Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = panchromatic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 44218 KiB  
Article
Testing the Impact of Pansharpening Using PRISMA Hyperspectral Data: A Case Study Classifying Urban Trees in Naples, Italy
by Miriam Perretta, Gabriele Delogu, Cassandra Funsten, Alessio Patriarca, Eros Caputi and Lorenzo Boccia
Remote Sens. 2024, 16(19), 3730; https://doi.org/10.3390/rs16193730 - 8 Oct 2024
Viewed by 531
Abstract
Urban trees support vital ecological functions and help with the mitigation of and adaption to climate change. Yet, their monitoring and management require significant public resources. remote sensing could facilitate these tasks. Recent hyperspectral satellite programs such as PRISMA have enabled more advanced [...] Read more.
Urban trees support vital ecological functions and help with the mitigation of and adaption to climate change. Yet, their monitoring and management require significant public resources. remote sensing could facilitate these tasks. Recent hyperspectral satellite programs such as PRISMA have enabled more advanced remote sensing applications, such as species classification. However, PRISMA data’s spatial resolution (30 m) could limit its utility in urban areas. Improving hyperspectral data resolution with pansharpening using the PRISMA coregistered panchromatic band (spatial resolution of 5 m) could solve this problem. This study addresses the need to improve hyperspectral data resolution and tests the pansharpening method by classifying exemplative urban tree species in Naples (Italy) using a convolutional neural network and a ground truths dataset, with the aim of comparing results from the original 30 m data to data refined to a 5 m resolution. An evaluation of accuracy metrics shows that pansharpening improves classification quality in dense urban areas with complex topography. In fact, pansharpened data led to significantly higher accuracy for all the examined species. Specifically, the Pinus pinea and Tilia x europaea classes showed an increase of 10% to 20% in their F1 scores. Pansharpening is seen as a practical solution to enhance PRISMA data usability in urban environments. Full article
Show Figures

Graphical abstract

21 pages, 57724 KiB  
Article
MDSCNN: Remote Sensing Image Spatial–Spectral Fusion Method via Multi-Scale Dual-Stream Convolutional Neural Network
by Wenqing Wang, Fei Jia, Yifei Yang, Kunpeng Mu and Han Liu
Remote Sens. 2024, 16(19), 3583; https://doi.org/10.3390/rs16193583 - 26 Sep 2024
Viewed by 499
Abstract
Pansharpening refers to enhancing the spatial resolution of multispectral images through panchromatic images while preserving their spectral features. However, existing traditional methods or deep learning methods always have certain distortions in the spatial or spectral dimensions. This paper proposes a remote sensing spatial–spectral [...] Read more.
Pansharpening refers to enhancing the spatial resolution of multispectral images through panchromatic images while preserving their spectral features. However, existing traditional methods or deep learning methods always have certain distortions in the spatial or spectral dimensions. This paper proposes a remote sensing spatial–spectral fusion method based on a multi-scale dual-stream convolutional neural network, which includes feature extraction, feature fusion, and image reconstruction modules for each scale. In terms of feature fusion, we propose a multi cascade module to better fuse image features. We also design a new loss function aim at enhancing the high degree of consistency between fused images and reference images in terms of spatial details and spectral information. To validate its effectiveness, we conduct thorough experimental analyses on two widely used remote sensing datasets: GeoEye-1 and Ikonos. Compared with the nine leading pansharpening techniques, the proposed method demonstrates superior performance in multiple key evaluation metrics. Full article
Show Figures

Figure 1

20 pages, 8709 KiB  
Article
Automatic Fine Co-Registration of Datasets from Extremely High Resolution Satellite Multispectral Scanners by Means of Injection of Residues of Multivariate Regression
by Luciano Alparone, Alberto Arienzo and Andrea Garzelli
Remote Sens. 2024, 16(19), 3576; https://doi.org/10.3390/rs16193576 - 25 Sep 2024
Viewed by 425
Abstract
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other [...] Read more.
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other for WorldView-2/3 featuring three instruments, two of which are visible and near-infra-red (VNIR) MS scanners. The misalignment arises because the two/three instruments onboard GeoEye-1 / WorldView-2 (four onboard WorldView-3) share the same optics and, thus, cannot have parallel optical axes. Consequently, they image the same swath area from different positions along the orbit. Local height changes (hills, buildings, trees, etc.) originate local shifts among corresponding points in the datasets. The latter would be accurately aligned only if the digital elevation surface model were known with sufficient spatial resolution, which is hardly feasible everywhere because of the extremely high resolution, with Pan pixels of less than 0.5 m. The refined co-registration is achieved by injecting the residue of the multivariate linear regression of each scanner towards lowpass-filtered Pan. Experiments with two and three instruments show that an almost perfect alignment is achieved. MS pansharpening is also shown to greatly benefit from the improved alignment. The proposed alignment procedures are real-time, fully automated, and do not require any additional or ancillary information, but rely uniquely on the unimodality of the MS and Pan sensors. Full article
Show Figures

Figure 1

16 pages, 7653 KiB  
Article
People Detection Using Artificial Intelligence with Panchromatic Satellite Images
by Peter Golej, Pavel Kukuliač, Jiří Horák, Lucie Orlíková and Pavol Partila
Appl. Sci. 2024, 14(18), 8555; https://doi.org/10.3390/app14188555 - 23 Sep 2024
Viewed by 452
Abstract
The detection of people in urban environments from satellite imagery can be employed in a variety of applications, such as urban planning, business management, crisis management, military operations, and security. A WorldView-3 satellite image of Prague was processed. Several variants of feature-extracting networks, [...] Read more.
The detection of people in urban environments from satellite imagery can be employed in a variety of applications, such as urban planning, business management, crisis management, military operations, and security. A WorldView-3 satellite image of Prague was processed. Several variants of feature-extracting networks, referred to as backbone networks, were tested alongside the Faster R–CNN model. This model combines region proposal networks with object detection, offering a balance between speed and accuracy that is well suited for dense and varied urban environments. Data augmentation was used to increase the robustness of the models, which contributed to the improvement of classification results. Achieving a high level of accuracy is an ongoing challenge due to the low spatial resolution of available imagery. An F1 score of 54% was achieved using data augmentation, a 15 cm buffer, and a maximum distance limit of 60 cm. Full article
Show Figures

Figure 1

23 pages, 30982 KiB  
Article
A Multi-Stage Progressive Pansharpening Network Based on Detail Injection with Redundancy Reduction
by Xincan Wen, Hongbing Ma and Liangliang Li
Sensors 2024, 24(18), 6039; https://doi.org/10.3390/s24186039 - 18 Sep 2024
Viewed by 407
Abstract
In the field of remote sensing image processing, pansharpening technology stands as a critical advancement. This technology aims to enhance multispectral images that possess low resolution by integrating them with high-spatial-resolution panchromatic images, ultimately producing multispectral images with high resolution that are abundant [...] Read more.
In the field of remote sensing image processing, pansharpening technology stands as a critical advancement. This technology aims to enhance multispectral images that possess low resolution by integrating them with high-spatial-resolution panchromatic images, ultimately producing multispectral images with high resolution that are abundant in both spatial and spectral details. Thus, there remains potential for improving the quality of both the spectral and spatial domains of the fused images based on deep-learning-based pansharpening methods. This work proposes a new method for the task of pansharpening: the Multi-Stage Progressive Pansharpening Network with Detail Injection with Redundancy Reduction Mechanism (MSPPN-DIRRM). This network is divided into three levels, each of which is optimized for the extraction of spectral and spatial data at different scales. Particular spectral feature and spatial detail extraction modules are used at each stage. Moreover, a new image reconstruction module named the DRRM is introduced in this work; it eliminates both spatial and channel redundancy and improves the fusion quality. The effectiveness of the proposed model is further supported by experimental results using both simulated data and real data from the QuickBird, GaoFen1, and WorldView2 satellites; these results show that the proposed model outperforms deep-learning-based methods in both visual and quantitative assessments. Among various evaluation metrics, performance improves by 0.92–18.7% compared to the latest methods. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 2642 KiB  
Article
An Unsupervised CNN-Based Pansharpening Framework with Spectral-Spatial Fidelity Balance
by Matteo Ciotola, Giuseppe Guarino and Giuseppe Scarpa
Remote Sens. 2024, 16(16), 3014; https://doi.org/10.3390/rs16163014 - 16 Aug 2024
Viewed by 597
Abstract
In recent years, deep learning techniques for pansharpening multiresolution images have gained increasing interest. Due to the lack of ground truth data, most deep learning solutions rely on synthetic reduced-resolution data for supervised training. This approach has limitations due to the statistical mismatch [...] Read more.
In recent years, deep learning techniques for pansharpening multiresolution images have gained increasing interest. Due to the lack of ground truth data, most deep learning solutions rely on synthetic reduced-resolution data for supervised training. This approach has limitations due to the statistical mismatch between real full-resolution and synthetic reduced-resolution data, which affects the models’ generalization capacity. Consequently, there has been a shift towards unsupervised learning frameworks for pansharpening deep learning-based techniques. Unsupervised schemes require defining sophisticated loss functions with at least two components: one for spectral quality, ensuring consistency between the pansharpened image and the input multispectral component, and another for spatial quality, ensuring consistency between the output and the panchromatic input. Despite promising results, there has been limited investigation into the interaction and balance of these loss terms to ensure stability and accuracy. This work explores how unsupervised spatial and spectral consistency losses can be reliably combined preserving the outocome quality. By examining these interactions, we propose a general rule for balancing the two loss components to enhance the stability and performance of unsupervised pansharpening models. Experiments on three state-of-the-art algorithms using WorldView-3 images demonstrate that methods trained with the proposed framework achieve good performance in terms of visual quality and numerical indexes. Full article
(This article belongs to the Special Issue Weakly Supervised Deep Learning in Exploiting Remote Sensing Big Data)
Show Figures

Figure 1

26 pages, 6739 KiB  
Article
Pansharpening Based on Multimodal Texture Correction and Adaptive Edge Detail Fusion
by Danfeng Liu, Enyuan Wang, Liguo Wang, Jón Atli Benediktsson, Jianyu Wang and Lei Deng
Remote Sens. 2024, 16(16), 2941; https://doi.org/10.3390/rs16162941 - 11 Aug 2024
Viewed by 688
Abstract
Pansharpening refers to the process of fusing multispectral (MS) images with panchromatic (PAN) images to obtain high-resolution multispectral (HRMS) images. However, due to the low correlation and similarity between MS and PAN images, as well as inaccuracies in spatial information injection, HRMS images [...] Read more.
Pansharpening refers to the process of fusing multispectral (MS) images with panchromatic (PAN) images to obtain high-resolution multispectral (HRMS) images. However, due to the low correlation and similarity between MS and PAN images, as well as inaccuracies in spatial information injection, HRMS images often suffer from significant spectral and spatial distortions. To address these issues, a pansharpening method based on multimodal texture correction and adaptive edge detail fusion is proposed in this paper. To obtain a texture-corrected (TC) image that is highly correlated and similar to the MS image, the target-adaptive CNN-based pansharpening (A-PNN) method is introduced. By constructing a multimodal texture correction model, intensity, gradient, and A-PNN-based deep plug-and-play correction constraints are established between the TC and source images. Additionally, an adaptive degradation filter algorithm is proposed to ensure the accuracy of these constraints. Since the TC image obtained can effectively replace the PAN image and considering that the MS image contains valuable spatial information, an adaptive edge detail fusion algorithm is also proposed. This algorithm adaptively extracts detailed information from the TC and MS images to apply edge protection. Given the limited spatial information in the MS image, its spatial information is proportionally enhanced before the adaptive fusion. The fused spatial information is then injected into the upsampled multispectral (UPMS) image to produce the final HRMS image. Extensive experimental results demonstrated that compared with other methods, the proposed algorithm achieved superior results in terms of both subjective visual effects and objective evaluation metrics. Full article
Show Figures

Figure 1

24 pages, 5084 KiB  
Article
Comparative Analysis of TLS and UAV Sensors for Estimation of Grapevine Geometric Parameters
by Leilson Ferreira, Joaquim J. Sousa, José. M. Lourenço, Emanuel Peres, Raul Morais and Luís Pádua
Sensors 2024, 24(16), 5183; https://doi.org/10.3390/s24165183 - 11 Aug 2024
Viewed by 989
Abstract
Understanding geometric and biophysical characteristics is essential for determining grapevine vigor and improving input management and automation in viticulture. This study compares point cloud data obtained from a Terrestrial Laser Scanner (TLS) and various UAV sensors including multispectral, panchromatic, Thermal Infrared (TIR), RGB, [...] Read more.
Understanding geometric and biophysical characteristics is essential for determining grapevine vigor and improving input management and automation in viticulture. This study compares point cloud data obtained from a Terrestrial Laser Scanner (TLS) and various UAV sensors including multispectral, panchromatic, Thermal Infrared (TIR), RGB, and LiDAR data, to estimate geometric parameters of grapevines. Descriptive statistics, linear correlations, significance using the F-test of overall significance, and box plots were used for analysis. The results indicate that 3D point clouds from these sensors can accurately estimate maximum grapevine height, projected area, and volume, though with varying degrees of accuracy. The TLS data showed the highest correlation with grapevine height (r = 0.95, p < 0.001; R2 = 0.90; RMSE = 0.027 m), while point cloud data from panchromatic, RGB, and multispectral sensors also performed well, closely matching TLS and measured values (r > 0.83, p < 0.001; R2 > 0.70; RMSE < 0.084 m). In contrast, TIR point cloud data performed poorly in estimating grapevine height (r = 0.76, p < 0.001; R2 = 0.58; RMSE = 0.147 m) and projected area (r = 0.82, p < 0.001; R2 = 0.66; RMSE = 0.165 m). The greater variability observed in projected area and volume from UAV sensors is related to the low point density associated with spatial resolution. These findings are valuable for both researchers and winegrowers, as they support the optimization of TLS and UAV sensors for precision viticulture, providing a basis for further research and helping farmers select appropriate technologies for crop monitoring. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

22 pages, 7835 KiB  
Article
Towards Robust Pansharpening: A Large-Scale High-Resolution Multi-Scene Dataset and Novel Approach
by Shiying Wang, Xuechao Zou, Kai Li, Junliang Xing, Tengfei Cao and Pin Tao
Remote Sens. 2024, 16(16), 2899; https://doi.org/10.3390/rs16162899 - 8 Aug 2024
Cited by 1 | Viewed by 1016
Abstract
Pansharpening, a pivotal task in remote sensing, involves integrating low-resolution multispectral images with high-resolution panchromatic images to synthesize an image that is both high-resolution and retains multispectral information. These pansharpened images enhance precision in land cover classification, change detection, and environmental monitoring within [...] Read more.
Pansharpening, a pivotal task in remote sensing, involves integrating low-resolution multispectral images with high-resolution panchromatic images to synthesize an image that is both high-resolution and retains multispectral information. These pansharpened images enhance precision in land cover classification, change detection, and environmental monitoring within remote sensing data analysis. While deep learning techniques have shown significant success in pansharpening, existing methods often face limitations in their evaluation, focusing on restricted satellite data sources, single scene types, and low-resolution images. This paper addresses this gap by introducing PanBench, a high-resolution multi-scene dataset containing all mainstream satellites and comprising 5898 pairs of samples. Each pair includes a four-channel (RGB + near-infrared) multispectral image of 256 × 256 pixels and a mono-channel panchromatic image of 1024 × 1024 pixels. To avoid irreversible loss of spectral information and achieve a high-fidelity synthesis, we propose a Cascaded Multiscale Fusion Network (CMFNet) for pansharpening. Multispectral images are progressively upsampled while panchromatic images are downsampled. Corresponding multispectral features and panchromatic features at the same scale are then fused in a cascaded manner to obtain more robust features. Extensive experiments validate the effectiveness of CMFNet. Full article
Show Figures

Figure 1

16 pages, 4099 KiB  
Article
Multi-Frequency Spectral–Spatial Interactive Enhancement Fusion Network for Pan-Sharpening
by Yunxuan Tang, Huaguang Li, Guangxu Xie, Peng Liu and Tong Li
Electronics 2024, 13(14), 2802; https://doi.org/10.3390/electronics13142802 - 16 Jul 2024
Viewed by 534
Abstract
The objective of pan-sharpening is to effectively fuse high-resolution panchromatic (PAN) images with limited spectral information and low-resolution multispectral (LR-MS) images, thereby generating a fused image with a high spatial resolution and rich spectral information. However, current fusion techniques face significant challenges, including [...] Read more.
The objective of pan-sharpening is to effectively fuse high-resolution panchromatic (PAN) images with limited spectral information and low-resolution multispectral (LR-MS) images, thereby generating a fused image with a high spatial resolution and rich spectral information. However, current fusion techniques face significant challenges, including insufficient edge detail, spectral distortion, increased noise, and limited robustness. To address these challenges, we propose a multi-frequency spectral–spatial interaction enhancement network (MFSINet) that comprises the spectral–spatial interactive fusion (SSIF) and multi-frequency feature enhancement (MFFE) subnetworks. The SSIF enhances both spatial and spectral fusion features by optimizing the characteristics of each spectral band through band-aware processing. The MFFE employs a variant of wavelet transform to perform multiresolution analyses on remote sensing scenes, enhancing the spatial resolution, spectral fidelity, and the texture and structural features of the fused images by optimizing directional and spatial properties. Moreover, qualitative analysis and quantitative comparative experiments using the IKONOS and WorldView-2 datasets indicate that this method significantly improves the fidelity and accuracy of the fused images. Full article
(This article belongs to the Topic Computational Intelligence in Remote Sensing: 2nd Edition)
Show Figures

Figure 1

27 pages, 10814 KiB  
Article
UPGAN: An Unsupervised Generative Adversarial Network Based on U-Shaped Structure for Pansharpening
by Xin Jin, Yuting Feng, Qian Jiang, Shengfa Miao, Xing Chu, Huangqimei Zheng and Qianqian Wang
ISPRS Int. J. Geo-Inf. 2024, 13(7), 222; https://doi.org/10.3390/ijgi13070222 - 26 Jun 2024
Viewed by 1135
Abstract
Pansharpening is the fusion of panchromatic images and multispectral images to obtain images with high spatial resolution and high spectral resolution, which have a wide range of applications. At present, methods based on deep learning can fit the nonlinear features of images and [...] Read more.
Pansharpening is the fusion of panchromatic images and multispectral images to obtain images with high spatial resolution and high spectral resolution, which have a wide range of applications. At present, methods based on deep learning can fit the nonlinear features of images and achieve excellent image quality; however, the images generated with supervised learning approaches lack real-world applicability. Therefore, in this study, we propose an unsupervised pansharpening method based on a generative adversarial network. Considering the fine tubular structures in remote sensing images, a dense connection attention module is designed based on dynamic snake convolution to recover the details of spatial information. In the stage of image fusion, the fusion of features in groups is applied through the cross-scale attention fusion module. Moreover, skip layers are implemented at different scales to integrate significant information, thus improving the objective index values and visual appearance. The loss function contains four constraints, allowing the model to be effectively trained without reference images. The experimental results demonstrate that the proposed method outperforms other widely accepted state-of-the-art methods on the QuickBird and WorldView2 data sets. Full article
(This article belongs to the Special Issue Advances in AI-Driven Geospatial Analysis and Data Generation)
Show Figures

Figure 1

20 pages, 21097 KiB  
Article
DPDU-Net: Double Prior Deep Unrolling Network for Pansharpening
by Yingxia Chen, Yuqi Li, Tingting Wang, Yan Chen and Faming Fang
Remote Sens. 2024, 16(12), 2141; https://doi.org/10.3390/rs16122141 - 13 Jun 2024
Viewed by 574
Abstract
The objective of the pansharpening task is to integrate multispectral (MS) images with low spatial resolution (LR) and to integrate panchromatic (PAN) images with high spatial resolution (HR) to generate HRMS images. Recently, deep learning-based pansharpening methods have been widely studied. However, traditional [...] Read more.
The objective of the pansharpening task is to integrate multispectral (MS) images with low spatial resolution (LR) and to integrate panchromatic (PAN) images with high spatial resolution (HR) to generate HRMS images. Recently, deep learning-based pansharpening methods have been widely studied. However, traditional deep learning methods lack transparency while deep unrolling methods have limited performance when using one implicit prior for HRMS images. To address this issue, we incorporate one implicit prior with a semi-implicit prior and propose a double prior deep unrolling network (DPDU-Net) for pansharpening. Specifically, we first formulate the objective function based on observation models of PAN and LRMS images and two priors of an HRMS image. In addition to the implicit prior in the image domain, we enforce the sparsity of the HRMS image in a certain multi-scale implicit space; thereby, the feature map can obtain better sparse representation ability. We optimize the proposed objective function via alternating iteration. Then, the iterative process is unrolled into an elaborate network, with each iteration corresponding to a stage of the network. We conduct both reduced-resolution and full-resolution experiments on two satellite datasets. Both visual comparisons and metric-based evaluations consistently demonstrate the superiority of the proposed DPDU-Net. Full article
Show Figures

Figure 1

19 pages, 4700 KiB  
Article
Radiometric Cross-Calibration of GF6-PMS and WFV Sensors with Sentinel 2-MSI and Landsat 9-OLI2
by Hengyang Wang, Zhaoning He, Shuang Wang, Yachao Zhang and Hongzhao Tang
Remote Sens. 2024, 16(11), 1949; https://doi.org/10.3390/rs16111949 - 29 May 2024
Viewed by 659
Abstract
A panchromatic and multispectral sensor (PMS) and a wide-field-of-view (WFV) sensor were fitted aboard the Gaofen6 (GF6) satellite, which was launched on 2 June 2018. This study used the Landsat9-Operational Land Imager 2 and Sentinel2-Multispectral Instrument as reference sensors to perform radiometric cross-calibration [...] Read more.
A panchromatic and multispectral sensor (PMS) and a wide-field-of-view (WFV) sensor were fitted aboard the Gaofen6 (GF6) satellite, which was launched on 2 June 2018. This study used the Landsat9-Operational Land Imager 2 and Sentinel2-Multispectral Instrument as reference sensors to perform radiometric cross-calibration on GF6-PMS and WFV data at the Dunhuang calibration site. The four selected sensor images were all acquired on the same day. The results indicate that: the calibration results between different reference sensors can be controlled within 3%, with the maximum difference from the official coefficients being 8.78%. A significant difference was observed between the coefficients obtained by different reference sensors when spectral band adjustment factor (SBAF) correction was not performed; from the two sets of validation results, the maximum mean relative difference in the near-infrared band was 9.46%, with the WFV sensor showing better validation results. The validation of calibration coefficients based on synchronous ground observation data and the analysis of the impact of different SBAF methods on the calibration results indicated that Landsat9 is more suitable as a reference sensor for radiometric cross-calibration of GF6-PMS and WFV. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

22 pages, 7830 KiB  
Article
AIDB-Net: An Attention-Interactive Dual-Branch Convolutional Neural Network for Hyperspectral Pansharpening
by Qian Sun, Yu Sun and Chengsheng Pan
Remote Sens. 2024, 16(6), 1044; https://doi.org/10.3390/rs16061044 - 15 Mar 2024
Cited by 1 | Viewed by 1090
Abstract
Despite notable advancements achieved on Hyperspectral (HS) pansharpening tasks through deep learning techniques, previous methods are inherently constrained by convolution or self-attention intrinsic defects, leading to limited performance. In this paper, we proposed an Attention-Interactive Dual-Branch Convolutional Neural Network (AIDB-Net) for HS pansharpening. [...] Read more.
Despite notable advancements achieved on Hyperspectral (HS) pansharpening tasks through deep learning techniques, previous methods are inherently constrained by convolution or self-attention intrinsic defects, leading to limited performance. In this paper, we proposed an Attention-Interactive Dual-Branch Convolutional Neural Network (AIDB-Net) for HS pansharpening. Our model purely consists of convolutional layers and simultaneously inherits the strengths of both convolution and self-attention, especially the modeling of short- and long-range dependencies. Specially, we first extract, tokenize, and align the hyperspectral image (HSI) and panchromatic image (PAN) by Overlapping Patch Embedding Blocks. Then, we specialize a novel Spectral-Spatial Interactive Attention which is able to globally interact and fuse the cross-modality features. The resultant token-global similarity scores can guide the refinement and renewal of the textural details and spectral characteristics within HSI features. By deeply combined these two paradigms, our AIDB-Net significantly improve the pansharpening performance. Moreover, with the acceleration by the convolution inductive bias, our interactive attention can be trained without large scale dataset and achieves competitive time cost with its counterparts. Compared with the state-of-the-art methods, our AIDB-Net makes 5.2%, 3.1%, and 2.2% improvement on PSNR metric on three public datasets, respectively. Comprehensive experiments quantitatively and qualitatively demonstrate the effectiveness and superiority of our AIDB-Net. Full article
Show Figures

Graphical abstract

22 pages, 13332 KiB  
Article
Assessing Forest-Change-Induced Carbon Storage Dynamics by Integrating GF-1 Image and Localized Allometric Growth Equations in Jiangning District, Nanjing, Eastern China (2017–2020)
by Jiawei Liu, Boxiang Yang, Mingshi Li and Da Xu
Forests 2024, 15(3), 506; https://doi.org/10.3390/f15030506 - 8 Mar 2024
Cited by 2 | Viewed by 1122
Abstract
Forest and its dynamics are of great significance for accurately estimating regional carbon sequestration, emissions and carbon sink capacity. In this work, an efficient framework that integrates remote sensing, deep learning and statistical modeling was proposed to extract forest change information and then [...] Read more.
Forest and its dynamics are of great significance for accurately estimating regional carbon sequestration, emissions and carbon sink capacity. In this work, an efficient framework that integrates remote sensing, deep learning and statistical modeling was proposed to extract forest change information and then derive forest carbon storage dynamics during the period 2017 to 2020 in Jiangning District, Nanjing, Eastern China. Firstly, the panchromatic band and multi-spectral bands of GF-1 images were fused by using four different methods; Secondly, an improved Mask-RCNN integrated with Swin Transformer was devised to extract forest distribution information in 2020. Finally, by using the substitution strategy of space for time in the 2017 Forest Management and Planning Inventory (FMPI) data, local carbon density allometric growth equations were fitted by coniferous forest and broad-leaved forest types and compared, and the optimal fitting was accordingly determined, followed by the measurements of forest-change-induced carbon storage dynamics. The results indicated that the improved Mask-RCNN synergizing with the Swin Transformer gained an overall accuracy of 93.9% when mapping the local forest types. The carbon storage of forest standing woods was calculated at 1,449,400 tons in 2020, increased by 14.59% relative to that of 2017. This analysis provides a technical reference for monitoring forest change and lays a data foundation for local agencies to formulate forest management policies in the process of achieving dual-carbon goals. Full article
(This article belongs to the Special Issue Modeling Forest Response to Climate Change)
Show Figures

Figure 1

Back to TopTop