Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = marine aerosols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5848 KiB  
Article
Composition and Biogeochemical Effects of Carbohydrates in Aerosols in Coastal Environment
by Hung-Yu Chen and Ting-Wen Liu
J. Mar. Sci. Eng. 2024, 12(10), 1834; https://doi.org/10.3390/jmse12101834 - 14 Oct 2024
Viewed by 426
Abstract
We adopted a simple and rapid measurement method to analyze the concentrations of monosaccharides (MCHO) and polysaccharides (PCHO) in carbohydrates, a subset of organic carbon found in size-fractionated atmospheric particles. Seasonal and source-related factors influenced carbohydrate concentrations, with total water-soluble carbohydrates (TCHO) accounting [...] Read more.
We adopted a simple and rapid measurement method to analyze the concentrations of monosaccharides (MCHO) and polysaccharides (PCHO) in carbohydrates, a subset of organic carbon found in size-fractionated atmospheric particles. Seasonal and source-related factors influenced carbohydrate concentrations, with total water-soluble carbohydrates (TCHO) accounting for approximately 23% of the water-soluble organic carbon (WSOC) in spring when biological activity was high. We observed that the mode of aerosol transport significantly influenced the particle size distribution of carbohydrates, with MCHO exhibiting relatively high concentrations in fine particles (<1 μm) and PCHO showing higher concentrations in coarse particles (>1 μm). Moreover, our results revealed that MCHO and PCHO contributed 51% and 49%, respectively, to the TCHO concentration. This contribution varied by approximately ±19% depending on the season, suggesting the importance of both MCHO and PCHO. Additionally, through the combined use of principal component analysis (PCA) and positive matrix factorization (PMF), we determined that biomass burning accounts for 30% of the aerosol. Notably, biomass burning accounts for approximately 52% of the WSOC flux, with MCHO accounting for approximately 78% of the carbon from this source, indicating the substantial influence of biomass burning on aerosol composition. The average concentration of TCHO/WSOC in the atmosphere was approximately 18%, similar to the marine environment, reflecting the relationship between the biogeochemical cycles of the two environments. Finally, the fluxes of MCHO and PCHO were 1.10 and 5.28 mg C m−2 yr−1, respectively. We also found that the contribution of atmospheric deposition to marine primary productivity in winter was 15 times greater than that in summer, indicating that atmospheric deposition had a significant impact on marine ecosystems during nutrient-poor seasons. Additionally, we discovered that WSOC accounts for approximately 62% of the dissolved organic carbon (DOC) in the Min River, suggesting that atmospheric deposition could be a major source of organic carbon in the region. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

18 pages, 7230 KiB  
Article
The Isotopic Characteristics, Sources, and Formation Pathways of Atmospheric Sulfate and Nitrate in the South China Sea
by Yongyun Zhang, Min Gao, Xi Sun, Baoling Liang, Cuizhi Sun, Qibin Sun, Xue Ni, Hengjia Ou, Shixin Mai, Shengzhen Zhou and Jun Zhao
Sustainability 2024, 16(20), 8733; https://doi.org/10.3390/su16208733 - 10 Oct 2024
Viewed by 338
Abstract
The South China Sea (SCS) is a crucial region for studying atmospheric aerosols, given its unique geographical location and the interaction of various natural and anthropogenic sources. In this study, we measured the isotopic characteristics of sulfate and nitrate in PM2.5 and [...] Read more.
The South China Sea (SCS) is a crucial region for studying atmospheric aerosols, given its unique geographical location and the interaction of various natural and anthropogenic sources. In this study, we measured the isotopic characteristics of sulfate and nitrate in PM2.5 and utilized a Bayesian isotope mixing model (SIAR) to analyze their sources and formation pathways. Sulfur isotopic values in sulfate (δ34S-SO42−) were 8.7 ± 1.8‰, while nitrogen and oxygen isotopic values in nitrate (δ15N-NO3 and δ18O-NO3) were −0.9 ± 2.4‰ and 52.3 ± 7.3‰, respectively. The results revealed that sulfate was primarily influenced by marine biogenic sulfur emissions (mostly dimethyl sulfide, DMS), fossil fuel combustion, and biomass burning. Nitrate formation was dominated by the NO2 + •OH pathway (accounting for 69.8–85.7%), with significant contributions from vehicle emissions, biomass burning, and lightning. These findings offer key insights into the complex interactions between natural and anthropogenic aerosol sources in the SCS, contributing to a broader understanding of marine aerosol chemistry. Full article
Show Figures

Figure 1

22 pages, 4955 KiB  
Article
Statistically Resolved Planetary Boundary Layer Height Diurnal Variability Using Spaceborne Lidar Data
by Natalia Roldán-Henao, John E. Yorks, Tianning Su, Patrick A. Selmer and Zhanqing Li
Remote Sens. 2024, 16(17), 3252; https://doi.org/10.3390/rs16173252 - 2 Sep 2024
Viewed by 571
Abstract
The Planetary Boundary Layer Height (PBLH) significantly impacts weather, climate, and air quality. Understanding the global diurnal variation of the PBLH is particularly challenging due to the necessity of extensive observations and suitable retrieval algorithms that can adapt to diverse thermodynamic and dynamic [...] Read more.
The Planetary Boundary Layer Height (PBLH) significantly impacts weather, climate, and air quality. Understanding the global diurnal variation of the PBLH is particularly challenging due to the necessity of extensive observations and suitable retrieval algorithms that can adapt to diverse thermodynamic and dynamic conditions. This study utilized data from the Cloud-Aerosol Transport System (CATS) to analyze the diurnal variation of PBLH in both continental and marine regions. By leveraging CATS data and a modified version of the Different Thermo-Dynamics Stability (DTDS) algorithm, along with machine learning denoising, the study determined the diurnal variation of the PBLH in continental mid-latitude and marine regions. The CATS DTDS-PBLH closely matches ground-based lidar and radiosonde measurements at the continental sites, with correlation coefficients above 0.6 and well-aligned diurnal variability, although slightly overestimated at nighttime. In contrast, PBLH at the marine site was consistently overestimated due to the viewing geometry of CATS and complex cloud structures. The study emphasizes the importance of integrating meteorological data with lidar signals for accurate and robust PBLH estimations, which are essential for effective boundary layer assessment from satellite observations. Full article
(This article belongs to the Special Issue Observation of Atmospheric Boundary-Layer Based on Remote Sensing)
Show Figures

Figure 1

13 pages, 4489 KiB  
Article
The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India
by Pathan Imran Khan, Devanaboyina Venkata Ratnam, Perumal Prasad, Shaik Darga Saheb, Jonathan H. Jiang, Ghouse Basha, Pangaluru Kishore and Chanabasanagouda S. Patil
Remote Sens. 2024, 16(17), 3171; https://doi.org/10.3390/rs16173171 - 27 Aug 2024
Viewed by 568
Abstract
This study investigates the impacts of summer monsoon activity on aerosols over the Indian region. We analyze the variability of aerosols during active and break monsoon phases, as well as strong and weak monsoon years, using data from the Moderate Resolution Imaging Spectroradiometer [...] Read more.
This study investigates the impacts of summer monsoon activity on aerosols over the Indian region. We analyze the variability of aerosols during active and break monsoon phases, as well as strong and weak monsoon years, using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Our findings show a clear distinction in aerosol distribution between active and break phases. During active phases, the Aerosol Optical Depth (AOD) and aerosol extinction are lower across the Indian region, while break phases are associated with higher AOD and extinction. Furthermore, we observed a significant increase in AOD over Central India during strong monsoon years, compared to weak monsoon years. Utilizing the vertical feature mask (VFM) data from CALIPSO, we identified polluted dust and dusty marine aerosols as the dominant types during both active/break phases and strong/weak monsoon years. Notably, the contributions of these pollutants are significantly higher during break phases compared to during active phases. Our analysis also reveals a shift in the origin of these aerosol masses. During active phases, the majority originate from the Arabian Sea; in contrast, break phases are associated with a higher contribution from the African region. Full article
Show Figures

Figure 1

18 pages, 7843 KiB  
Article
Variations in Cloud Concentration Nuclei Related to Continental Air Pollution Control and Maritime Fuel Regulation over the Northwest Pacific Ocean
by Lei Sun, Wenxin Cui, Nan Ma, Juan Hong, Yujiao Zhu, Yang Gao, Huiwang Gao and Xiaohong Yao
Atmosphere 2024, 15(8), 972; https://doi.org/10.3390/atmos15080972 - 14 Aug 2024
Viewed by 519
Abstract
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN [...] Read more.
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN responds to upwind continental air pollutant mitigation and marine traffic fuel sulfur content (FSC) regulation over the northwest Pacific Ocean (NWPO). We also employed the Positive Matrix Factorization (PMF) analysis to apportion concentrations of CCN (Nccn) to different sources in order to quantify its source-specified responses to mitigation of air pollution during the transient period. Our results showed that (1) upwind continental mitigation likely reduced Nccn by approximately 200 cm−3 and 400 cm−3 at 0.2% and 0.4% supersaturation (SS), respectively, in the marine background atmosphere over the NWPO; (2) FSC regulation resulted in a decrease in Nccn at 0.4% SS by about 50 cm−3 and was nearly negligible at 0.2% SS over the NWPO. Additionally, a PMF-resolved factor, characterized by a dominant nucleation mode, was present only in 2014 and disappeared in 2021, likely due to the reduction. This estimation, however, suffered from uncertainties since seasonal changes were hard to be deducted accurately. PMF-resolved factors accurately represented Nccn in 80–90% of cases, but this accuracy was not observed in the remaining cases. Finally, an integrated analysis of satellite-derived cloud parameters and ship-based measurements indicated that the reduced Nccn over the NWPO might be co-limited with meteorological factors in forming cloud droplets during the transient period. Full article
Show Figures

Graphical abstract

20 pages, 4331 KiB  
Article
Paleoclimate Controls on West African Dust Inferred from Rb/Sr and Si/Al of Sediments in an Eastern Equatorial Atlantic Marine Core
by Christopher J. Lepre, Clara Y. Chang and Owen M. Yazzie
Atmosphere 2024, 15(8), 902; https://doi.org/10.3390/atmos15080902 - 28 Jul 2024
Viewed by 995
Abstract
Increased dust emissions from dryland areas and their effects on human health, ecosystem viability, and environmental change are a global concern in the face of the growing climate crisis. Dust plume emissions from the West African landmass, Sahara, and Sahel areas comprise a [...] Read more.
Increased dust emissions from dryland areas and their effects on human health, ecosystem viability, and environmental change are a global concern in the face of the growing climate crisis. Dust plume emissions from the West African landmass, Sahara, and Sahel areas comprise a major fraction of the global aerosol budget. Dust plume intensity is closely related to regional winds (e.g., Harmattan, Sahara Air Layer), the Intertropical Convergence Zone, monsoonal seasonality, marine currents, and physiography. To study terrigenous material emitted from the continent over the last ~260 kyr (late Quaternary), we used X-ray fluorescence spectroscopy (XRF) to analyze a ~755 cm long marine sediment core from the eastern equatorial Atlantic Ocean, resulting in nearly 1400 discrete measurements. Spectral analysis results suggest that concentrations of elements (Rb, Sr, Si, Al) preserved in the sediments are correlated to different types of orbital climate forcing. Chemical weathering intensity indicated by the Rb/Sr ratio was sensitive to seasonal insolation variations controlled by precession cycles (23–18 kyr), which presumably reflects the relationship between monsoonal rainfall and sensible heating of the continent. Spectral analysis of silicate mineral grain size (Si/Al) showed significant 40 kyr cycles that were paced by obliquity. Based on these data, we infer that winter tradewind activity accelerated in response to the intertropical insolation gradient induced by high obliquity. High Rb/Sr ratios during the last glacial maximum and penultimate glacial maximum may have been due to a predominance of mechanical weathering over chemical weathering under dry/cool climates or the dissolution of Sr-bearing carbonates by corrosive glacial bottom waters. Full article
(This article belongs to the Special Issue Paleoclimate Changes and Dust Cycle Recorded by Eolian Sediments)
Show Figures

Graphical abstract

15 pages, 1839 KiB  
Article
Assessing Characteristics and Variability of Fluorescent Aerosol Particles: Comparison of Two Case Studies in Southeastern Italy Using a Wideband Integrated Bioaerosol Sensor
by Mattia Fragola, Dalila Peccarrisi, Salvatore Romano, Gianluca Quarta and Lucio Calcagnile
Aerobiology 2024, 2(3), 44-58; https://doi.org/10.3390/aerobiology2030004 - 26 Jul 2024
Viewed by 672
Abstract
This study aims to investigate the seasonal variation and source identification of fluorescent aerosol particles at the monitoring site of the University of Salento in Lecce, southeastern Italy. Utilizing a wideband integrated bioaerosol sensor (WIBS), this research work analyzes data from two specific [...] Read more.
This study aims to investigate the seasonal variation and source identification of fluorescent aerosol particles at the monitoring site of the University of Salento in Lecce, southeastern Italy. Utilizing a wideband integrated bioaerosol sensor (WIBS), this research work analyzes data from two specific monitoring days: one in winter (10 January 2024), marked by significant transport of anthropogenic particles from Eastern Europe, and another in early spring (6 March 2024), characterized by marine aerosol sources and occasional desert dust. This study focuses on the seven WIBS particle categories (A, B, C, AB, AC, BC, ABC), which exhibited distinct characteristics between the two days, indicating different aerosol compositions. Winter measurements revealed a predominance of fine-mode particles, particularly soot and bacteria. In contrast, spring measurements showed larger particles, including fungal spores, pollen fragments, and mineral dust. Fluorescence intensity data further emphasized an increase in biological and organic airborne material in early spring. These results highlight the dynamic nature of fluorescent aerosol sources in the Mediterranean region and the necessity of continuous monitoring for air quality assessments. By integrating WIBS measurements with air mass back-trajectories, this study effectively identifies fluorescent aerosol sources and their seasonal impacts, offering valuable insights into the environmental and health implications of aerosol variability in the investigated Mediterranean area. Full article
(This article belongs to the Special Issue Optical and Microphysical Properties of Aerosols and Bioaerosols)
Show Figures

Graphical abstract

9 pages, 1807 KiB  
Article
Three-Dimensional Spatial Distribution of the Sedimentation Rate of Chloride Ions on a Tropical Island
by Jiezhen Hu, Wenjie Lan, Wenjuan Liu, Jingquan Wu, Peichang Deng and Dahai Liu
Buildings 2024, 14(7), 2229; https://doi.org/10.3390/buildings14072229 - 19 Jul 2024
Viewed by 698
Abstract
Chlorine ions in the air are a key factor in the corrosion of offshore buildings. Mastering the distribution law of the chloride ion settlement rate (RCl) in three-dimensional (3D) spatiality is helpful in protecting offshore buildings. The self-designed [...] Read more.
Chlorine ions in the air are a key factor in the corrosion of offshore buildings. Mastering the distribution law of the chloride ion settlement rate (RCl) in three-dimensional (3D) spatiality is helpful in protecting offshore buildings. The self-designed “kite-hanging wet candle method” was used to collect chloride ions in the air, using ion chromatography to analyze the chloride ion concentration of the sample solution, and obtained the annual RCl in the offshore atmosphere at different vertical heights, using the Pearson correlation coefficient method to analyze the influence of environmental factors on the RCl. The results show that the RCl has a significant linear relationship with temperature, relative humidity and wind speed. Among them, the RCl is positively correlated with temperature and negatively correlated with wind speed and relative humidity. In the vertical height range of 10–100 m, the RCl presents a “”-shaped distribution. In the range of 10–30 m, the RCl is mainly controlled by the impact of ocean spray; in the range of 30–80 m, the RCl is mainly controlled by marine aerosols; and in the range of 80 m–100 m, the RCl is mainly controlled by marine aerosols and wind speed. Under the influence of wind direction and wind speed, the RCl of the windward side is higher than that of the leeward side at different monitoring points, which are close to the coastline and at a low vertical height. Studying the distribution of the RCl in 3D spatiality can effectively prevent and reduce its impact on offshore buildings. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 8260 KiB  
Article
Studying the Aerosol Effect on Deep Convective Clouds over the Global Oceans by Applying Machine Learning Techniques on Long-Term Satellite Observation
by Xuepeng Zhao, James Frech, Michael J. Foster and Andrew K. Heidinger
Remote Sens. 2024, 16(13), 2487; https://doi.org/10.3390/rs16132487 - 7 Jul 2024
Viewed by 736
Abstract
Long-term (1982–2019) satellite climate data records (CDRs) of aerosols and clouds, reanalysis data of meteorological fields, and machine learning techniques are used to study the aerosol effect on deep convective clouds (DCCs) over the global oceans from a climatological perspective. Our analyses are [...] Read more.
Long-term (1982–2019) satellite climate data records (CDRs) of aerosols and clouds, reanalysis data of meteorological fields, and machine learning techniques are used to study the aerosol effect on deep convective clouds (DCCs) over the global oceans from a climatological perspective. Our analyses are focused on three latitude belts where DCCs appear more frequently in the climatology: the northern middle latitude (NML), tropical latitude (TRL), and southern middle latitude (SML). It was found that the aerosol effect on marine DCCs may be detected only in NML from long-term averaged satellite aerosol and cloud observations. Specifically, cloud particle size is more susceptible to the aerosol effect compared to other cloud micro-physical variables (e.g., cloud optical depth). The signature of the aerosol effect on DCCs can be easily obscured by meteorological covariances for cloud macro-physical variables, such as cloud cover and cloud top temperature (CTT). From a machine learning analysis, we found that the primary aerosol effect (i.e., the aerosol effect without meteorological feedbacks and covariances) can partially explain the aerosol convective invigoration in CTT and that meteorological feedbacks and covariances need to be included to accurately capture the aerosol convective invigoration. From our singular value decomposition (SVD) analysis, we found the aerosol effects in the three leading principal components (PCs) may explain about one third of the variance of satellite-observed cloud variables and significant positive or negative trends are only observed in the lead PC1 of cloud and aerosol variables. The lead PC1 component is an effective mode for detecting the aerosol effect on DCCs. Our results are valuable for the evaluation and improvement of aerosol-cloud interactions in the long-term climate simulations of global climate models. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 11563 KiB  
Article
Drone-Based Measurement of the Size Distribution and Concentration of Marine Aerosols above the Great Barrier Reef
by Christian Eckert, Diana C. Hernandez-Jaramillo, Chris Medcraft, Daniel P. Harrison and Brendan P. Kelaher
Drones 2024, 8(7), 292; https://doi.org/10.3390/drones8070292 - 27 Jun 2024
Viewed by 1197
Abstract
Marine aerosol particles can act as cloud condensation nuclei and influence the atmospheric boundary layer by scattering solar radiation. The interaction of ocean waves and coral reefs may affect the distribution and size of marine aerosol particles. Measuring this effect has proven challenging. [...] Read more.
Marine aerosol particles can act as cloud condensation nuclei and influence the atmospheric boundary layer by scattering solar radiation. The interaction of ocean waves and coral reefs may affect the distribution and size of marine aerosol particles. Measuring this effect has proven challenging. Here, we tested the hypothesis that the distribution and size of marine aerosol particles would vary over three distinct zones (i.e., coral lagoon, surf break, and open water) near One Tree Island in the Great Barrier Reef, which is approximately 85 km off the east coast of Australia. We used a modified DJI Agras T30 drone fitted with a miniaturised scanning electrical mobility sizer and advanced mixing condensation particle counter to collect data on aerosol size distribution between 30 and 300 nm at 20 m above the water surface. We conducted 30 flights over ten days during the Austral summer/autumn of 2023. The fitted bimodal lognormal curves indicate that the number concentrations for aerosols below 85 nm diameter are more than 16% higher over the lagoon than over open water. The average mean mode diameters remained constant across the different zones, indicating no significant influence of breaking waves on the detected aerosol size modes. The most influential explanatory variable for aerosol size distribution was the difference between air temperature and the underlying sea surface, explaining around 40% of the variability. Salinity also exhibited a significant influence, explaining around 12% of the measured variability in the number concentration of aerosols throughout the campaign. A calculated wind stress magnitude did not reveal significant variation in the measured marine aerosol concentrations. Overall, our drone-based aerosol measurements near the water surface effectively characterise the dynamics of background marine aerosols around One Tree Island Reef, illustrating the value of drone-based systems for providing size-dependent aerosol information in difficult-to-access and environmentally sensitive areas. Full article
Show Figures

Figure 1

30 pages, 8861 KiB  
Review
Natural Aerosols, Gaseous Precursors and Their Impacts in Greece: A Review from the Remote Sensing Perspective
by Vassilis Amiridis, Stelios Kazadzis, Antonis Gkikas, Kalliopi Artemis Voudouri, Dimitra Kouklaki, Maria-Elissavet Koukouli, Katerina Garane, Aristeidis K. Georgoulias, Stavros Solomos, George Varlas, Anna Kampouri, Dimitra Founda, Basil E. Psiloglou, Petros Katsafados, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Panagiotis-Ioannis Raptis, Thanasis Georgiou, Anna Gialitaki, Emmanouil Proestakis, Alexandra Tsekeri, Eleni Drakaki, Eleni Marinou, Elina Giannakaki, Stergios Misios, John Kapsomenakis, Kostas Eleftheratos, Nikos Hatzianastassiou, Pavlos Kalabokas, Prodromos Zanis, Mihalis Vrekoussis, Alexandros Papayannis, Andreas Kazantzidis, Konstantinos Kourtidis, Dimitris Balis, Alkiviadis F. Bais and Christos Zerefosadd Show full author list remove Hide full author list
Atmosphere 2024, 15(7), 753; https://doi.org/10.3390/atmos15070753 - 24 Jun 2024
Viewed by 1743
Abstract
The Mediterranean, and particularly its Eastern basin, is a crossroad of air masses advected from Europe, Asia and Africa. Anthropogenic emissions from its megacities meet over the Eastern Mediterranean, with natural emissions from the Saharan and Middle East deserts, smoke from frequent forest [...] Read more.
The Mediterranean, and particularly its Eastern basin, is a crossroad of air masses advected from Europe, Asia and Africa. Anthropogenic emissions from its megacities meet over the Eastern Mediterranean, with natural emissions from the Saharan and Middle East deserts, smoke from frequent forest fires, background marine and pollen particles emitted from ocean and vegetation, respectively. This mixture of natural aerosols and gaseous precursors (Short-Lived Climate Forcers—SLCFs in IPCC has short atmospheric residence times but strongly affects radiation and cloud formation, contributing the largest uncertainty to estimates and interpretations of the changing cloud and precipitation patterns across the basin. The SLCFs’ global forcing is comparable in magnitude to that of the long-lived greenhouse gases; however, the local forcing by SLCFs can far exceed those of the long-lived gases, according to the Intergovernmental Panel on Climate Change (IPCC). Monitoring the spatiotemporal distribution of SLCFs using remote sensing techniques is important for understanding their properties along with aging processes and impacts on radiation, clouds, weather and climate. This article reviews the current state of scientific know-how on the properties and trends of SLCFs in the Eastern Mediterranean along with their regional interactions and impacts, depicted by ground- and space-based remote sensing techniques. Full article
Show Figures

Figure 1

23 pages, 83064 KiB  
Article
Study of the Atmospheric Transport of Sea-Spray Aerosols in a Coastal Zone Using a High-Resolution Model
by Alix Limoges, Jacques Piazzola, Christophe Yohia, Quentin Rodier, William Bruch, Elisa Canepa and Pierre Sagaut
Atmosphere 2024, 15(6), 702; https://doi.org/10.3390/atmos15060702 - 12 Jun 2024
Viewed by 747
Abstract
Fine-scale models for the transport of marine aerosols are of great interest for the study of micro-climates and air quality in areas of complex topography, such as in urbanized coastal areas. To this end, the MIO laboratory implemented the Meso-NH model in its [...] Read more.
Fine-scale models for the transport of marine aerosols are of great interest for the study of micro-climates and air quality in areas of complex topography, such as in urbanized coastal areas. To this end, the MIO laboratory implemented the Meso-NH model in its LES version over the northwest Mediterranean coastal zone using a recent sea-spray source function. Simulated meteorological parameters and aerosol concentrations are compared to experimental data acquired in the Mediterranean coastal zone in spring 2008 on board the R/V Atalante. Key findings indicate that the large eddy simulation (LES) mode closely matches with the experimental data, enabling an in-depth analysis of the numerical model ability to predict variations in aerosol concentrations. These variations are influenced by different wind directions, which lead to various fetch distances typical of coastal zones. Full article
Show Figures

Figure 1

14 pages, 15341 KiB  
Technical Note
Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023
by Yundan Li and Wencai Wang
Remote Sens. 2024, 16(11), 1883; https://doi.org/10.3390/rs16111883 - 24 May 2024
Cited by 2 | Viewed by 954
Abstract
Dust aerosols serve as a crucial nutrient source to the oceans and profoundly influence marine ecosystems. This study used satellite and ground observations to explore a strong dust event on 9–13 April 2023, emanating from the Gobi Desert, shared by Mongolia and China’s [...] Read more.
Dust aerosols serve as a crucial nutrient source to the oceans and profoundly influence marine ecosystems. This study used satellite and ground observations to explore a strong dust event on 9–13 April 2023, emanating from the Gobi Desert, shared by Mongolia and China’s Inner Mongolia region. We investigated the deposition of dust particles and their effects on marine phytoplankton communities. Our findings revealed that the dust event was intense, enduring, and expansive, illustrated by hourly PM10 concentrations peaking at 5055 µg/m3 near the source and consistently exceeding 1000 µg/m3, even at considerable distances. The dust traveled along two different trajectories and was deposited in the same area of the Northwest Pacific. Total dust deposition in the study area (37°N–42°N, 145°E–165°E) was 79.88 mg/m2 from 13 to 18 April, much higher than the 2019–2022 average deposition of 33.03 mg/m2 for the same period. With dust deposition, the observed mean chlorophyll-a concentrations in the area increased to 2.78 mg/m3 on 14 April, an extraordinary 692% increase above the long-term average. These results highlight the profound impact of dust on the productivity of marine phytoplankton communities by inputting more nutrients into the ocean through different pathways. Full article
Show Figures

Graphical abstract

19 pages, 2941 KiB  
Article
Using HawkEye Level-2 Satellite Data for Remote Sensing Tasks in the Presence of Dust Aerosol
by Anna Papkova, Darya Kalinskaya and Evgeny Shybanov
Atmosphere 2024, 15(5), 617; https://doi.org/10.3390/atmos15050617 - 20 May 2024
Viewed by 839
Abstract
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol [...] Read more.
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol stratification and typing maps, and the global forecasting model SILAM. In a comparative analysis of in-situ and satellite measurements of the remote sensing reflectance, an error in the atmospheric correction of HawkEye measurements was found both for a clean atmosphere and in the presence of an absorbing aerosol. It is shown that, on average, the dependence of the atmospheric correction error on wavelength has the form of a power function of the form from λ−3 to λ−9. The largest errors are in the short-wavelength region of the spectrum (412–443 nm) for the dust and dusty marine aerosol domination dates. A comparative analysis of satellite and in situ measurements of the optical characteristics of the atmosphere, namely the AOD and the Ångström parameter, was carried out. It is shown that the aerosol model used by HawkEye underestimates the Angström parameter and, most likely, large errors and outliers in satellite measurements are associated with this. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

24 pages, 12245 KiB  
Article
How Representative Are European AERONET-OC Sites of European Marine Waters?
by Ilaria Cazzaniga and Frédéric Mélin
Remote Sens. 2024, 16(10), 1793; https://doi.org/10.3390/rs16101793 - 18 May 2024
Viewed by 695
Abstract
Data from the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) have been extensively used to assess Ocean Color radiometric products from various satellite sensors. This study, focusing on Ocean Color radiometric operational products from the Sentinel-3 Ocean and Land Colour Instrument [...] Read more.
Data from the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) have been extensively used to assess Ocean Color radiometric products from various satellite sensors. This study, focusing on Ocean Color radiometric operational products from the Sentinel-3 Ocean and Land Colour Instrument (OLCI), aims at investigating where in the European seas the results of match-up analyses at the European marine AERONET-OC sites could be applicable. Data clustering is applied to OLCI remote sensing reflectance RRS(λ) from the various sites to define different sets of optical classes, which are later used to identify class-based uncertainties. A set of fifteen classes grants medium-to-high classification levels to most European seas, with exceptions in the South-East Mediterranean Sea, the Atlantic Ocean, or the Gulf of Bothnia. In these areas, RRS(λ) spectra are very often identified as novel with respect to the generated set of classes, suggesting their under-representation in AERONET-OC data. Uncertainties are finally mapped onto European seas according to class membership. The largest uncertainty values are obtained in the blue spectral region for almost all classes. In clear waters, larger values are obtained in the blue bands. Conversely, larger values are shown in the green and red bands in coastal and turbid waters. Full article
Show Figures

Figure 1

Back to TopTop