Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = optimized KMNF (OP-KMNF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6503 KiB  
Article
A Novel Method Based on GPU for Real-Time Anomaly Detection in Airborne Push-Broom Hyperspectral Sensors
by Tianru Xue, Chongru Wang, Hui Xie and Yueming Wang
Remote Sens. 2023, 15(18), 4449; https://doi.org/10.3390/rs15184449 - 10 Sep 2023
Viewed by 1545
Abstract
The airborne hyperspectral remote sensing systems (AHRSSs) acquire images with high spectral resolution, high spatial resolution, and high temporal dimension. While the AHRSS captures more detailed information from the terrain objects, the computational complexity of data processing is greatly increased. As an important [...] Read more.
The airborne hyperspectral remote sensing systems (AHRSSs) acquire images with high spectral resolution, high spatial resolution, and high temporal dimension. While the AHRSS captures more detailed information from the terrain objects, the computational complexity of data processing is greatly increased. As an important application technology in the hyperspectral domain, anomaly detection (AD) processing must be real-time and high-precision in many cases, such as post-disaster rescue, military battlefield search, and natural disaster detection. In this paper, the real-time AD technology for the push-broom AHRSS is studied, the mathematical model is established, and a novel implementation framework is proposed. Firstly, the optimized kernel minimum noise fraction (OP-KMNF) transformation is employed to extract informative and discriminative features between the background and anomalies. Secondly, the Nyström method is introduced to reduce the computational complexity of OP-KMNF transformation by decomposing and extrapolating the sub-kernel matrix to estimate the eigenvector of the entire kernel matrix. Thirdly, the extracted features are transferred to hard disks for data storage. Then, taking the extracted features as input data, the background separation model-based CEM anomaly detector (BSM-CEMAD) is imported to detect anomalies. Finally, graphics processing unit (GPU) parallel computing is utilized in the Nyström-based OP-KMNF (NOP-KMNF) transformation and the BSM-CEMAD to improve the execution efficiency, and the real-time AD for the push-broom AHRSS could be realized. To test the feasibility of the implementation framework proposed in this paper, the experiment is carried out with the Airborne Multi-Modular Imaging Spectrometer (AMMIS) developed by the Shanghai Institute of Technical Physics as the data acquisition platform. The experimental results show that the proposed method outperforms many other state-of-the-art AD methods in anomalies detection and background suppression. Moreover, under the condition that the downlink data could retain most of the hyperspectral data information, the proposed method achieves real-time detection of pixel-level anomalies, with the initial delay not exceeding 1 s, the false alarm rate (FAR) less than 5%, and the true positive rate (TPR) close to 98%. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing Imaging and Processing)
Show Figures

Figure 1

24 pages, 10884 KiB  
Article
Mixed Noise Estimation Model for Optimized Kernel Minimum Noise Fraction Transformation in Hyperspectral Image Dimensionality Reduction
by Tianru Xue, Yueming Wang, Yuwei Chen, Jianxin Jia, Maoxing Wen, Ran Guo, Tianxiao Wu and Xuan Deng
Remote Sens. 2021, 13(13), 2607; https://doi.org/10.3390/rs13132607 - 2 Jul 2021
Cited by 16 | Viewed by 2820
Abstract
Dimensionality reduction (DR) is of great significance for simplifying and optimizing hyperspectral image (HSI) features. As a widely used DR method, kernel minimum noise fraction (KMNF) transformation preserves the high-order structures of the original data perfectly. However, the conventional KMNF noise estimation (KMNF-NE) [...] Read more.
Dimensionality reduction (DR) is of great significance for simplifying and optimizing hyperspectral image (HSI) features. As a widely used DR method, kernel minimum noise fraction (KMNF) transformation preserves the high-order structures of the original data perfectly. However, the conventional KMNF noise estimation (KMNF-NE) uses the local regression residual of neighbourhood pixels, which depends heavily on spatial information. Due to the limited spatial resolution, there are many mixed pixels in HSI, making KMNF-NE unreliable for noise estimation and leading to poor performance in KMNF for classification on HSIs with low spatial resolution. In order to overcome this problem, a mixed noise estimation model (MNEM) is proposed in this paper for optimized KMNF (OP-KMNF). The MNEM adopts the sequential and linear combination of the Gaussian prior denoising model, median filter, and Sobel operator to estimate noise. It retains more details and edge features, making it more suitable for noise estimation in KMNF. Experiments using several HSI datasets with different spatial and spectral resolutions are conducted. The results show that, compared with some other DR methods, the improvement of OP-KMNF in average classification accuracy is up to 4%. To improve the efficiency, the OP-KMNF was implemented on graphics processing units (GPU) and sped up by about 60× compared to the central processing unit (CPU) implementation. The outcome demonstrates the significant performance of OP-KMNF in terms of classification ability and execution efficiency. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop