Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = non-invasive setup

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9770 KiB  
Article
High-Speed Tomography—A New Approach to Plasma Bulk Velocity Measurement
by Roman Forster, Michal Jerzy Szulc and Jochen Schein
Appl. Sci. 2024, 14(20), 9160; https://doi.org/10.3390/app14209160 - 10 Oct 2024
Abstract
The plasma bulk velocity is one of the key parameters describing the behavior of a plasma jet and is relevant for applications such as plasma spraying or electric propulsion. Therefore, different measurement techniques to determine the velocity were developed in the past. This [...] Read more.
The plasma bulk velocity is one of the key parameters describing the behavior of a plasma jet and is relevant for applications such as plasma spraying or electric propulsion. Therefore, different measurement techniques to determine the velocity were developed in the past. This paper presents a novel, non-invasive method for spatially resolved velocity measurements. The method is based on tracking of characteristic features in tomographic reconstructions of the plasma plume. A high-speed image recording system combined with tomographic acquisition is therefore the backbone of this method. The proposed setup captures the object under study from six different directions at a frame rate up to one million frames per second, providing high spatial and temporal resolution. The tomographic reconstructions are then calculated using the ART algorithm to track features in the plasma fluctuations, from which the bulk velocity is determined. The setup was tested with a DC plasma torch operated at reduced pressures in the range of tens of millibars. For the analyzed parameters, the axial velocity reached a maximum of 1061 m/s at a distance of three centimeters from the plasma torch exit and decreased to 919 m/s further downstream at a distance of seven centimeters, which is in good accordance with previous work. Therefore, the proposed diagnostic method can serve as a non-invasive alternative to velocity measurements, providing additional information in the form of a 3D model of the plasma bulk. Full article
Show Figures

Figure 1

20 pages, 2003 KiB  
Article
A Novel Method for Online Diagnostic Analysis of Partial Discharge in Instrument Transformers and Surge Arresters from the Correlation of HFCT and IEC Methods
by Marcel Antonionni de Andrade Romano, André Melo de Morais, Marcus Vinicius Alves Nunes, Kaynan Maresch, Luiz Fernando Freitas-Gutierres, Ghendy Cardoso, Aécio de Lima Oliveira, Erick Finzi Martins, Cristian Hans Correa and Herber Cuadro Fontoura
Energies 2024, 17(19), 4921; https://doi.org/10.3390/en17194921 - 1 Oct 2024
Abstract
In this work, a new methodology is proposed for the online and non-invasive extraction of partial discharge (PD) pulses from raw measurement data obtained using a simplified setup. This method enables the creation of sub-windows with optimized size, each containing a single candidate [...] Read more.
In this work, a new methodology is proposed for the online and non-invasive extraction of partial discharge (PD) pulses from raw measurement data obtained using a simplified setup. This method enables the creation of sub-windows with optimized size, each containing a single candidate PD pulse. The proposed approach integrates mathematical morphological filtering (MMF) with kurtosis, a first-order Savitzky-Golay smoothing filter, the Otsu method for thresholding, and a specific technique to associate each sub-window with the phase angle of the applied voltage waveform, enabling the construction of phase-resolved PD (PRPD) patterns. The methodology was validated against a commercial PD detection device adhering to the IEC (International Electrotechnical Commission) standard. Experimental results demonstrated that the proposed method, utilizing an off-the-shelf 8-bit resolution data acquisition system and a low-cost high-frequency current transformer (HFCT) sensor, effectively diagnoses and characterizes PD activity in high-voltage equipment, such as surge arresters and instrument transformers, even in noisy environments. It was able to characterize PD activity using only a few cycles of the applied voltage waveform and identify low amplitude PD pulses with low signal-to-noise ratio signals. Other contribution of this work is the diagnosis and fault signature obtained from a real surge arrester (SA) with a nominal voltage of 192 kV, corroborated by destructive disassembly and internal inspection of the tested equipment. This work provides a cost-effective and accurate tool for real-time PD monitoring, which can be embedded in hardware for continuous evaluation of electrical equipment integrity. Full article
Show Figures

Figure 1

13 pages, 1835 KiB  
Article
The Effect of Opioids and Benzodiazepines on Exacerbation Rate and Overall Survival in Patients with Chronic Obstructive Pulmonary Disease on Long-Term Non-Invasive Ventilation
by Andrew Chai, Balazs Csoma, Zsofia Lazar, Andrew Bentley and Andras Bikov
J. Clin. Med. 2024, 13(18), 5624; https://doi.org/10.3390/jcm13185624 - 22 Sep 2024
Abstract
Background: There is a growing concern that opioids and benzodiazepines can depress the respiratory drive and could contribute to worsening respiratory failure and higher exacerbation frequency in COPD. However, the relationship between the exacerbation rate and medication taken is poorly understood in [...] Read more.
Background: There is a growing concern that opioids and benzodiazepines can depress the respiratory drive and could contribute to worsening respiratory failure and higher exacerbation frequency in COPD. However, the relationship between the exacerbation rate and medication taken is poorly understood in patients with chronic respiratory failure due to COPD. Methods: As part of a service evaluation project, we analysed 339 patients with COPD who were established on long-term non-invasive ventilation (LT-NIV) at our tertiary centre. We investigated the relationship between benzodiazepine and opioid prescription and clinical outcomes as well as their impact on the exacerbation rate and overall survival following setup. Results: Before LT-NIV setup, 40 patients took benzodiazepines and 99 patients took opioids. Neither benzodiazepine nor opioid use was associated with changes in daytime blood gases, overnight hypoxia or annual exacerbations before NIV setup, but patients taking opioids were more breathless as assessed by modified Medical Research Council scores (3.91 ± 0.38 vs. 3.65 ± 0.73, p < 0.01). Long-term NIV significantly reduced the number of yearly exacerbations (from 3.0/2.0–5.0/ to 2.8/0.71–4.57/, p < 0.01) in the whole cohort, but the effect was limited in those who took benzodiazepines (from 3.0/2.0–7.0/ to 3.5/1.2–5.5/) or opioids (3.0/2.0–6.0/ to 3.0/0.8–5.5/). Benzodiazepine use was associated with reduced exacerbation-free survival and overall survival (both p < 0.05). However, after adjustment with relevant covariates, the relationship with exacerbation-free survival became insignificant (p = 0.12). Opioids were not associated with adverse outcomes. Conclusions: Benzodiazepines and opiates are commonly taken in this cohort. Whilst they do not seem to contribute to impaired gas exchange pre-setup, they, especially benzodiazepines, may limit the benefits of LT-NIV. Full article
(This article belongs to the Special Issue New Insights into Respiratory Diseases Caused by Substance Abuse)
Show Figures

Figure 1

25 pages, 13044 KiB  
Article
Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring
by Alexandra Prokhorova and Marko Helbig
Sensors 2024, 24(18), 5902; https://doi.org/10.3390/s24185902 - 11 Sep 2024
Abstract
Hyperthermia induces slight temperature increase of 4–8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy [...] Read more.
Hyperthermia induces slight temperature increase of 4–8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy tissue, methods for non-invasive temperature monitoring are needed. Temperature estimation by means of microwave imaging is of great interest among the scientific community. In this paper, we present the results of experiments based on ultra-wideband (UWB) M-sequence technology. Our temperature estimation approach uses temperature dependency of tissue dielectric properties and relation of UWB images to the reflection coefficient on the boundary between tissue types. The realistic measurement setup for neck cancer hyperthermia considers three antenna arrangements. Data are processed with Delay and Sum beamforming and Truncated Singular Value Decomposition. Two types of experiments are presented in this paper. In the first experiment, relative permittivity of subsequently replaced tumor mimicking material is estimated, and in the second experiment, real temperature change in the tumor imitate is monitored. The results showed that the presented approach allows for qualitative as well as quantitative permittivity and temperature estimation. The frequency range for temperature estimation, preferable antenna configurations, and limitations of the method are indicated. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

21 pages, 558 KiB  
Review
Trackerless 3D Freehand Ultrasound Reconstruction: A Review
by Chrissy A. Adriaans, Mark Wijkhuizen, Lennard M. van Karnenbeek, Freija Geldof and Behdad Dashtbozorg
Appl. Sci. 2024, 14(17), 7991; https://doi.org/10.3390/app14177991 - 6 Sep 2024
Abstract
Two-dimensional ultrasound (2D US) is commonly used in clinical settings for its cost-effectiveness and non-invasiveness, but it is limited by spatial orientation and operator dependency. Three-dimensional ultrasound (3D US) overcomes these limitations by adding a third dimension and enhancing integration with other imaging [...] Read more.
Two-dimensional ultrasound (2D US) is commonly used in clinical settings for its cost-effectiveness and non-invasiveness, but it is limited by spatial orientation and operator dependency. Three-dimensional ultrasound (3D US) overcomes these limitations by adding a third dimension and enhancing integration with other imaging modalities. Advances in deep learning (DL) have further propelled the viability of freehand image-based 3D reconstruction, broadening clinical applications in intraoperative and point-of-care (POC) settings. This review evaluates state-of-the-art freehand 3D US reconstruction methods that eliminate the need for external tracking devices, focusing on experimental setups, data acquisition strategies, and reconstruction methodologies. PubMed, Scopus, and IEEE Xplore were searched for studies since 2014 following the PRISMA guidelines, excluding those using additional imaging or tracking systems other than inertial measurement units (IMUs). Fourteen eligible studies were analyzed, showing a shift from traditional speckle decorrelation towards DL-based methods, particularly convolutional neural networks (CNNs). Variability in datasets and evaluation methods hindered a comprehensive quantitative comparison, but notable accuracy improvements were observed with IMUs and integration of contextual and temporal information within CNNs. These advancements enhance freehand 3D US reconstruction feasibility, though variability limits definitive conclusions about the most effective methods. Future research should focus on improving precision in complex trajectories and adaptability across clinical scenarios. Full article
(This article belongs to the Special Issue Novel Applications of Artificial Intelligence in Ultrasound Imaging)
Show Figures

Figure 1

27 pages, 22928 KiB  
Article
Magnetic Sensor Array for Electric Arc Reconstruction in Circuit Breakers
by Gabriele D’Antona, Luca Ghezzi, Sara Prando and Francesco Rigamonti
Sensors 2024, 24(17), 5779; https://doi.org/10.3390/s24175779 - 5 Sep 2024
Abstract
Noninvasive imaging of circuit breakers under short-circuit testing is addressed by recording the magnetic field produced over an array of external sensors and by solving an inverse problem to identify the causing current distribution. The temporal and spatial resolution of the sensing chain [...] Read more.
Noninvasive imaging of circuit breakers under short-circuit testing is addressed by recording the magnetic field produced over an array of external sensors and by solving an inverse problem to identify the causing current distribution. The temporal and spatial resolution of the sensing chain are studied and implemented in a physical set-up. A wire model is adopted to describe electrical current distribution. Additionally, the simpler, more direct approach to evaluating the passage of electric current in front of sensors is proposed. The dynamics of suitable approximating models of the electric arc that forms across contacts is obtained and agrees with multi-physical simulations and with experimental time histories of current and voltage. The two methods are flexible and allow the analysis of different types of circuit breakers. Full article
(This article belongs to the Special Issue Electromagnetic Non-destructive Testing and Evaluation)
Show Figures

Figure 1

15 pages, 3553 KiB  
Article
Business Models Definition for Next-Generation Vision Inspection Systems
by Francesco Lupi, Antonio Maffei and Michele Lanzetta
J. Manuf. Mater. Process. 2024, 8(4), 161; https://doi.org/10.3390/jmmp8040161 - 27 Jul 2024
Viewed by 513
Abstract
Automated industrial Visual Inspection Systems (VIS) are predominantly designed for specific use cases, resulting in constrained adaptability, high setup requirements, substantial capital investments, and significant knowledge barriers. This paper explores the business potential of recent alternative architectures proposed in the literature for the [...] Read more.
Automated industrial Visual Inspection Systems (VIS) are predominantly designed for specific use cases, resulting in constrained adaptability, high setup requirements, substantial capital investments, and significant knowledge barriers. This paper explores the business potential of recent alternative architectures proposed in the literature for the visual inspection of individual products or complex assemblies within highly variable production environments, utilizing next-generation VIS. These advanced VIS exhibit significant technical (hardware and software) enhancements, such as increased flexibility, reconfigurability, Computer Aided Design (CAD)-based integration, self-X capabilities, and autonomy, as well as economic improvements, including cost-effectiveness, non-invasiveness, and plug-and-produce capabilities. The new trends in VIS have the potential to revolutionize business models by enabling as-a-service approaches and facilitating a paradigm shift towards more sustainable manufacturing and human-centric practices. We extend the discussion to examine how these technological innovations, which reduce the need for extensive coding skills and lengthy reconfiguration activities for operators, can be implemented as a shared resource within a circular lifecycle. This analysis includes detailing the underlying business model that supports shared utilization among different stakeholders, promoting a circular economy in manufacturing by leveraging the capabilities of next-generation VIS. Such an approach not only enhances the sustainability of manufacturing processes but also democratizes access to state-of-the-art inspection technologies, thereby expanding the possibilities for autonomous manufacturing ecosystems. Full article
Show Figures

Figure 1

25 pages, 8060 KiB  
Article
Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling
by Yusuf Cati, Stefan aus der Wiesche and Mesut Düzgün
Fluids 2024, 9(7), 167; https://doi.org/10.3390/fluids9070167 - 22 Jul 2024
Viewed by 562
Abstract
Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for [...] Read more.
Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for different rotational rates and perturbation parameters, i.e., the strength of the heat transfer. A novel transient temperature data extraction over the disk radius and an evaluation method are developed and applied for the first time for the air on a rotating disk. The evaluation method utilizes the lumped capacitance approach with a constant heat flux input. Nusselt number distributions from this experimental study show that there is a good agreement with the previous experimental correlations and linear stability analysis on the subject. A significant result of this approach is that by using the experimental setup and developed approach, it is possible to qualitatively show that instability in the flow starts earlier, i.e., an earlier departure from laminar behavior is observed at lower rotational Reynolds numbers with an increasing perturbation parameter, which is due to the strength of heating. Two experimental setups are modeled and simulated using a validated in-house Python code, featuring a three-dimensional thermal model of the disk. The thermal code was developed for the rotating disks and brake disks with a simplified geometry. Experimentally evaluated heat transfer coefficients are implemented and used as convective boundary conditions in the thermal code. Radial temperature distributions are compared with the experimental data, and there is good agreement between the experiment and the model. The model was used to evaluate the effect of radial conduction, which is neglected when using the lumped capacitance approach to determine heat transfer coefficients. It was observed that the radial conduction has a slight effect. The methodology and approach used in this experimental study, combined with the numerical model, can be used for further investigations on the subject. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

13 pages, 1231 KiB  
Article
Innovative Semi-Nested Realtime PCR Assay with Extendable Blocking Probe for Enhanced Analysis of SEPT9 Methylation in Colorectal Cancer
by Linh Thuy Duong, Trang Thuy Dao, Hoai Thi Bui, Ung Dinh Nguyen, Ung Tien Hoang, Duc Viet Tran, Ba Van Nguyen and Tho Huu Ho
Biomedicines 2024, 12(7), 1458; https://doi.org/10.3390/biomedicines12071458 - 1 Jul 2024
Viewed by 925
Abstract
(1) Background: The detection of methylated SEPT9 (mSEPT9) in plasma is a promising approach to non-invasive colorectal cancer (CRC) screening. Traditional approaches have limitations in sensitivity and cost-effectiveness, particularly in resource-limited settings. (2) Methods: We developed a semi-nested realtime PCR assay [...] Read more.
(1) Background: The detection of methylated SEPT9 (mSEPT9) in plasma is a promising approach to non-invasive colorectal cancer (CRC) screening. Traditional approaches have limitations in sensitivity and cost-effectiveness, particularly in resource-limited settings. (2) Methods: We developed a semi-nested realtime PCR assay utilizing extendable blocking probes (ExBP) to enhance the detection of low-level mSEPT9 based on DNA melting. This assay allows for the discrimination of mSEPT9 in the presence of high concentrations of non-methylated SEPT9 (up to 100,000 times higher). (3) Results: The assay demonstrated a sensitivity of 73.91% and specificity of 80%, showcasing its ability to detect very low levels of methylated DNA effectively. The innovative use of ExBP without costly modified probes simplifies the assay setup and reduces the overall costs, enhancing its applicability in diverse clinical settings. (4) Conclusions: This novel assay significantly improves the detection of mSEPT9, offering a potential advance in CRC screening and monitoring. Its cost-efficiency and high sensitivity make it particularly suitable for the early detection and management of CRC, especially in settings with limited resources. Future studies are encouraged to validate this assay in larger populations to establish its clinical benefits and practical utility. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 3201 KiB  
Review
Studying Chondrichthyans Using Baited Remote Underwater Video Systems: A Review
by Francesco Luigi Leonetti, Massimiliano Bottaro, Gianni Giglio and Emilio Sperone
Animals 2024, 14(13), 1875; https://doi.org/10.3390/ani14131875 - 25 Jun 2024
Cited by 1 | Viewed by 1293
Abstract
Cartilaginous fish face significant threats due to overfishing and slow reproductive rates, leading to rapid declines in their populations globally. Traditional capture-based surveys, while valuable for gathering ecological information, pose risks to the health and survival of these species. Baited Remote Underwater Video [...] Read more.
Cartilaginous fish face significant threats due to overfishing and slow reproductive rates, leading to rapid declines in their populations globally. Traditional capture-based surveys, while valuable for gathering ecological information, pose risks to the health and survival of these species. Baited Remote Underwater Video Systems (BRUVS) offer a non-invasive alternative, allowing for standardized surveys across various habitats with minimal disturbance to marine life. This study presents a comprehensive review of BRUVS applications in studying cartilaginous fish, examining 81 peer-reviewed papers spanning from 1990 to 2023. The analysis reveals a significant increase in BRUVS usage over the past three decades, particularly in Australia, South Africa, and Central America. The most common BRUVS configurations include benthic setups, mono-camera systems, and the use of fish from the Clupeidae and Scombridae families as bait. BRUVS have been instrumental in studying 195 chondrichthyan species, providing insights into up to thirteen different aspects of the life histories. Moreover, BRUVS facilitate the monitoring of endangered and data-deficient species, contributing crucial data for conservation efforts. Overall, this study underscores the value of BRUVS as a powerful tool for studying and conserving cartilaginous fish populations worldwide. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 42688 KiB  
Article
The Multi-Detectors System of the PANDORA Facility: Focus on the Full-Field Pin-Hole CCD System for X-ray Imaging and Spectroscopy
by David Mascali, Eugenia Naselli, Sandor Biri, Giorgio Finocchiaro, Alessio Galatà, Giorgio Sebastiano Mauro, Maria Mazzaglia, Bharat Mishra, Santi Passarello, Angelo Pidatella, Richard Rácz, Domenico Santonocito and Giuseppe Torrisi
Condens. Matter 2024, 9(2), 28; https://doi.org/10.3390/condmat9020028 - 20 Jun 2024
Viewed by 701
Abstract
PANDORA (Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry) is an INFN project aiming at measuring, for the first time, possible variations in in-plasma β-decay lifetimes in isotopes of astrophysical interest as a function of thermodynamical conditions of the in-laboratory [...] Read more.
PANDORA (Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry) is an INFN project aiming at measuring, for the first time, possible variations in in-plasma β-decay lifetimes in isotopes of astrophysical interest as a function of thermodynamical conditions of the in-laboratory controlled plasma environment. Theoretical predictions indicate that the ionization state can dramatically modify the β-decay lifetime (even of several orders of magnitude). The PANDORA experimental approach consists of confining a plasma able to mimic specific stellar-like conditions and measuring the nuclear decay lifetime as a function of plasma parameters. The β-decay events will be measured by detecting the γ-ray emitted by the daughter nuclei, using an array of 12 HPGe detectors placed around the magnetic trap. In this frame, plasma parameters have to be continuously monitored online. For this purpose, an innovative, non-invasive multi-diagnostic system, including high-resolution time- and space-resolved X-ray analysis, was developed, which will work synergically with the γ-rays detection system. In this contribution, we will describe this multi-diagnostics system with a focus on spatially resolved high-resolution X-ray spectroscopy. The latter is performed by a pin-hole X-ray camera setup operating in the 0.5–20 keV energy domain. The achieved spatial and energy resolutions are 450 µm and 230 eV at 8.1 keV, respectively. An analysis algorithm was specifically developed to obtain SPhC (Single Photon-Counted) images and local plasma emission spectrum in High-Dynamic-Range (HDR) mode. Thus, investigations of image regions where the emissivity can change by even orders of magnitude are now possible. Post-processing analysis is also able to remove readout noise, which is often observable and dominant at very low exposure times (ms). Several measurements have already been used in compact magnetic plasma traps, e.g., the ATOMKI ECRIS in Debrecen and the Flexible Plasma Trap at LNS. The main outcomes will be shortly presented. The collected data allowed for a quantitative and absolute evaluation of local emissivity, the elemental analysis, and the local evaluation of plasma density and temperature. This paper also discusses the new plasma emission models, implemented on PIC-ParticleInCell codes, which were developed to obtain powerful 3D maps of the X-rays emitted by the magnetically confined plasma. These data also support the evaluation procedure of spatially resolved plasma parameters from the experimental spectra as well as, in the near future, the development of appropriate algorithms for the tomographic reconstruction of plasma parameters in the X-ray domain. The described setups also include the most recent upgrade, consisting of the use of fast X-ray shutters with special triggering systems that will be routinely implemented to perform both space- and time-resolved spectroscopy during transient, stable, and turbulent plasma regimes (in the ms timescale). Full article
(This article belongs to the Special Issue High Precision X-ray Measurements 2023)
Show Figures

Figure 1

22 pages, 11519 KiB  
Article
Modern Muralists in the Spotlight: Technical and Material Characteristics of the 1946–1949 Mural Paintings by Almada Negreiros in Lisbon (Part1)
by Milene Gil, Inês Cardoso, Mafalda Costa and José C. Frade
Heritage 2024, 7(6), 3310-3331; https://doi.org/10.3390/heritage7060156 - 14 Jun 2024
Viewed by 3227
Abstract
This paper presents the first insight into how Almada Negreiros, a key artist of the first generation of modernism in Portugal, created his mural painting masterpiece in the maritime station of Rocha do Conde de Óbidos in Lisbon. This set of six monumental [...] Read more.
This paper presents the first insight into how Almada Negreiros, a key artist of the first generation of modernism in Portugal, created his mural painting masterpiece in the maritime station of Rocha do Conde de Óbidos in Lisbon. This set of six monumental mural paintings dates from 1946 to 1949 and is considered Almada’s artistic epitome. As part of the ALMADA project: Unveiling the mural painting art of Almada Negreiros, the murals are being analyzed from a technical and material perspective to understand his modus operandi and the material used. This is the first study of this nature carried out on site and in the laboratory using standard and more advanced imaging, non-invasive analysis, and microanalysis techniques. This article reports the results obtained with visual examination, technical photography in visible (Vis), visible raking (Vis-Rak), complemented by 2D and 3D optical microscopy (OM), scanning electron microscopy with energy-dispersive spectrometry (SEM-EDS), and Fourier transform infrared micro-spectroscopy (µ-FTIR) of the paint layers. The results show the similarities, differences, and technical difficulties that the painter may have had when working on the first, third, and presumably last mural to be painted. Vis-Rak light images were particularly useful in providing a clear idea of how the work progressed from top to bottom through large sections of plaster made with lime mortars. It also revealed an innovative pounced technique used by Almada Negreiros to transfer the drawings in full scale to the walls. Other technical characteristics highlighted by the analytical setup are the use of textured, opaque, and transparent paint layers. The structure of the paintings does not follow a rigid build-up from light to dark, showing that the artist freely adapted according to the motif represented. As far as the colour palette is concerned, Almada masterfully uses primary and complementary colours made with Fe-based pigments and with synthetic ultramarine blue, cadmium pigments, and emerald green. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

13 pages, 14834 KiB  
Technical Note
The Method of 3D C-arm Navigated AC Joint Stabilization-Surgical Technique
by Alexander Böhringer, Carlos Pankratz, Alexander Eickhoff, Florian Gebhard and Konrad Schütze
Surg. Tech. Dev. 2024, 13(2), 214-226; https://doi.org/10.3390/std13020014 - 8 Jun 2024
Viewed by 737
Abstract
Background: The arthroscopically assisted stabilization of AC joint dislocations with a suture button system is an established procedure that is widely and successfully used in everyday practice. The main advantages of this one-step method are the minimally invasive procedure and the anatomical reconstruction [...] Read more.
Background: The arthroscopically assisted stabilization of AC joint dislocations with a suture button system is an established procedure that is widely and successfully used in everyday practice. The main advantages of this one-step method are the minimally invasive procedure and the anatomical reconstruction of the ruptured coracoclavicular ligaments with a permanent implant. With this technical note study, for the first time, the new method of navigated suture button implantation in everyday clinical practice is described with the future goal of further reducing invasiveness and increasing precision. Materials and Methods: The surgical technique is explained using precise descriptions and illustrations, photos, X-rays, and 3D reconstructions based on clinical cases. The step-by-step system setup and patient positioning, AC joint reduction and retention, 3D scan and drill tunnel planning, stab incision and Kirschner wire navigation, and cannulated drilling and implant positioning, as well as closure and documentation are described in detail. Results: The standard coracoclavicular stabilization of AC joint dislocations with the 3D C-arm navigated suture button method is described in detail. Furthermore, the feasibility of an additive horizontal acromioclavicular suture cerclage, the implantation of an additional coracoclavicular suture button system, and the single-stage cannulated screw fixation of non-displaced fractures is demonstrated. Conclusion: The navigated suture button method aims to be simple, safe, minimally invasive, and precise. Prospective clinical studies with a long follow-up should be carried out to determine the clinical and radiological outcome in comparison with current methods. Full article
Show Figures

Figure 1

16 pages, 2461 KiB  
Article
Characterization of the SPIRITAS: A Disposable Sampling Setup for Volatile Organic Compound Collection and Analysis
by David J. Mager, Yoni E. van Dijk, Özgü Varan, Susanne J. H. Vijverberg, Suzanne W. J. Terheggen-Lagro, Anke-Hilse Maitland-van der Zee, Hettie M. Janssens and Paul Brinkman
Separations 2024, 11(5), 150; https://doi.org/10.3390/separations11050150 - 14 May 2024
Cited by 1 | Viewed by 859
Abstract
Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological [...] Read more.
Analyzing exhaled breath for volatile organic compounds (VOCs) using thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) offers a non-invasive diagnostic approach for various diseases. Despite its promise, the method faces challenges like sampling heterogeneity and high costs. Following the European Respiratory Society’s advocacy for methodological standardization, we developed the SPIRITAS (Standardized Product for Inexpensive Respiratory InvesTigation: A breath Sampler), a low-cost, disposable breath sampler. This study evaluates the SPIRITAS’s effectiveness in detecting targeted VOCs. We tested the SPIRITAS using the Peppermint Experiment, a standardized protocol that allows for comparison between different breath sampling and analytical practices by assessing the ability to detect five peppermint-specific VOCs after ingestion of a 200-milligram peppermint oil capsule. We included ten subjects and performed six breath samples per participant, including a baseline measurement taken before ingestion. We used the Wilcoxon signed-rank test to evaluate whether baseline values were significantly lower than the peak values of the targeted VOCs. Additionally, we conducted an experiment utilizing humidified medical-grade air to identify any VOCs attributable to the SPIRITAS setup itself. Results showed successful detection of four out of five targeted “peppermint-associated” VOCs: alpha-pinene (p ≤ 0.01), beta-pinene (p ≤ 0.01), menthone (p = 0.01), and menthol (p = 0.02), indicating significant differences between the baseline and peak values in the volunteers’ breath. However, detection of eucalyptol was inconsistent. In addition, we identified 16 VOCs that were released by the SPIRITAS, one of which remains unidentified. Our findings underscore the SPIRITAS’s potential for clinical applications, paving the way for broader biomarker research. The combination of ease of use, low cost, reduced risk of contamination, and standardization makes SPIRITAS very suitable for large-scale international studies. Furthermore, we have demonstrated the SPIRITAS’s effectiveness in detecting specific VOCs and identified 16 compounds originating from the SPIRITAS, ensuring that these compounds would not be mis-qualified as potential biomarkers in future clinical studies. Full article
(This article belongs to the Section Chromatographic Separations)
Show Figures

Figure 1

13 pages, 1734 KiB  
Article
Hardware and Software Setup for Quantitative 23Na Magnetic Resonance Imaging at 3T: A Phantom Study
by Giulio Giovannetti, Alessandra Flori, Nicola Martini, Filippo Cademartiri, Giovanni Donato Aquaro, Alessandro Pingitore and Francesca Frijia
Sensors 2024, 24(9), 2716; https://doi.org/10.3390/s24092716 - 24 Apr 2024
Cited by 1 | Viewed by 703
Abstract
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal [...] Read more.
Magnetic resonance (MR) with sodium (23Na) is a noninvasive tool providing quantitative biochemical information regarding physiology, cellular metabolism, and viability, with the potential to extend MR beyond anatomical proton imaging. However, when using clinical scanners, the low detectable 23Na signal and the low 23Na gyromagnetic ratio require the design of dedicated radiofrequency (RF) coils tuned to the 23Na Larmor frequency and sequences, as well as the development of dedicated phantoms for testing the image quality, and an MR scanner with multinuclear spectroscopy (MNS) capabilities. In this work, we propose a hardware and software setup for evaluating the potential of 23Na magnetic resonance imaging (MRI) with a clinical scanner. In particular, the reliability of the proposed setup and the reproducibility of the measurements were verified by multiple acquisitions from a 3T MR scanner using a homebuilt RF volume coil and a dedicated sequence for the imaging of a phantom specifically designed for evaluating the accuracy of the technique. The final goal of this study is to propose a setup for standardizing clinical and research 23Na MRI protocols. Full article
Show Figures

Figure 1

Back to TopTop