Online Quality Control of Powder Bed Fusion with High-Resolution Eddy Current Testing Inductive Sensor Arrays
Abstract
:1. Introduction
2. System Hardware
2.1. Top-Level Architecture
2.2. Excitation and Sensor Elements
2.3. Excitation Driver Circuit
2.4. Sensor Amplifier Circuit
2.5. Prototype and Specifications
3. System Software
3.1. Digital Signal Processing
3.2. Data Interface
3.3. Wireless Interface
3.4. User Interface
4. Experimental Demonstration
4.1. Laboratorial Validation
4.2. Deployment in a PBF Machine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, A.D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Cutler, S.; Gao, N. The impact of metal additive manufacturing on the aerospace industry. Metals 2019, 9, 1286. [Google Scholar] [CrossRef]
- Ahangar, P.; Cooke, M.E.; Weber, M.H.; Rosenzweig, D.H. Current biomedical applications of 3D printing and additive manufacturing. Appl. Sci. 2019, 9, 1713. [Google Scholar] [CrossRef]
- Calignano, F.; Galati, M.; Iuliano, L. A metal powder bed fusion process in industry: Qualification Considerations. Machines 2019, 7, 72. [Google Scholar] [CrossRef]
- Yang, L.; Ferrucci, M.; Mertens, R.; Dewulf, W.; Yan, C.; Shi, Y.; Yang, S. An investigation into the effect of gradients on the manufacturing fidelity of triply periodic minimal surface structures with graded density fabricated by selective laser melting. J. Mater. Process. Technol. 2020, 275, 116367. [Google Scholar] [CrossRef]
- Madache, C. Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Mater. Sci. Technol. 2018, 35, 1007–1015. [Google Scholar] [CrossRef]
- Grasso, M.; Colosimo, B.M. Process defects and in situ monitoring methods in metal powder bed fusion: A review. Meas. Sci. Technol. 2017, 28, 044005. [Google Scholar] [CrossRef]
- Clijsters, S.; Craeghs, T.; Buls, S.; Kempen, K.; Kruth, J.P. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014, 75, 1089–1101. [Google Scholar] [CrossRef]
- Smith, R.J.; Hirsch, M.; Patel, R.; Li, W.; Clare, A.T.; Sharples, S.D. Spatially resolved acoustic spectroscopy for selective laser melting. J. Mater. Process. Technol. 2016, 236, 93–102. [Google Scholar] [CrossRef]
- Pieris, D.; Stratoudaki, T.; Javadi, Y.; Lukacs, P.; Catchpole-Smith, S.; Wilcox, P.; Clare, A.; Clark, M. Laser Induced Phased Arrays (LIPA) to detect nested features in additively manufactured components. Mater. Des. 2020, 187, 108412. [Google Scholar] [CrossRef]
- Machado, M.; Rosado, L.S.; Santos, T. Shaping eddy currents for non-destructive testing using additive manufactured magnetic substrates. J. Nondestruct. Eval. 2022, 5, 50. [Google Scholar] [CrossRef]
- Spurek, M.; Luong, V.; Spierings, A.; Lany, M.; Santi, G.; Revaz, B.; Wegener, K. Relative density measurement of pbf-manufactured 316l and alsi10mg samples via eddy current testing. Metals 2021, 11, 1376. [Google Scholar] [CrossRef]
- Spurek, M.; Spierings, A.; Lany, M.; Revaz, B.; Santi, G.; Wicht, J.; Wegener, K. In-situ monitoring of powder bed fusion of metals using eddy current testing. Addit. Manuf. 2022, 60, 103259. [Google Scholar] [CrossRef]
- Spierings, A.; Spurek, M.; Lany, M.; Santi, G.; Revaz, B.; Wegener, K. Direct part density inspection in laser powder bed fusion using eddy current testing. Adv. Precis. Addit. Manuf. 2021. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.; Xie, F.; Zhang, H. Defect imaging curved surface based on flexible eddy current array sensor. Measurement 2020, 151, 107280. [Google Scholar] [CrossRef]
- Barrancos, A.; Pyekh, M.; Rosado, L.S. Metallic Surfaces Binary Reconstruction Using Eddy Current Sensors and Convolutional Neural Networks. IEEE Sens. J. 2024, 24, 6532–6538. [Google Scholar] [CrossRef]
- Rosado, L.S.; Ramos, P.M.; Piedade, M. Real-time processing of multifrequency eddy currents testing signals: Design, implementation, and evaluation. IEEE Trans. Instrum. Meas. 2014, 63, 1262–1271. [Google Scholar] [CrossRef]
- Rosado, L.S.; Ramos, P.M.; Piedade, M.; Vilaça, P. A reconfigurable digital signal processing system for eddy currents non-destructive testing. In Proceedings of the 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, Austin, TX, USA, 3–6 May 2010; IEEE: New York, NY, USA, 2010; pp. 1284–1289. [Google Scholar]
- Caetano, D.M.; Rasbuske, T.; Fernandes, J.; Pelkner, M.; Fermon, C.; Cardoso, S.; Ribes, B.; Franco, F.; Johannes, P.; Piedade, M.; et al. High-Resolution Nondestructive Test Probes Based on Magnetoresistive Sensors. IEEE Trans. Ind. Electron. 2019, 66, 7326–7337. [Google Scholar] [CrossRef]
- Caetano, D.M.; Piedade, M.; Fernandes, J.; Costa, T.; Graça, J.; Rosado, L.S. A CMOS ASIC for precise reading of a magnetoresistive sensor array for NDT. In Proceedings of the 11th European Conference on Non-Destructive Testing (ECNDT), Prague, Czech Republic, 6–10 October 2014. [Google Scholar]
- Ehlers, H.; Pelkner, M.; Thewes, R. Online Process Monitoring for Additive Manufacturing Using Eddy Current Testing with Magnetoresistive Sensor Arrays. IEEE Sens. J. 2022, 22, 19293–19300. [Google Scholar] [CrossRef]
- Barrancos, A.; Batalha, R.L.; Rosado, L.S. Towards Enhanced Eddy Current Testing Array Probes Scalability for Powder Bed Fusion Layer-Wise Imaging. Sensors 2023, 23, 2711. [Google Scholar] [CrossRef] [PubMed]
Dimensions | 100 mm × 100 mm |
---|---|
Sensor array width (coil span) | 40 mm |
Spatial Resolution (coil pitch) | 1 mm |
Scan resolution (at 100 mm/s recoater speed) | 0.192 mm |
Output sampling rate | 31.25 kHz |
Output resolution | 14 bits |
Excitation frequency | 1 MHz |
Supply voltage | 5 V |
Power consumption | 2.748 W |
Features | Horizontal Size [mm] | Scan Part 1 Horizontal Size [mm] | Scan Part 2 Horizontal Size [mm] | Vertical Size [mm] | Scan Part 1 Vertical Size [mm] | Scan Part 2 Vertical Size [mm] |
---|---|---|---|---|---|---|
1 | 8.96 | 7.00 | 4.00 | 2.04 | 2.08 | 3.52 |
2 | 9.27 | 7.00 | 5.00 | 2.29 | 2.40 | 3.04 |
3 | 9.52 | 8.00 | 5.00 | 2.54 | 2.72 | 2.88 |
4 | 9.72 | 8.00 | 6.00 | 2.80 | 2.88 | 2.24 |
5 | 9.86 | 8.00 | 6.00 | 3.05 | 3.04 | 2.24 |
6 | 9.95 | 8.00 | 6.00 | 3.31 | 3.36 | 2.24 |
7 | 10.00 | 8.00 | 6.00 | 3.53 | 3.36 | 2.24 |
8 | 10.00 | 9.00 | 7.00 | 3.46 | 3.20 | 2.40 |
9 | 9.94 | 8.00 | 7.00 | 3.46 | 3.36 | 2.72 |
10 | 9.84 | 8.00 | 7.00 | 3.46 | 3.36 | 2.88 |
11 | 9.68 | 8.00 | 7.00 | 3.46 | 3.52 | 3.20 |
12 | 9.48 | 8.00 | 8.00 | 3.46 | 3.52 | 3.52 |
13 | 9.22 | 8.00 | 8.00 | 3.46 | 3.52 | 3.52 |
14 | 8.89 | 8.00 | 8.00 | 3.46 | 3.52 | 3.48 |
15 | 8.50 | 7.00 | 7.00 | 3.46 | 3.52 | 3.68 |
16 | 8.03 | 7.00 | 7.00 | 3.46 | 3.36 | 4.00 |
17 | 7.47 | 7.00 | 7.00 | 3.46 | 3.36 | 3.20 |
18 | 6.79 | 6.00 | 6.00 | 3.46 | 3.20 | 3.04 |
19 | 5.95 | 5.00 | 5.00 | 2.68 | 2.88 | 2.56 |
20 | 4.88 | 4.00 | 4.00 | 1.73 | 2.56 | 2.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, P.; Batalha, R.L.; Barrancos, A.; Rosado, L.S. Online Quality Control of Powder Bed Fusion with High-Resolution Eddy Current Testing Inductive Sensor Arrays. Sensors 2024, 24, 6827. https://doi.org/10.3390/s24216827
Faria P, Batalha RL, Barrancos A, Rosado LS. Online Quality Control of Powder Bed Fusion with High-Resolution Eddy Current Testing Inductive Sensor Arrays. Sensors. 2024; 24(21):6827. https://doi.org/10.3390/s24216827
Chicago/Turabian StyleFaria, Pedro, Rodolfo L. Batalha, André Barrancos, and Luís S. Rosado. 2024. "Online Quality Control of Powder Bed Fusion with High-Resolution Eddy Current Testing Inductive Sensor Arrays" Sensors 24, no. 21: 6827. https://doi.org/10.3390/s24216827