration was fixed, the membrane performance was set under the condition of the Robeson upper bound, and the membrane area and operating conditions were set as variables. Bi-objective optimization was performed using an original algorithm that combines the adaptive design of experiments, machine learning, a genetic algorithm, and Bayesian optimization. Five case studies with different product CO2 purities in the constraint were analyzed. Pareto solutions were superior for case studies with lower product CO2 purities. The set of Pareto solutions revealed opposite directions for optimization: either (1) increase the membrane area to reduce CO2 emissions but increase costs or (2) increase power consumption and reduce costs but increase CO2 emissions. The implemented bi-objective optimization approach is promising for evaluating the membrane CO2 capture process and the individual processes of CCUS. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

29 pages, 40870 KiB  
Article
Ground-Based RFI Source Localization via Single-Channel SAR Using Pulse Range Difference of Arrival
by Jiaxin Wan, Bing Han, Jianbing Xiang, Di Yin, Shangyu Zhang, Jiazhi He, Jiayuan Shen and Yugang Feng
Remote Sens. 2025, 17(4), 588; https://doi.org/10.3390/rs17040588 - 8 Feb 2025
Viewed by 455
Abstract
Radio Frequency Interference (RFI) significantly degrades the quality of spaceborne Synthetic Aperture Radar (SAR) images, and RFI source localization is a crucial component of SAR interference mitigation. Single-station, single-channel SAR, referred to as single-channel SAR, is the most common operational mode of spaceborne [...] Read more.
Radio Frequency Interference (RFI) significantly degrades the quality of spaceborne Synthetic Aperture Radar (SAR) images, and RFI source localization is a crucial component of SAR interference mitigation. Single-station, single-channel SAR, referred to as single-channel SAR, is the most common operational mode of spaceborne SAR. However, studies on RFI source localization for this system are limited, and the localization accuracy remains low. This paper presents a method for locating the ground-based RFI source using spaceborne single-channel SAR echo data. First, matched filtering is employed to estimate the range and azimuth times of the RFI pulse-by-pulse in the SAR echo domain. A non-convex localization model using Pulse Range Difference of Arrival (PRDOA) is established based on the SAR observation geometry. Then, by applying Weighted Least Squares and Semidefinite Relaxation, the localization model is transformed into a convex optimization problem, allowing for the solution of its global optimal solution to achieve RFI source localization. Furthermore, the error analysis on the PRDOA localization model is conducted and the Cramér–Rao Lower Bound is derived. Based on the simulation platform and the SAR level-0 raw data of Gaofen-3, we conduct several verification experiments, with the Pulse Time of Arrival localization selected for comparison. The results demonstrate that the proposed method achieves localization accuracy with a hundred-meter error in azimuth and a kilometer-level total error, with the total localization errors reduced to approximately 1/4 to 1/3 of those of the Pulse Time of Arrival method. Full article
Show Figures

Figure 1

22 pages, 5493 KiB  
Article
Arsenic Accumulation in Pakchoi Influenced by Acidification-Driven Changes in Soil Properties and Arsenic Transformation
by Jianjie Chen, Zhenmao Jiang and Shiqiang Wei
Agriculture 2025, 15(4), 364; https://doi.org/10.3390/agriculture15040364 - 8 Feb 2025
Viewed by 379
Abstract
Soil acidification activates most of the cationic heavy metals in soil and thus enhances their accumulation in crops, posing an accentuated threat to human health, while there is limited knowledge regarding the accumulation of metalloid arsenic (As) in crops, which is influenced by [...] Read more.
Soil acidification activates most of the cationic heavy metals in soil and thus enhances their accumulation in crops, posing an accentuated threat to human health, while there is limited knowledge regarding the accumulation of metalloid arsenic (As) in crops, which is influenced by acidification due to its opposite behavior in soil. In this study, the acidification processes of neutral purple soil together with the accompanied changes in soil properties and As fractionation were examined through a column-leaching experiment. Subsequently, growth and As accumulation in pakchoi (Brassica campestris L.) were investigated under various combinations of soil pH and As pollution levels in a pot experiment. This allowed us to elucidate the mechanisms of As accumulation in pakchoi under the co-stresses of soil acidification and As pollution. The results indicated that soil acidification followed a two-phase process, initially rapid and later slow, with a turning point at a pH of 4.7–4.8. Below this critical pH, the leaching rates of base ions and As accelerated significantly and the decomposition of primary minerals began, primarily from chlorite to green/mesospheric minerals, resulting in a substantial increase in the content of amorphous iron oxide. Meantime, soil As was transformed from highly labile forms, such as non-specifically and specifically adsorbed forms, to less active ones like amorphous hydrous oxide-bound and residual forms, resulting in decreased As availability. In this context, As pollution remarkably delayed the growth of pakchoi, while the influence of acidification on growth only occurred when the soil was acidified to a pH lower than 6, as demonstrated by a substantial biomass reduction at higher As levels and a 41.8% biomass decrease at pH 4.6. Moreover, soil acidification exacerbated the inhibitory effect of As on pakchoi growth. The As contents in the edible parts of pakchoi dramatically increased with the increase in the soil As level, and soil acidification did not mitigate As accumulation in plants via the suppression of soil As availability but rather greatly increased it due to the bioconcentration effect caused by As toxicity. In conclusion, significant interactions existed between soil acidification and As pollution in terms of soil properties and As transformation, leading to comprehensive effects on growth and As accumulation in crops. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

33 pages, 6032 KiB  
Article
Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice
by Huimiao Ma, Yan Jia, Weiqiang Wang, Jin Wang, Detang Zou, Jingguo Wang, Weibin Gong, Yiming Han, Yuxiang Dang, Jing Wang, Ziming Wang, Qianru Yuan, Yu Sun, Xiannan Zeng, Shiqi Zhang and Hongwei Zhao
Agronomy 2025, 15(2), 417; https://doi.org/10.3390/agronomy15020417 - 7 Feb 2025
Viewed by 462
Abstract
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading [...] Read more.
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading for varying lengths of time to analyze the effects on leaf and grain metabolism. The objective was to track carbon–nitrogen flow and identify factors affecting grain yield. Low-temperature stress significantly reduced the activity of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT), in functional leaves compared to the control. This reduction decreased nitrogen accumulation, inhibited chlorophyll synthesis, and slowed photosynthesis. To preserve intracellular osmotic balance and lessen the effects of low temperatures, sucrose, fructose, and total soluble sugar levels, as well as sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, surged in response to low-temperature stress. However, low-temperature stress significantly reduced the activity of adenosine diphosphate glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE). At the same time, low-temperature stress reduced the area of vascular bundles and phloem, making it difficult to transport carbon and nitrogen metabolites to grains on time. The response of grains to low-temperature stress differs from that of leaves, with prolonged low-temperature exposure causing a gradual decrease in carbon and nitrogen metabolism-related enzyme activities and product accumulation within the grains. The insufficient synthesis of starch precursors and carbon skeletons results in significantly lower thousand-grain weight and seed-setting rates, ultimately contributing to grain yield loss. This decline was more pronounced in inferior grains compared to superior grains. Compared to SJ10, DN428 exhibited higher values across various indicators and smaller declines under low-temperature stress, suggesting enhanced cold-tolerance and a greater capacity to maintain grain yield stability. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Graphical abstract

20 pages, 3095 KiB  
Article
Identification of Marker Compounds for the Detection of Anthraquinone-Based Reactive Dyes in Foods
by Laurenz Küchner, Binh Nguyen Thanh, Lina Diers, Chantal Tautz, Gerold Jerz and Peter Winterhalter
Colorants 2025, 4(1), 6; https://doi.org/10.3390/colorants4010006 - 7 Feb 2025
Viewed by 573
Abstract
The detection of reactive dyes in food matrices is crucial for food safety and compliance with regulations, especially since the use of such in food products is not approved. This study investigates the potential of using tin(II)chloride and laccase to cleave anthraquinone reactive [...] Read more.
The detection of reactive dyes in food matrices is crucial for food safety and compliance with regulations, especially since the use of such in food products is not approved. This study investigates the potential of using tin(II)chloride and laccase to cleave anthraquinone reactive dyes and to detect their characteristic degradation products as markers for the presence of dye in food. Nine reactive blue anthraquinone dyes and one green anthraquinone dye were cleaved using tin(II)chloride and laccase. Reactions with reactive dyes bound to maize starch were also carried out to evaluate the suitability of these methods for detecting matrix-bound dyes. Model food matrices, including gummy candy, hard candy, and maize chips, were spiked with the reactive dyes, and the presence of degradation products was analysed using LC-ESI-MS/MS. Two common cleavage products were formed from each sample, namely 1,4-diaminoanthrahydroquinone-2-sulphonic acid (DAHS) and 1-aminoanthraquinone-2-sulphonic acid (AAS). In all examined cases, at least one of the characteristic cleavage products could be detected. Laccase showed lower effectiveness with matrix-bound dyes, whereas treatment with acidic tin(II)chloride was effective even in complex food matrices. These findings suggest that the analysis of cleavage products could be a valuable tool for the detection of reactive dyes in food matrices. Full article
Show Figures

Graphical abstract

15 pages, 4738 KiB  
Article
Estimation of Hardness of Single-Phase Metallic Alloys
by Ottó K. Temesi, Nguyen Q. Chinh, Levente Vitos and Lajos K. Varga
Crystals 2025, 15(2), 156; https://doi.org/10.3390/cryst15020156 - 2 Feb 2025
Viewed by 482
Abstract
First, we discuss a common feature of single-phase pure metals and amorphous and high-entropy alloys: the maximum value of hardness corresponding to a valence electron count (VEC) value of around 6.5–7. This correlation is explained by the coincidence that by subtracting the number [...] Read more.
First, we discuss a common feature of single-phase pure metals and amorphous and high-entropy alloys: the maximum value of hardness corresponding to a valence electron count (VEC) value of around 6.5–7. This correlation is explained by the coincidence that by subtracting the number of sp valence electrons (Nsp = 2) from the VEC we obtain the maximal number of unpaired d electrons, Nd = 4.5–5 in the 3d, 4d, and 5d rows of transition elements. These unpaired d electrons form orbital overlap bonding, which is stronger than the isotropic metallic bonds of a delocalized electron cloud. The more unpaired d electrons there are, the higher the bonding strength. Second, we will discuss the hardness formulas derived from cohesion energy and shear modulus. We will demonstrate that both types of formulas originate in the electrostatic energy density of metallic bonds, expressing a 1/R4 dependence. Finally, we show that only two parameters are sufficient to estimate hardness: the atomic radius and the cohesion-based valence. In the case of alloys, our formula gives a lower bound on the hardness only. It is not suitable for calculation of the hardness increase caused by solid solution, grain size, precipitation, and phase mixture. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys)
Show Figures

Figure 1

21 pages, 3802 KiB  
Article
Grain Weight and Taste Quality in Japonica Rice Are Regulated by Starch Synthesis and Grain Filling Under Nitrogen–Phosphorus Interactions
by Hongfang Jiang, Yanze Zhao, Liqiang Chen, Xue Wan, Bingchun Yan, Yuzhuo Liu, Yuqi Liu, Wenzhong Zhang and Jiping Gao
Plants 2025, 14(3), 432; https://doi.org/10.3390/plants14030432 - 1 Feb 2025
Viewed by 741
Abstract
To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen [...] Read more.
To reveal the regulatory effects of nitrogen and phosphorus interactions on grain-filling- and starch-synthesis-related enzymes, and grain weight of superior grains (SGs) and inferior grains (IGs) and taste quality, the japonica rice cultivar Shennong 265 was grown under field conditions with three nitrogen levels (210, 178.5, and 147 kg N ha−1; N3, N2, and N1) and two phosphorus levels (105 and 73.5 kg P ha−1; P2 and P1). At the N3 level, the yield of P1 was significantly lower (by 19.26%) compared to P2; at the N2 and N1 levels, P1 yielded higher than P2, peaking at N2P1. Spikelets per panicle showed P2 exceeding P1 at the same nitrogen level, with the highest for both SGs and IGs observed at N2P2, followed by N2P1. Reductions in nitrogen and phosphorus decreased the grain-filling rate but prolonged the duration for grain-filling. N2P1 maintained grain weight by extending the grain-filling duration across the early, middle, and late stages of IGs, and the middle and late stages of SGs. Increased nitrogen enhanced the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), whereas increased phosphorus inhibited these activities in SGs but enhanced them in IGs. Reduced nitrogen and phosphorus fertilizer diminished ADP glucose pyrophosphorylase (AGPP) and granule-bound starch synthase (GBSS) activities in SGs and IGs, inhibiting amylose accumulation while enhancing taste value. Compared with N3P2, the taste value of N2P1 increased significantly by 6.93%, attributed to a higher amylopectin/amylose ratio. N2P1 (178.5 kg N ha−1 and 73.5 kg P ha−1) optimized enzyme activity, starch composition, and grain filling, balancing both yield and taste, and thus demonstrated an effective fertilization strategy for stable rice production. Full article
(This article belongs to the Collection New Trends in Plant Science in China)
Show Figures

Figure 1

22 pages, 29370 KiB  
Article
Investigating the Structure of Detachment Faulting and Its Role in Ore Formation: The Kallintiri Detachment System and the Associated Polymetallic Ore Deposit (Rhodope, NE Greece)
by Konstantinos Soukis, Christos Kanellopoulos, Panagiotis Voudouris, Constantinos Mavrogonatos, Ilias Lazos, Sotiris Sboras, Alexandre Tarantola, Daniel Koehn and Robert Moritz
Geosciences 2025, 15(2), 46; https://doi.org/10.3390/geosciences15020046 - 1 Feb 2025
Viewed by 886
Abstract
The Kallintiri area (SW Byala Reka–Kechros Dome, Rhodope) hosts a polymetallic (critical, base, and precious metals) ore deposit, tectonically controlled by the late Eocene–Oligocene, top-to-SW Kallintiri Detachment System. The earliest structure associated with the Kallintiri Detachment is a ductile shear zone at the [...] Read more.
The Kallintiri area (SW Byala Reka–Kechros Dome, Rhodope) hosts a polymetallic (critical, base, and precious metals) ore deposit, tectonically controlled by the late Eocene–Oligocene, top-to-SW Kallintiri Detachment System. The earliest structure associated with the Kallintiri Detachment is a ductile shear zone at the interface between the high-grade footwall gneisses of the Lower and Intermediate Rhodope Terranes. The detachment zone encompasses the uppermost part of the gneisses and the ultramylonitic Makri Unit marble. The marble is bound by a brittle–ductile shear zone at the base and a knife-sharp, low-angle normal fault at the roof, exhibiting considerable brecciation and ultracataclasite development. The hanging wall includes the Makri Unit phyllites and the overlying mid–late-Eocene–Oligocene supra-detachment sediments, which show syn-depositional slump structures and brittle deformation with low- and high-angle faulting and non-cohesive cataclasites. Extensive hydrothermal fluid circulation along the detachment zone and through NW tension gashes and high-angle faults led to pronounced silicification and ore deposition. Field observations and mineralogical and geochemical analyses revealed two primary types of ore mineralization spatially and temporally associated with different structures. Base and precious metals-rich ores are associated with the detachment, while Sb ore deposition is localized mostly within the NW-trending tension gashes and high-angle faults. Full article
Show Figures

Figure 1

15 pages, 280 KiB  
Article
An Interior Regularity Property for the Solution to a Linear Elliptic System with Singular Coefficients in the Lower-Order Term
by Teresa Radice
Mathematics 2025, 13(3), 489; https://doi.org/10.3390/math13030489 - 31 Jan 2025
Viewed by 410
Abstract
This paper deals with the interior higher differentiability of the solution u to the Dirichlet problem related to system div(A(x)Du)+B(x,u)=f on a bounded Lipschitz domain [...] Read more.
This paper deals with the interior higher differentiability of the solution u to the Dirichlet problem related to system div(A(x)Du)+B(x,u)=f on a bounded Lipschitz domain Ω in Rn. The matrix A(x) lies in the John and Nirenberg space BMO. The lower-order term B(x,u) is controlled with respect to the spatial variable by a function b(x) belonging to the Marcinkiewicz space Ln,. The novelty here is the presence of a singular coefficient in the lower-order term. Full article
18 pages, 308 KiB  
Article
Quasi-Sure Exponential Stability of Stochastic Differential Delay Systems Driven by G-Brownian Motion
by Chen Fei, Luzhen Yang and Weiyin Fei
Symmetry 2025, 17(2), 214; https://doi.org/10.3390/sym17020214 - 31 Jan 2025
Viewed by 455
Abstract
This paper focuses on the quasi-sure exponential stability of the stochastic differential delay equation driven by G-Brownian motion (SDDE-GBM): [...] Read more.
This paper focuses on the quasi-sure exponential stability of the stochastic differential delay equation driven by G-Brownian motion (SDDE-GBM): dξ(t)=f(t,ξ(tκ1(t)))dt+g(t,ξ(tκ2(t)))dZ(t), where κ1(·),κ2(·):R+[0,τ] denote variable delays, and Z(t) denotes scalar G-Brownian motion, which has a symmetry distribution. It is shown that the SDDE-GBM is quasi-surely exponentially stable for each τ>0 bounded by τ*, where the corresponding (non-delay) stochastic differential equation driven by G-Bronwian motion (SDE-GBM), dη(t)=f(t,η(t))dt+g(t,η(t))dZ(t), is quasi-surely exponentially stable. Moreover, by solving the non-linear equation on τ, we can obtain the implicit lower bound τ*. Finally, illustrating examples are provided. Full article
(This article belongs to the Special Issue Symmetric or Asymmetric Distributions and Its Applications)
Back to TopTop