Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,800)

Search Parameters:
Keywords = metal powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1125 KiB  
Article
Self-Heating Risk of Coals and Metal Powders: A Comparison
by Boleslav Taraba and Roman Maršálek
Fire 2024, 7(11), 378; https://doi.org/10.3390/fire7110378 - 24 Oct 2024
Abstract
The self-heating risk of four coal samples (two bituminous and two subbituminous) and five metal powder samples (four industrial and one laboratory-prepared) were studied calorimetrically using oxidation heat at 30 °C. All of the samples were measured in fresh (as-received), vacuum-dried and wetted [...] Read more.
The self-heating risk of four coal samples (two bituminous and two subbituminous) and five metal powder samples (four industrial and one laboratory-prepared) were studied calorimetrically using oxidation heat at 30 °C. All of the samples were measured in fresh (as-received), vacuum-dried and wetted states. The heat effects of fresh and/or dried coals were found to be significantly higher than those of the metals. On the other hand, wetting the samples markedly increased the oxidation heat mainly of the metals, making their oxidation potential comparable to or even exceeding that of the subbituminous coals. As a practical consequence, a comprehensive index to assess the self-heating risk of the materials in respect to both their oxidation ability and the effect of moisture is proposed. Full article
(This article belongs to the Special Issue Coal Fires and Their Impact on the Environment)
Show Figures

Figure 1

27 pages, 8072 KiB  
Article
Preparation of Ibuprofen-Loaded Inhalable γCD-MOFs by Freeze-Drying Using the QbD Approach
by Anett Motzwickler-Németh, Petra Party, Péter Simon, Milena Sorrenti, Rita Ambrus and Ildikó Csóka
Pharmaceutics 2024, 16(11), 1361; https://doi.org/10.3390/pharmaceutics16111361 - 24 Oct 2024
Abstract
Background/Objectives: Research on cyclodextrin-based metal-organic frameworks (CD-MOFs) is still in its infancy, but their potential for use in drug delivery—expressly in the lung—seems promising. We aimed to use the freeze-drying method to create a novel approach for preparing CD-MOFs. MOFs consisting of γ-cyclodextrin [...] Read more.
Background/Objectives: Research on cyclodextrin-based metal-organic frameworks (CD-MOFs) is still in its infancy, but their potential for use in drug delivery—expressly in the lung—seems promising. We aimed to use the freeze-drying method to create a novel approach for preparing CD-MOFs. MOFs consisting of γ-cyclodextrin (γCD) and potassium cations (K+) were employed to encapsulate the poorly water-soluble model drug Ibuprofen (IBU) for the treatment of cystic fibrosis (CF). Methods: Using the LeanQbD® software (v2022), we designed the experiments based on the Quality by Design (QbD) concept. According to QbD, we identified the three most critical factors, which were the molar ratio of the IBU to the γCD, incubation time, and the percentage of the organic solvent. light-, scanning electron microscope (SEM) and laser diffraction were utilized to observe the morphology and particle size of the samples. In addition, the products were characterized by Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). Results: Based on characterizations, we concluded that a γCD-MOF/IBU complex was also formed using the freeze-drying method. Using formulations with optimal aerodynamic properties, we achieved 38.10 ± 5.06 and 47.18 ± 4.18 Fine Particle Fraction% (FPF%) based on the Andersen Cascade Impactor measurement. With these formulations, we achieved a fast dissolution profile and increased IBU solubility. Conclusions: This research successfully demonstrates the innovative use of freeze-drying to produce γCD-MOFs for inhalable IBU delivery. The method enabled to modify the particle size, which was crucial for successful pulmonary intake, emphasizing the need for further investigation of these formulations as effective delivery systems. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

20 pages, 16123 KiB  
Article
A Study on the Compressive Behavior of Additively Manufactured AlSi10Mg Lattice Structures
by David Liović, Sanjin Kršćanski, Marina Franulović, Dražan Kozak, Goran Turkalj, Emanuele Vaglio, Marco Sortino, Giovanni Totis, Federico Scalzo and Nenad Gubeljak
Materials 2024, 17(21), 5188; https://doi.org/10.3390/ma17215188 - 24 Oct 2024
Abstract
The mechanical behavior of the metallic components fabricated by additive manufacturing (AM) technologies can be influenced by adjustments in their microstructure or by using specially engineered geometries. Manipulating the topological features of the component, such as incorporating unit cells, enables the production of [...] Read more.
The mechanical behavior of the metallic components fabricated by additive manufacturing (AM) technologies can be influenced by adjustments in their microstructure or by using specially engineered geometries. Manipulating the topological features of the component, such as incorporating unit cells, enables the production of lighter metamaterials, such as lattice structures. This study investigates the mechanical behavior of lattice structures created from AlSi10Mg, which were produced using the laser beam powder bed fusion (LB-PBF) process. Specifically, their behavior under pure compressive loading has been numerically and experimentally investigated using ten different configurations. Experimental methods and finite element analysis (FEA) were used to investigate the behavior of body-centered cubic (BCC) lattice structures, specifically examining the effects of tapering the struts by varying their diameters at the endpoints (dend) and midpoints (dmid), as well as altering the height of the joint nodes (h). The unit cells were designed with varying parameters in such a way that dend is changed at three levels, while dmid and h are changed at two levels. Significant differences in Young’s modulus, yield strength, and ultimate compressive strength between the various specimen configurations were observed both experimentally and numerically. The FEA underestimated the Young’s modulus corresponding to the configurations with thinner struts in comparison to the higher values found experimentally. Conversely, the FEA overestimated the Young’s modulus of those configurations with larger strut diameters with respect to the experimentally determined values. Additionally, the proposed FE method consistently underestimated the yield strength relative to the experimental values, with notable discrepancies in specific configurations. Full article
Show Figures

Figure 1

17 pages, 5578 KiB  
Article
Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components
by David P. Failla, Matthew J. Dantin, Chuyen J. Nguyen and Matthew W. Priddy
Metals 2024, 14(11), 1210; https://doi.org/10.3390/met14111210 - 24 Oct 2024
Abstract
Internal state variable models are well suited to predict the effects of an evolving microstructure as a result of metal-based additive manufacturing (MBAM) processes in components with complex features. As advanced manufacturing techniques such as MBAM become increasingly employed, accurate methods for predicting [...] Read more.
Internal state variable models are well suited to predict the effects of an evolving microstructure as a result of metal-based additive manufacturing (MBAM) processes in components with complex features. As advanced manufacturing techniques such as MBAM become increasingly employed, accurate methods for predicting residual stresses are critical for insight into component performance. To this end, the evolving microstructural model of inelasticity (EMMI) is suited to modeling these residual stresses due to its ability to capture the evolution of rate- and temperature-dependent material hardening as a result of the rapid thermal cycling present in MBAM processes. The current effort contrasts the efficacy of using EMMI with an elastic–perfectly plastic (EPP) material model to predict the residual stresses for an Inconel 718 component produced via laser powder bed fusion (L-PBF). Both constitutive models are used within a thermo-mechanical finite element framework and are validated by published neutron diffraction measurements to demonstrate the need for higher-fidelity models to predict residual stresses in complex components. Both EPP and EMMI can qualitatively predict the residual stresses trends induced by the L-PBF local raster scanning effects on the component, but the influence of the temperature-dependent yield and lack of plastic strain hardening allowed EPP to perform similar to EMMI away from free surfaces. EMMI offered the most insight at the free surfaces and around critical component features, but this work also highlights EMMI as a process–property-dependent model that needs be calibrated to specimens produced with a similar reference structure for microstructure evolution effects to be accurately predicted. Full article
Show Figures

Figure 1

12 pages, 7286 KiB  
Article
Online Quality Control of Powder Bed Fusion with High-Resolution Eddy Current Testing Inductive Sensor Arrays
by Pedro Faria, Rodolfo L. Batalha, André Barrancos and Luís S. Rosado
Sensors 2024, 24(21), 6827; https://doi.org/10.3390/s24216827 - 24 Oct 2024
Abstract
This paper presents the development of a novel eddy current array (ECA) system for real-time, layer-by-layer quality control in powder bed fusion (PBF) additive manufacturing. The system is integrated into the recoater of a PBF machine to provide spatially resolved electrical conductivity imaging [...] Read more.
This paper presents the development of a novel eddy current array (ECA) system for real-time, layer-by-layer quality control in powder bed fusion (PBF) additive manufacturing. The system is integrated into the recoater of a PBF machine to provide spatially resolved electrical conductivity imaging of the manufactured part. The system features an array of 40 inductive sensors spaced at 1 mm pitch and is capable of performing a full array readout every 0.192 mm at 100 mm/s recoater speed. Array scalability was achieved through the careful selection of the electromagnetic configuration, miniaturized and seamlessly integrated sensor elements, and the use of advanced mixed signal processing techniques. Experimental validation was performed on stainless steel 316L parts, successfully detecting metallic structures and confirming system performance in both laboratory and real-time PBF environments. The prototype achieved a signal-to-noise ratio (SNR) of 26.5 dB, discriminating metal from air and thus demonstrating its potential for improving PBF part design, process optimization, and defect detection. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 65232 KiB  
Article
Two-Staged Technology for CoCr Stent Production by SLM
by Polina Kilina, Andrey Drozdov, Alex G. Kuchumov, Evgeniy Morozov, Lyudmila Sirotenko and Andrey Smetkin
Materials 2024, 17(21), 5167; https://doi.org/10.3390/ma17215167 - 23 Oct 2024
Abstract
Additive manufacturing of porous materials with a specific macrostructure and tunable mechanical properties is a state-of-the-art area of material science. Additive technologies are widely used in industry due to numerous advantages, including automation, reproducibility, and freedom of design. Selective laser melting (SLM) is [...] Read more.
Additive manufacturing of porous materials with a specific macrostructure and tunable mechanical properties is a state-of-the-art area of material science. Additive technologies are widely used in industry due to numerous advantages, including automation, reproducibility, and freedom of design. Selective laser melting (SLM) is one of the advanced techniques among 3D fabrication methods. It is widely used to produce various medical implants and devices including stents. It should be noticed that there is a lack of information on its application in stent production. The paper presents the technological aspects of CoCr stent SLM fabrication, including design of stents and development of regimes for their manufacturing. Physical, chemical, and technological properties of CoCr powder were initially determined. Parametric design of mesh stent models was adopted. A two-stage approach was developed to ensure dimensional accuracy and quality of stents. The first stage involves a development of the single-track fusion process. The second stage includes the stent manufacturing according to determined technological regimes. The single-track fusion process was simulated to assign laser synthesis parameters for stent fabrication. Melting bath temperature and laser regimes providing such conditions were determined. Twenty-seven SLM manufacturing regimes were realized. Dependence of single-tracks width and height on the laser power, exposition time, and point distance was revealed. The qualitative characteristics of tracks imitating the geometry of the stent struts as well as favorable and unfavorable fusion regimes were determined. The results of surface roughness regulating of the stents’ structural elements by various methods were analyzed. Thus, this two-staged approach can be considered as a fundamental approach for CoCr stent SLM fabrication. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

14 pages, 7530 KiB  
Article
Cold Consolidation of Pharmaceutical Waste Glass Powders Through Alkali Activation and Binder Jet 3D Printing
by Hamada Elsayed, Filippo Gobbin, Alberto Barci, Enrico Bernardo and Paolo Colombo
Materials 2024, 17(21), 5164; https://doi.org/10.3390/ma17215164 - 23 Oct 2024
Abstract
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable [...] Read more.
The recent COVID-19 emergency has led to an impressive increase in the production of pharmaceutical vials. This has led to a parallel increase in the amounts of waste glass; manufacturers typically recover material from faulty containers by crushing, giving origin to an unrecyclable fraction. Coarse fragments are effectively reused as feedstock for glass melting; on the contrary, fine powders (<100 microns), contaminated by metal and ceramic particles due to the same crushing operations, are landfilled. Landfilling is also suggested for pharmaceutical containers after medical use. This study aims at proposing new opportunities for the recycling of fine glass particles, according to recent findings concerning alkali activation of pharmaceutical glass, combined with novel processing, i.e., binder jetting printing. It has already been shown that pharmaceutical glass, immersed in low-molarity alkaline solution (not exceeding 2.5 M NaOH), undergoes surface dissolution and hydration; cold consolidation is later achieved, upon drying at 40–60 °C, by a condensation reaction occurring at hydrated layers of adjacent particles. Binder jetting printing does not realize a full liquid immersion of the glass powders, as the attacking solution is selectively sprayed on a powder bed. Here, we discuss the tuning of key parameters, such as the molarity of the attacking solution (from 2.5 to 10 M) and the granulometry of the waste glass, to obtain stable printed blocks. In particular, the stability depends on the formation of bridges between adjacent particles consisting of strong T-O bonds (Si-O-Si, Al-O-Si, B-O-Si), while degradation products (concentrating Na ions) remain as a secondary phase, solubilized by immersion in boiling water. Such stability is achieved by operating at 5 M NaOH. Full article
(This article belongs to the Special Issue State of the Art of Materials Science and Engineering in Italy)
Show Figures

Figure 1

10 pages, 8136 KiB  
Article
Unusual Composition of the Sarezzano Reliquary Busts
by Maria Labate, Carmela Sirello, Maurizio Aceto, Fulvio Cervini, Simonetta Castronovo, Lorenza Operti and Angelo Agostino
Heritage 2024, 7(11), 5976-5985; https://doi.org/10.3390/heritage7110280 - 23 Oct 2024
Abstract
The interdisciplinary study of two reliquary busts from Sarezzano (Piedmont, Italy) is a perfect example of the necessity to provide for material characterisation as a recurring common practice in historical studies and a mandatory step in conservation assessment. Furthermore, the diagnostics of cultural [...] Read more.
The interdisciplinary study of two reliquary busts from Sarezzano (Piedmont, Italy) is a perfect example of the necessity to provide for material characterisation as a recurring common practice in historical studies and a mandatory step in conservation assessment. Furthermore, the diagnostics of cultural heritage play a crucial role in art historical research, providing relevant information on artefacts’ genesis, production technology, and conservation history. The study of the materials of the reliquary busts was performed by non-invasive (portable X-ray fluorescence spectrometry) and micro-invasive (stereomicroscope, attenuated total reflection Fourier transform infrared spectroscopy and powder X-ray diffraction analysis) methods. According to the results, the busts were found to be made of a tin–lead alloy, a rather unusual material for mediaeval reliquary busts. Moreover, the outcome suggests that the busts were originally silvered, except for the hair and beard which are still gilded. The analysis reveals the use of colophony as an adhesive buffer layer on the busts’ alloy, as well as inside them, to favour the metal working process, since it is found as degraded residue. Finally, even the typology of alloy decay is defined. All this information has enabled us to determine the artistic technique and estimate the value and quality of the material employed. In addition, it has led to the correct choice of materials and methods to be adopted during the restoration, and therefore the usage of more suitable solvents and tools. Full article
Show Figures

Figure 1

24 pages, 4234 KiB  
Article
Optimal Geometry for Focused Ion Beam-Milled Samples for Direct-Pull Micro-Tensile Testing Performed In Situ in a Scanning Electron Microscope
by Daniel B. Yin, Haiping Sun and Amit Misra
Materials 2024, 17(21), 5144; https://doi.org/10.3390/ma17215144 - 22 Oct 2024
Abstract
A thorough procedure was developed to efficiently manufacture dogbone samples using focused ion beam (FIB) milling for micro-tensile testing. A Bruker PI 89 PicoIndenter, Billerica, MA, USA, was used as a case study, although the analysis and results are applicable to other micro-mechanical [...] Read more.
A thorough procedure was developed to efficiently manufacture dogbone samples using focused ion beam (FIB) milling for micro-tensile testing. A Bruker PI 89 PicoIndenter, Billerica, MA, USA, was used as a case study, although the analysis and results are applicable to other micro-mechanical testing systems capable of mounting a standard, Ø12.7 mm × Ø3.2 mm pin, scanning electron microscopy (SEM) pin stub (Ted Pella, Redding, CA, USA). Nine dogbones were made from an Fe-45Cu alloy additively manufactured using powder-fed laser-directed energy deposition (DED-LB). Testing showed that fracture was confined to the gauge section for all dogbones and that the fracture mode, ductile vs. brittle, was entirely dependent on the grain orientation relative to the loading direction. The analysis showed that the measured plastic strain to failure can vary from >11% (optimal geometry) to <1% (non-optimal geometry) in micro-tensile testing of high-tensile-strength (>1 GPa) metallic materials. Subsequently, a finite element analysis (FEA) was conducted to identify the improved dogbone geometries. A total of ten thousand dogbone geometries were tested, and their dimensions were defined by a set of four adjustable parameters (corner radius, load surface angle, load surface length, and dogbone head length). The gauge width and gauge length were fixed to 4 µm and 10 µm, respectively. Three-dimensional surface plots of the stress concentration as a function of two parameters were used to identify the optimal ranges of parameter values. The addition of maximum width and length constraints, measuring 25 µm and 30 µm, respectively, allowed us to identify an optimal geometry at load surface angles of 30° and 45°. Their respective dimensions (corner radius, load surface length, and dogbone head length) are, in µm, 12, 6, and 7 and 10, 7, and 7. Testing these two optimal geometries with a range of gauge lengths from 4 to 20 µm showed that smaller gauge lengths only slightly reduced the detrimental stress concentration outside the gauge section. However, smaller gauge lengths will notably improve the FIB surface polishing step as tapering is reduced with smaller dogbone lengths. Full article
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Waste-Derived Caffeine for Green Synthesis of Rhenium Nanoparticles with Enhanced Catalytic Activity in the Hydrogenation of 4-Nitrophenol
by Alicja Kuś, Anna Leśniewicz, Anna Dzimitrowicz, Pawel Pohl and Piotr Cyganowski
Int. J. Mol. Sci. 2024, 25(20), 11319; https://doi.org/10.3390/ijms252011319 - 21 Oct 2024
Abstract
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These [...] Read more.
Yearly, thousands of tons of wasted coffee grounds are produced according to high coffee consumption. Still, after the coffee brewing, wasted coffee grounds contain some amounts of caffeine (CAF). CAF, in turn, contains multiple O and N chelating atoms in its structure. These have a potential to be reductors for complexes of metals. In this context, within the present study, a set of CAF extracts derived from coffee beans and coffee grounds were obtained and then used for the one-step reduction of ReO4 ions with no additional toxic chemicals. Within this approach, CAF was applied as a secondary, green resource for the synthesis of unique rhenium nanoparticles (ReNPs) containing Re species at 0 and +6 oxidation states. The obtained ReNPs were identified and characterized with the use of X-ray powder diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Further, the capping and stabilization of ReNPs by CAF were verified with the aid of Fourier transformation infrared spectroscopy (FT-IR). The so-obtained “green” ReNPs were then used as a homogenous catalyst in the catalytic hydrogenation of 4-nitrophenol (4-NP). This new nanomaterial revealed a superior catalytic activity, leading to the complete reduction of 4-NP to 4-aminophenol within 40–60 min with a first-order rate constant of 0.255 min−1. Full article
(This article belongs to the Special Issue Metal Nanoparticles: From Fundamental Studies to New Applications)
Show Figures

Figure 1

27 pages, 20504 KiB  
Article
Three-Dimensional Numerical Simulation of High-Speed Shear Crushing of High-Density Fluid
by Xi Lin, Tao Lin, Gaojie Xu, Gangqiang Chen and Fei Xu
Processes 2024, 12(10), 2246; https://doi.org/10.3390/pr12102246 - 15 Oct 2024
Viewed by 421
Abstract
Plasma atomization is a technology that can produce high sphericity, small particle diameters, and high-purity copper powder, which is of great significance for the development of metal additive manufacturing. At present, although plasma atomization can realize the industrial preparation of spherical copper powder, [...] Read more.
Plasma atomization is a technology that can produce high sphericity, small particle diameters, and high-purity copper powder, which is of great significance for the development of metal additive manufacturing. At present, although plasma atomization can realize the industrial preparation of spherical copper powder, there are still some problems, such as unclear understanding of the atomization process and a lack of theoretical support for powder quality control. This leads to the inability to predict the average particle diameter of powder in advance based on the actual atomization conditions and to optimize the process parameters, which seriously affects the further development of the plasma atomization process. We mainly studied the non-stationary simulation of a DC argon plasma torch. The purpose of this paper was to study the specific influence law of the average particle diameter of the powder in the process of plasma atomization by means of numerical simulation and experimental observation. The aim was to establish the mapping relationship between the atomization condition and the average particle diameter of the powder and realize the controllable preparation of the plasma atomized powder. At the same time, we used industrial-grade plasma atomization equipment to carry out pulverizing experiments to verify the plasma atomization theory and the powder average particle diameter control scheme proposed in this paper, thus proving the reliability of this study. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

12 pages, 6577 KiB  
Article
Study on the Influence Law of Micro-Scale Abrasive Wear on a Wind Turbine Brake Pad
by Shengfang Zhang, Lu Jin, Jian Yin, Zhihua Sha, Fujian Ma, Dapeng Yang and Yu Liu
Processes 2024, 12(10), 2234; https://doi.org/10.3390/pr12102234 - 14 Oct 2024
Viewed by 381
Abstract
The hard particles in the copper-based powder metallurgic material of a brake pad for a wind turbine brake falls off and presses into the surface of the brake disc to form abrasive particles under high-speed and heavy-load working conditions. The presence of abrasive [...] Read more.
The hard particles in the copper-based powder metallurgic material of a brake pad for a wind turbine brake falls off and presses into the surface of the brake disc to form abrasive particles under high-speed and heavy-load working conditions. The presence of abrasive particles will produce abrasive wear with micro-scratch and micro-scribe on the copper-based material of the brake pad. The critical scratch depth effect in the abrasive wear process is proposed based on the critical depth effect of the metal removal process at the micro-scale. The abrasive wear is divided into two types: scratch wear and scratch wear, which is proposed according to the comparison of the actual scratch depth and the critical scratch depth. The range of braking speeds and friction coefficients in abrasive wear is determined by the recommended parameters of the disc brake. The ABAQUS2020 software is used to simulate and analyze the micro-scale abrasive wear of a brake pad. The brake strain/stress curves of the brake pad under different brake speeds and friction coefficients are compared and analyzed for two abrasive wear types based on the range of braking parameters, and the key factors affecting abrasive wear are proposed. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 9148 KiB  
Article
On the Role of Substrate in Hydroxyapatite Coating Formation by Cold Spray
by John Henao, Astrid Giraldo-Betancur, Carlos A. Poblano-Salas, Diego German Espinosa-Arbelaez, Jorge Corona-Castuera, Paola Andrea Forero-Sossa and Rene Diaz-Rebollar
Coatings 2024, 14(10), 1302; https://doi.org/10.3390/coatings14101302 - 12 Oct 2024
Viewed by 597
Abstract
The deposition of agglomerated hydroxyapatite (HAp) powders by low-pressure cold spray has been a topic of interest in recent years. Key parameters influencing the deposition of HAp powders include particle morphology and impact kinetic energy. This work examines the deposition of HAp powders [...] Read more.
The deposition of agglomerated hydroxyapatite (HAp) powders by low-pressure cold spray has been a topic of interest in recent years. Key parameters influencing the deposition of HAp powders include particle morphology and impact kinetic energy. This work examines the deposition of HAp powders on various metal surfaces to assess the impact of substrate properties on the formation of HAp deposits via cold spray. The substrates studied here encompass metals with varying hardness and thermal conductivities, including Al6061, Inconel alloy 625, AISI 316 stainless steel, H13 tool steel, Ti6Al4V, and AZ31 alloy. Single-track experiments offer insights into the initial interactions between HAp particles and different substrate surfaces. In this study, the results indicate that the ductility of the substrate may enhance HAp particle deposition only at the first deposition stages where substrate/particle interaction is the most critical factor for deposition. Features on the substrate associated with the first deposition sprayed layer include localized substrate deformation and the formation of clusters of HAp agglomerates, which aid in HAp deposition. Furthermore, after multiple spraying passes on the various metallic surfaces, deposition efficiency was significantly reduced when the build-up process of HAp coatings shifted from ceramic/metal to ceramic/ceramic interactions. Overall, this study achieved agglomerated HAp deposits with high deposition efficiencies (30–60%) through single-track experiments and resulted in the preparation of HAp coatings on various substrates with thickness values ranging from 24 to 53 µm. These coatings exhibited bioactive behavior in simulated body fluid. Full article
(This article belongs to the Special Issue Development of Hydroxyapatite Coatings)
Show Figures

Figure 1

14 pages, 5999 KiB  
Article
Effect of Initial Surface Morphology and Laser Parameters on the Laser Polishing of Stainless Steel Manufactured by Laser Powder Bed Fusion
by Jiangwei Liu, Kangkang Zhao, Xiebin Wang and Hu Li
Materials 2024, 17(20), 4968; https://doi.org/10.3390/ma17204968 - 11 Oct 2024
Viewed by 419
Abstract
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with [...] Read more.
The topological characteristics of the down-skin surfaces for as-built components by laser powder bed fusion (LPBF) are particularly representative, while the study on the improvement of the surface quality of these surfaces remains largely unexplored. Herein, the laser polishing of LPBF-built components with different inclination angles was systematically investigated with an emphasis on the down-skin surfaces. Our result shows that the topography of the top surface is independent of the inclination angle, and the surface topography of the down-skin surface is dominated by additional angle-dependent surface characteristics. It also indicates that the surface roughness can be reduced sharply when increasing the laser power from 40 W to 60 W, and the reduction slows down when further increasing the laser power while decreasing the scanning speed leads to a progressive improvement of the surface morphology. Moreover, a second-order regression model was established to evaluate the influence of the initial surface morphology and polishing parameters on the polished surface roughness and to achieve surface roughness optimization. Therefore, our established methodology can be readily applied to surface morphology manipulation and process optimization for laser polishing of widely used metals and alloys fabricated by the additive manufacturing process. Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

11 pages, 8637 KiB  
Article
Study of Various Process Parameters on Bead Penetration and Porosity in Wire Arc Additive Manufacturing (WAAM) of Copper Alloy Cu1897
by Abid Shah, Neel Kamal Gupta, Rezo Aliyev and Henning Zeidler
Appl. Sci. 2024, 14(20), 9188; https://doi.org/10.3390/app14209188 - 10 Oct 2024
Viewed by 703
Abstract
Copper-based alloys are widely known for their high thermal and electrical conductivity. Although the use of these alloys in powder-based additive manufacturing (AM) shows significant promise, applying this method in wire arc additive manufacturing (WAAM) processes poses various considerable challenges, including porosity, delamination, [...] Read more.
Copper-based alloys are widely known for their high thermal and electrical conductivity. Although the use of these alloys in powder-based additive manufacturing (AM) shows significant promise, applying this method in wire arc additive manufacturing (WAAM) processes poses various considerable challenges, including porosity, delamination, surface oxidation, etc. The limited research on WAAM of copper alloys, especially Cu1897, highlights the need for a more in-depth investigation. This study addresses the effects of process parameters in pulse cold metal transfer (CMT)-based WAAM of Cu1897, i.e., pulse correction (PC) and arc length correction (ALC), on bead penetration and porosity. The results showed that as PC was increased from −5 to +5, weld bead penetration increased from 2.38 mm to 3.87 mm. To further enhance penetration and reduce the porosity, the ALC was varied from +30% to −30% with a step size of 15%. The results showed that weld bead penetration increased to 4.47 mm by altering the ALC from +30% to −30%. Additionally, as the ALC varied within this range, porosity decreased significantly from 3.98% to 0.28%. Overall, it is concluded that a lower value of ALC is recommended to improve bead penetration and reduce porosity in WAAM of Cu1897. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing and Additive Manufacturing Technology)
Show Figures

Figure 1

Back to TopTop