Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,424)

Search Parameters:
Keywords = parallel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1059 KiB  
Article
Multiple Sessions of Antimicrobial Photodynamic Therapy Improve Periodontal Outcomes in Patients with Down Syndrome: A 12-Month Randomized Clinical Trial
by Rafael Ferreira, Sebastião Luiz Aguiar Greghi, Adriana Campos Passanezi Sant’Ana, Mariana Schutzer Ragghianti Zangrando and Carla Andreotti Damante
Dent. J. 2025, 13(1), 33; https://doi.org/10.3390/dj13010033 (registering DOI) - 15 Jan 2025
Abstract
Background/Objectives: Individuals with Down syndrome (DS) often present with severe periodontal disease at a young age. Adjuvant treatments to scaling and root planing (SRP), such as antimicrobial photodynamic therapy (aPDT), may benefit this population. This study evaluated the effectiveness of aPDT as an [...] Read more.
Background/Objectives: Individuals with Down syndrome (DS) often present with severe periodontal disease at a young age. Adjuvant treatments to scaling and root planing (SRP), such as antimicrobial photodynamic therapy (aPDT), may benefit this population. This study evaluated the effectiveness of aPDT as an adjunct to SRP in individuals with DS. A randomized, double-blind, parallel trial was conducted with 37 individuals with DS. Methods: The test group (aPDT; n = 18) received SRP + aPDT, while the control group (C group; n = 19) received SRP only. For aPDT, a red laser (658 nm; 0.1 W; 2229 J/cm2; 40 s sweeping with optical fiber) combined with methylene blue (MB) (100 µg/mL) was applied across repeated sessions (on days 3, 7, and 14). Clinical parameters, such as plaque index (PI), clinical attachment level (CAL), probing depth (PD), and bleeding on probing (BOP), were recorded at baseline and after 3, 6, and 12 months of treatment. Statistical analyses were performed using parametric and non-parametric tests (p < 0.05). Results: Both treatments promoted improvements in all clinical periodontal parameters (p < 0.05). The aPDT group showed a statistically significant reduction in CAL at 3 months (aPDT = 4.58 mm vs. C = 4.72 mm; p < 0.05) and 12 months (aPDT = 4.59 mm vs. C = 4.84 mm; p < 0.05). Conclusions: aPDT improved periodontal health in the long term through a stable gain in attachment. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

23 pages, 20381 KiB  
Article
In and out of Replication Stress: PCNA/RPA1-Based Dynamics of Fork Stalling and Restart in the Same Cell
by Teodora Dyankova-Danovska, Sonya Uzunova, Georgi Danovski, Rumen Stamatov, Petar-Bogomil Kanev, Aleksandar Atemin, Aneliya Ivanova, Radoslav Aleksandrov and Stoyno Stoynov
Int. J. Mol. Sci. 2025, 26(2), 667; https://doi.org/10.3390/ijms26020667 - 14 Jan 2025
Abstract
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart [...] Read more.
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling. One is rapid PCNA removal, which reflects the drop in DNA synthesis. The other is gradual RPA1 accumulation up to 2400 nt of ssDNA per fork despite an active intra-S checkpoint. Restoring the nucleotide pool enables a prompt restart without post-replicative ssDNA and a smooth cell cycle progression. ATR, but not ATM inhibition, accelerates hydroxyurea-induced RPA1 accumulation nine-fold, leading to RPA1 exhaustion within 20 min. Fork restart under ATR inhibition led to the persistence of ~600 nt ssDNA per fork after S-phase, which reached 2500 nt under ATR/ATM co-inhibition, with both scenarios leading to mitotic catastrophe. MRE11 inhibition had no effect on PCNA/RPA1 dynamics regardless of ATR activity. E3 ligase RAD18 was recruited at stalled replication forks in parallel to PCNA removal. Our results shed light on fork dynamics during nucleotide depletion and provide a valuable tool for interrogating the effects of replication stress-inducing anti-cancer agents. Full article
(This article belongs to the Special Issue DNA Damage and DNA Repair Pathways in Cancer Development)
Show Figures

Figure 1

18 pages, 4978 KiB  
Article
Laboratory Study of Local Scour Around an Array of Pile Groups in Clear-Water Scour Conditions
by Ming Gong, Xinying Pan, Shengtao Du, Guoxiang Wu, Yingxue Lv, Yunjia Sun, Guangjia Ding and Bingchen Liang
J. Mar. Sci. Eng. 2025, 13(1), 137; https://doi.org/10.3390/jmse13010137 - 14 Jan 2025
Abstract
Current-induced local scour around pile groups weakens the capacity of structures. In this paper, experimental tests of local scour around an array of 5 × 5 pile groups were conducted in a steady current in a hydraulic flume. The pile-to-pile space was five [...] Read more.
Current-induced local scour around pile groups weakens the capacity of structures. In this paper, experimental tests of local scour around an array of 5 × 5 pile groups were conducted in a steady current in a hydraulic flume. The pile-to-pile space was five times the diameter of a single pile. All the tests were in clear-water scour conditions. The effects of upstream piles on the local scour characteristics of downstream piles, as well as the outer-arranged side piles on the inner-arranged piles, were studied within flow intensities of 0.37–1.0. Both the three-dimensional topography of bed elevation changes and the maximum temporal scour depths are discussed. The results showed that the minimum threshold of flow intensity that can induce local scour around the pile groups was 0.40. The scour holes were independent of each other, though a global scouring phenomenon occurred between piles at a flow intensity of 1.0. The temporal scour depths of the downstream piles increased slowly throughout the local scour processes. During the initial scouring stage, they accelerated rapidly. At flow intensities of 0.60, 0.80, and 1.0, the scour development then progressed gradually, resembling the behavior of a single pile. The developing scouring stage can hardly be distinguished in the case of flow intensity of 0.80. The maximum scour depths in the flow intensity of 0.60 showed irregular variations with increasing row and column numbers. The equilibrium scour depths in the central-positioned piles tended to a constant value of 0.5 times the pile diameter. In larger flow intensities of 0.80 and 1.0, they decreased linearly with pile row number, with the maximum scour depths at the piles in the first row. The local scour depths of the inner-positioned piles in the parallel arrangement showed few differences at the front and rear piles. Full article
Show Figures

Figure 1

14 pages, 2528 KiB  
Article
Outcomes of a Pilot Newborn Screening Program for Spinal Muscular Atrophy in the Valencian Community
by Alba Berzal-Serrano, Belén García-Bohórquez, Elena Aller, Teresa Jaijo, Inmaculada Pitarch-Castellano, Dolores Rausell, Gema García-García and José M. Millán
Int. J. Neonatal Screen. 2025, 11(1), 7; https://doi.org/10.3390/ijns11010007 - 14 Jan 2025
Abstract
Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 (SMN1) gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms [...] Read more.
Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 (SMN1) gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of SMN1 using dried blood spot (DBS) samples. From October 2021 to August 2024, a total of 31,560 samples were tested in the Valencian Community (Spain) and 4 of them were positive for SMA, indicating an incidence of 1/7890. Genetic confirmation was performed using multiplex ligation-dependent probe amplification (MLPA) and AmplideX PCR/CE SMN1/2 Plus kit, in parallel obtaining concordant results in survival motor neuron 2 (SMN2) gene copy number. Within the first few weeks of their lives, two of the four patients detected by NBS showed signs of severe hypotonia, becoming ineligible for treatment. The other two patients were the first presymptomatic patients with two copies of SMN2 to receive treatment with Risdiplam in Spain. In order to treat positive cases in their early stages, we conclude that the official deployment of SMA newborn screening is necessary. Full article
28 pages, 39604 KiB  
Article
A Bio-Inspired Visual Neural Model for Robustly and Steadily Detecting Motion Directions of Translating Objects Against Variable Contrast in the Figure-Ground and Noise Interference
by Sheng Zhang, Ke Li, Zhonghua Luo, Mengxi Xu and Shengnan Zheng
Biomimetics 2025, 10(1), 51; https://doi.org/10.3390/biomimetics10010051 - 14 Jan 2025
Abstract
(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of [...] Read more.
(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges. (2) Methods: To resolve these challenges, we propose a bio-inspired visual neural model, which consists of four stages. Firstly, the photoreceptors (R1–R6) are utilized to perceive the change in luminance. Secondly, the change in luminance is divided into parallel ON and OFF pathways based on the lamina monopolar cell (LMC), and the spatial denoising and the spatio-temporal lateral inhibition (LI) mechanisms can suppress environmental noise and improve motion boundaries, respectively. Thirdly, the non-linear instantaneous feedback mechanism in divisive contrast normalization is adopted to reduce local contrast sensitivity; further, the parallel ON and OFF contrast pathways are activated. Finally, the parallel motion and contrast pathways converge on the LPTC in the lobula complex. (3) Results: By comparing numerous experimental simulations with state-of-the-art (SotA) bio-inspired models, we can draw four conclusions. Firstly, the effectiveness of the contrast neural computation and the spatial denoising mechanism is verified by the ablation study. Secondly, this model can robustly detect the motion direction of the translating object against variable contrast in the figure-ground and environmental noise interference. Specifically, the average detection success rate of the proposed bio-inspired model under the pure and real-world complex noise datasets was increased by 5.38% and 5.30%. Thirdly, this model can effectively reduce the fluctuation in this model response against variable contrast in the figure-ground and environmental noise interference, which shows the stability of this model; specifically, the average inter-quartile range of the coefficient of variation in the proposed bio-inspired model under the pure and real-world complex noise datasets was reduced by 38.77% and 47.84%, respectively. The average decline ratio of the sum of the coefficient of variation in the proposed bio-inspired model under the pure and real-world complex noise datasets was 57.03% and 67.47%, respectively. Finally, the robustness and stability of this model are further verified by comparing other early visual pre-processing mechanisms and engineering denoising methods. (4) Conclusions: This model can robustly and steadily detect the motion direction of the translating object under variable contrast in the figure-ground and environmental noise interference. Full article
(This article belongs to the Special Issue Computational Biology Simulation, Agent-Based Modelling and AI)
Show Figures

Figure 1

44 pages, 13137 KiB  
Article
The Future of Last-Mile Delivery: Lifecycle Environmental and Economic Impacts of Drone-Truck Parallel Systems
by Danwen Bao, Yu Yan, Yuhan Li and Jiajun Chu
Drones 2025, 9(1), 54; https://doi.org/10.3390/drones9010054 - 14 Jan 2025
Abstract
With rapid advancements in unmanned aerial vehicle (UAV) technology, its integration into logistics operations has emerged as a promising solution for improving efficiency and sustainability. Among the emerging solutions, a collaborative delivery model involving drones and trucks addresses last-mile delivery challenges by leveraging [...] Read more.
With rapid advancements in unmanned aerial vehicle (UAV) technology, its integration into logistics operations has emerged as a promising solution for improving efficiency and sustainability. Among the emerging solutions, a collaborative delivery model involving drones and trucks addresses last-mile delivery challenges by leveraging the complementary strengths of both modes of transport. However, evaluating the environmental and economic impacts of this transportation mode requires a systematic framework to capture its unique characteristics and minimize environmental impacts and costs. This paper investigates the Parallel Drone Scheduling Traveling Salesman Problem (PDSTSP) to evaluate the environmental and economic sustainability of a collaborative drone-truck delivery system. Specifically, a mathematical model for this delivery system is developed to optimize joint delivery operations. Environmental impacts are assessed using a comprehensive Life Cycle Assessment (LCA), including emissions and operational noise, while a Life Cycle Cost Analysis (LCCA) quantifies economic performance across five cost dimensions. Sensitivity analysis explores factors such as delivery density, traffic congestion, and wind conditions. Results show that, compared to the electric vehicle fleet, the proposed model achieves an approximate 20% reduction in carbon emissions, while delivering a 20–30% cost reduction relative to the fuel truck fleet. Drones’ efficiency in short-distance deliveries alleviates trucks’ load, cutting environmental and operational costs. This study offers practical insights and recommendations for implementing drone-truck parallel delivery systems, particularly in high-demand density areas. Full article
Show Figures

Figure 1

22 pages, 3300 KiB  
Article
Direct and Indirect Protein Interactions Link FUS Aggregation to Histone Post-Translational Modification Dysregulation and Growth Suppression in an ALS/FTD Yeast Model
by Seth A. Bennett, Samantha N. Cobos, Raven M. A. Fisher, Elizaveta Son, Rania Frederic, Rianna Segal, Huda Yousuf, Kaitlyn Chan, David K. Dansu and Mariana P. Torrente
J. Fungi 2025, 11(1), 58; https://doi.org/10.3390/jof11010058 - 14 Jan 2025
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the FUS gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy [...] Read more.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the FUS gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy is connected to changes in the epigenome, including reductions in the levels of H3S10ph, H3K14ac, and H3K56ac. Exploiting the same model, we reveal novel connections between FUS aggregation and epigenetic dysregulation. We show that the histone-modifying enzymes Ipl1 and Rtt109—responsible for installing H3S10ph and H3K56ac—are excluded from the nucleus in the context of FUS proteinopathy. Furthermore, we found that Ipl1 colocalizes with FUS, but does not bind it directly. We identified Nop1 and Rrp5, a histone methyltransferase and rRNA biogenesis protein, respectively, as FUS binding partners involved in the growth suppression phenotype connected to FUS proteinopathy. We propose that the nuclear exclusion of Ipl1 through indirect interaction with FUS drives the dysregulation of H3S10ph as well as H3K14ac via crosstalk. We found that the knockdown of Nop1 interferes with these processes. In a parallel mechanism, Rtt109 mislocalization results in reduced levels of H3K56ac. Our results highlight the contribution of epigenetic mechanisms to ALS/FTD and identify novel targets for possible therapeutic intervention. Full article
Show Figures

Figure 1

18 pages, 6983 KiB  
Article
Multiscale Convolution-Based Efficient Channel Estimation Techniques for OFDM Systems
by Nahyeon Kwon, Bora Yoon and Junghyun Kim
Electronics 2025, 14(2), 307; https://doi.org/10.3390/electronics14020307 - 14 Jan 2025
Viewed by 121
Abstract
With the advancement of wireless communication technology, the significance of efficient and accurate channel estimation methods has grown substantially. Recently, deep learning-based methods are being adopted to estimate channels with higher precision than traditional methods, even in the absence of prior channel statistics. [...] Read more.
With the advancement of wireless communication technology, the significance of efficient and accurate channel estimation methods has grown substantially. Recently, deep learning-based methods are being adopted to estimate channels with higher precision than traditional methods, even in the absence of prior channel statistics. In this paper, we propose two deep learning-based channel estimation models, CAMPNet and MSResNet, which are designed to consider channel characteristics from a multiscale perspective. The convolutional attention and multiscale parallel network (CAMPNet) accentuates critical channel characteristics by utilizing parallel multiscale features and convolutional attention, while the multiscale residual network (MSResNet) integrates information across various scales through cross-connected multiscale convolutional structures. Both models are designed to perform robustly in environments with complex frequency domain information and various Doppler shifts. Experimental results demonstrate that CAMPNet and MSResNet achieve superior performance compared to existing channel estimation methods within various channel models. Notably, the proposed models show exceptional performance in high signal-to-noise ratio (SNR) environments, achieving up to a 48.98% reduction in mean squared error(MSE) compared to existing methods at an SNR of 25dB. In experiments evaluating the generalization capabilities of the proposed models, they show greater stability and robustness compared to existing methods. These results suggest that deep learning-based channel estimation models have the potential to overcome the limitations of existing methods, offering high performance and efficiency in real-world communication environments. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

25 pages, 7427 KiB  
Article
Design of Combined Rainwater-Harvesting and Stormwater-Detention System with Passive Release for New Buildings in Taiwan
by Hsin-Yuan Tsai, Chia-Ming Fan and Chao-Hsien Liaw
Water 2025, 17(2), 204; https://doi.org/10.3390/w17020204 - 14 Jan 2025
Viewed by 141
Abstract
Taiwan experiences abundant rainfall, but faces significant water shortages, making rainwater harvesting (RWH) a potential alternative water source. Additionally, extreme rainfall events strain urban flood control systems, highlighting the need for integrated stormwater management. To address these challenges, Taiwan mandates stormwater detention (SWD) [...] Read more.
Taiwan experiences abundant rainfall, but faces significant water shortages, making rainwater harvesting (RWH) a potential alternative water source. Additionally, extreme rainfall events strain urban flood control systems, highlighting the need for integrated stormwater management. To address these challenges, Taiwan mandates stormwater detention (SWD) in new buildings. However, the current RWH and SWD systems are designed independently, with no combined design guidelines available. This study proposes three combined RWH and SWD systems, series, parallel, and enhanced parallel with a valve using a passive release mechanism. System performance was evaluated through short-term and long-term simulations. Short-term simulations were conducted to ensure the system’s compliance with the domestic flood control design standards. These simulations assessed the peak flow mitigation and lag times for 5-, 10-, and 25-year design storms under four scenarios. Long-term simulations used historical rainfall data to analyze the differences in the combined systems and operational plans for continuous rainfall events. Three performance indicators—volumetric reliability, the stormwater retention ratio, and the stormwater detention ratio—were employed to assess water supply and the stormwater detention performance. The short-term simulation results revealed that the system performance was sensitive to the initial conditions. The series and parallel systems performed well, while the enhanced parallel system outperformed the others under specific initial conditions and valve operations. In contrast, long-term simulations revealed that the series and parallel systems achieved higher stormwater retention and a more stable performance than the enhanced parallel system. Among the three systems, the parallel system offers reduced installation space, lower costs, and easier maintenance, making it the recommended option for Taiwan. This study provides valuable guidance for designing combined RWH and SWD systems. Full article
(This article belongs to the Special Issue Stormwater Management in Sponge Cities)
Show Figures

Figure 1

19 pages, 5929 KiB  
Article
Vertical Profile Characteristics of Dissolved Organic Matter Biochemistry in the Tropical Reservoir Shaped by Hydrodynamic Forces
by Zongyue Liu, Miao Chen, Huiran Liu, Han Wang, Ziyu Ning, Wen Zhang, Yuqin Liu and Min Tang
Water 2025, 17(2), 203; https://doi.org/10.3390/w17020203 - 14 Jan 2025
Viewed by 175
Abstract
Dissolved organic matter (DOM) exerts a crucial role in biogeochemical processes and ascertaining water quality in reservoirs, where it is vulnerable to the dynamic impacts of surface water inflows. However, understanding how DOM quantity and biochemical features responds to hydrodynamic forces in tropical [...] Read more.
Dissolved organic matter (DOM) exerts a crucial role in biogeochemical processes and ascertaining water quality in reservoirs, where it is vulnerable to the dynamic impacts of surface water inflows. However, understanding how DOM quantity and biochemical features responds to hydrodynamic forces in tropical reservoirs remains limited. To enhance our understanding of the vertical profiles of DOM characteristics under varying hydrodynamic forces (strong, moderate, and weak regions) in the Chitian Reservoir (18°43′–18°42′ N, 109°68′–109°70′ E), in December 2023, we investigated the concentrations and biochemical characteristics of water column DOM samples using multispectral techniques, a parallel factor model, and two-dimensional correlation analysis. Our results indicated that DOM concentrations (4.34 ± 0.36 mg/L) are the highest in the reservoir center, whereas total nitrogen (0.52 ± 0.04 mg/L), total phosphorus (0.02 ± 0.03 mg/L), and nitrate nitrogen (1.01 ± 0.07 mg/L) present their highest values in the inlet region. As hydrodynamic force decreases, microbial activity increases, whereas DOM’s humification degree and molecular weight decline. DOM in the Chitian Reservoir comprises humic-like components, including three terrestrial sources (accounting for 85.38%~87.03%) and one microbial source, with dominant characteristics of allochthonous origin. The relative abundance of microbial components decreased from 14.62% to 12.97% with the increasing hydrodynamic force and increased with depth. DOM functional groups in the strong hydrodynamic force region and the reservoir’s upper layer show high consistency and uniformity. Phenolic O–H is the most reactive functional group concerning changes in water depth across all hydrodynamic areas, followed by polysaccharide C–O, owing to its high photoactivity. In contrast, aromatic C–H demonstrates the weakest reactivity. DOM’s spectral features are closely linked to nutrient form concentrations (N and P). Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

24 pages, 4166 KiB  
Article
Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge
by Nicolas E. Beaudoin, Daniel Koehn, Einat Aharonov, Andrea Billi, Matthieu Daeron and Adrian Boyce
Minerals 2025, 15(1), 73; https://doi.org/10.3390/min15010073 - 14 Jan 2025
Viewed by 187
Abstract
Rough surfaces known as stylolites are common geological features that are developed by pressure solution, especially in carbonate rocks, where they are used as strain markers and as stress gauges. As applications are developing in various geological settings, questions arise regarding the uncertainties [...] Read more.
Rough surfaces known as stylolites are common geological features that are developed by pressure solution, especially in carbonate rocks, where they are used as strain markers and as stress gauges. As applications are developing in various geological settings, questions arise regarding the uncertainties associated with quantitative estimates of paleostress using stylolite roughness. This contribution reports for the first time a measurement of the temperature at which pressure solution was active by applying clumped isotopes thermometry to calcite cement found in jogs linking the tips of the stylolites. This authigenic calcite formed as a redistribution of the surrounding dissolved material by the same dissolution processes that formed the extensive stylolite network. We compare the depth derived from these temperatures to the depth calculated from the vertical stress inversion of a bedding parallel stylolite population documented on a slab of the Calcare Massiccio formation (early Jurassic) formerly collected in the Umbria-Marches Arcuate Ridge (Northern Apennines, Italy). We further validate the coevality between the jog development and the pressure solution by simulating the stress field around the stylolite tip. Calcite clumped isotopes constrain crystallization to temperatures between 35 and 40 °C from a common fluid with a δ18O signature around −1.3‰ SMOW. Additional δ18O isotopes on numerous jogs allows the range of precipitation temperature to be extended to from 25 to 53 °C, corresponding to a depth range of 650 to 1900 m. This may be directly compared to the results of stylolite roughness inversion for stress, which predict a range of vertical stress from 14 to 46 MPa, corresponding to depths from 400 to 2000 m. The overall correlation between these two independent depth estimates suggests that sedimentary stylolites can reliably be used as a depth gauge, independently of the thermal gradient. Beyond the method validation, our study also reveals some mechanisms of pressure solution and the associated p,T conditions favouring their development in carbonates. Full article
(This article belongs to the Special Issue Stylolites: Development, Properties, Inversion and Scaling)
Show Figures

Figure 1

10 pages, 2388 KiB  
Communication
The Appearance of Antiphage Antibodies in Sera of Patients Treated with Phages
by Marzanna Łusiak-Szelachowska, Beata Weber-Dąbrowska, Maciej Żaczek, Ryszard Międzybrodzki and Andrzej Górski
Antibiotics 2025, 14(1), 87; https://doi.org/10.3390/antibiotics14010087 - 14 Jan 2025
Viewed by 109
Abstract
Background: Bacteriophages are neutralized by the sera of patients undergoing phage therapy (PT), particularly during local or concomitant local and oral phage administration in bone infections, soft tissue infections, or upper respiratory tract infections. Methods: The antiphage activity of the sera (AAS) [...] Read more.
Background: Bacteriophages are neutralized by the sera of patients undergoing phage therapy (PT), particularly during local or concomitant local and oral phage administration in bone infections, soft tissue infections, or upper respiratory tract infections. Methods: The antiphage activity of the sera (AAS) level of 27 patients with bacterial infections such as bone infections, soft tissue infections, or upper respiratory tract infections undergoing PT was performed using the plate phage neutralization test. Results: Our preliminary results suggest that high levels of antiphage antibodies appear late in the treatment period, at the earliest in the 3rd–8th week of PT. Patients with bone infections treated locally with the S. aureus phage Staph_1N and patients with upper respiratory tract infections administered locally and orally with the S. aureus phage Staph_A5L had elevated levels of antiphage antibodies in sera during PT. In parallel to these results, it has been shown that a strong antiphage humoral response does not prevent a positive outcome of phage treatment. Conclusions: The earliest time point at which high levels of antiphage antibodies in sera appear during local and oral PT is day 21 of therapy. We noticed that the high level of antiphage antibodies in sera occurring during local or both local and oral PT was correlated with the type of infection and phage type. Full article
(This article belongs to the Special Issue Bacteriophages and Phage-Derived Enzymes as Antibacterial Agents)
Show Figures

Figure 1

7 pages, 1362 KiB  
Brief Report
Nontarget Catches of Green and Brown Lacewings (Insecta: Neuroptera: Chrysopidae, Hemerobiidae) Collected by Light- and Volatile-Baited Traps in the Transcarpathian Lowland (W Ukraine)
by Kálmán Szanyi, Antal Nagy, Aletta Ősz, Levente Ábrahám, Attila Molnár, Miklós Tóth and Szabolcs Szanyi
Insects 2025, 16(1), 74; https://doi.org/10.3390/insects16010074 - 14 Jan 2025
Viewed by 180
Abstract
Distribution data on the lacewing fauna of the data-deficient Transcarpathian Lowland (West Ukraine) were provided. The attractivity of phenylacetaldehyde-(FLO) and isoamyl alcohol-based (SBL) lures designed for trapping lepidopteran pests to lacewings was also studied and compared to the efficiency of light traps traditionally [...] Read more.
Distribution data on the lacewing fauna of the data-deficient Transcarpathian Lowland (West Ukraine) were provided. The attractivity of phenylacetaldehyde-(FLO) and isoamyl alcohol-based (SBL) lures designed for trapping lepidopteran pests to lacewings was also studied and compared to the efficiency of light traps traditionally used in studies on neuropterans. In the three-year study, 374 individuals of 10 species were caught. Although the light trap was the most efficient method, the efficiency of the tested lures could also be proved. Regarding abundances, FLO was significantly more efficient than the SBL lure. The lures could supplement the checklist of the fauna with two species and attracted an especially high number of Chrysoperla species. In the case of parallel use with light traps, they serve as an efficient standardised combined method for trapping lacewings, both in faunistic studies and plant protection applications. Full article
Show Figures

Graphical abstract

15 pages, 10249 KiB  
Article
Deciphering the Proteome and Phosphoproteome of Peanut (Arachis hypogaea L.) Pegs Penetrating into the Soil
by Sha Yang, Mei He, Zhaohui Tang, Keke Liu, Jianguo Wang, Li Cui, Feng Guo, Ping Liu, Jialei Zhang and Shubo Wan
Int. J. Mol. Sci. 2025, 26(2), 634; https://doi.org/10.3390/ijms26020634 - 14 Jan 2025
Viewed by 190
Abstract
Peanut (Arachis hypogaea L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground. [...] Read more.
Peanut (Arachis hypogaea L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground. In order to fully understand this phenomenon, we investigated the dynamic proteomic and phosphoproteomic profiling of the pegs aerially and underground in this study. A total of 6859 proteins and 4142 unique phosphoproteins with 10,070 phosphosites were identified. The data were validated and quantified using samples randomly selected from arial pegs (APs) and underground pegs (UPs) by parallel reaction monitoring (PRM). Function analyses of differentially abundant proteins (DAPs) and differentially regulated phosphoproteins (DRPPs) exhibited that they were mainly related to stress response, photosynthesis, and substance metabolism. Once the pegs successfully entered the soil, disease-resistant and stress response proteins, such as glutathione S-transferase, peroxidase, and cytochrome P450, significantly increased in the UP samples in order to adapt to the new soil environment. The increased abundance of photosynthesis-associated proteins in the UP samples provided more abundant photosynthetic products, which provided the preparation for subsequent pod development. Phosphoproteomics reveals the regulatory network of the synthesis of nutrients such as starch, protein, and fatty acid (FA). These results provide new insights into the mechanism, indicating that after the pegs are inserted into the soil, phosphorylation is involved in the rapid elongation of the pegs, accompanied by supplying energy for pod development and preparing for the synthesis of metabolites during pod development following mechanical stimulation and darkness. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

18 pages, 13825 KiB  
Article
Effect of Load Vector Orientation on Uniaxial Compressive Strength of 3D Photoresin
by Evgenii Kozhevnikov, Mikhail Turbakov, Evgenii Riabokon, Zakhar Ivanov, Andrei Golosov, Arina Panteleeva and Yan Savitsky
J. Manuf. Mater. Process. 2025, 9(1), 23; https://doi.org/10.3390/jmmp9010023 - 14 Jan 2025
Viewed by 180
Abstract
Rapid prototyping has a wide range of applications across various fields, both in industry and for private use. It enables the production of individual parts in a short time, independent of supply chains, which is particularly important in remote locations. Among all 3D [...] Read more.
Rapid prototyping has a wide range of applications across various fields, both in industry and for private use. It enables the production of individual parts in a short time, independent of supply chains, which is particularly important in remote locations. Among all 3D printing technologies, stereolithography using photo resins is the most accessible and offers the highest printing quality. However, the strength properties of parts made from photo resins remain a critical concern. In this study, we conducted experimental research to investigate the effect of load vector orientation under uniaxial compression on the elastic and mechanical properties of 3D-printed cylindrical samples. The results revealed that samples with layers oriented at 60° to the load vector exhibited the highest strength, while those with layers at 30° to the load vector showed the lowest strength. Samples with layers aligned parallel or perpendicular to the load vector demonstrated similar strength properties. Under quasi-elastic loading, samples with layers parallel to the load vector exhibited the highest Young’s modulus and the lowest Poisson’s ratio. Conversely, samples with layers oriented at 30° to the load vector displayed the highest Poisson’s ratio. Microstructural analysis revealed that the anisotropy in the mechanical properties of the 3D-printed samples is attributed to the layered, heterogeneous structure of the photoresin, which exhibits varying degrees of polymerization along the printing axes. The upper part of each layer, with a lower degree of polymerization, contributes to the ductile behavior of the samples under shear stresses. In contrast, the lower part of the layer, with a higher degree of polymerization, leads to brittle behavior in the samples. Full article
Show Figures

Figure 1

Back to TopTop