Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,687)

Search Parameters:
Keywords = polyphenolic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3426 KiB  
Article
Effect of Gossypol on Gene Expression in Swine Granulosa Cells
by Min-Wook Hong, Hun Kim, So-Young Choi, Neelesh Sharma and Sung-Jin Lee
Toxins 2024, 16(10), 436; https://doi.org/10.3390/toxins16100436 - 10 Oct 2024
Abstract
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and [...] Read more.
Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM–receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation–reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP. Full article
Show Figures

Figure 1

12 pages, 259 KiB  
Protocol
A Versatile Ultra-High-Performance Liquid Chromatography-Full-Scan High-Resolution Mass Spectrometry Method to Quantify Wine Polyphenols
by Damien Flores, Emmanuelle Meudec, Aécio Luís de Sousa Dias and Nicolas Sommerer
Methods Protoc. 2024, 7(5), 82; https://doi.org/10.3390/mps7050082 - 10 Oct 2024
Abstract
Polyphenols are responsible for wine colour and astringency, and, as antioxidants, they also have beneficial health properties. In this work, we developed a robust full-scan high-resolution mass spectrometry method for the quantification of 90 phenolic compounds in wine samples (either red, rosé, or [...] Read more.
Polyphenols are responsible for wine colour and astringency, and, as antioxidants, they also have beneficial health properties. In this work, we developed a robust full-scan high-resolution mass spectrometry method for the quantification of 90 phenolic compounds in wine samples (either red, rosé, or white wine), using a UHPLC-OrbitrapTM system. With this method, we could conduct a detailed analysis of phenolic compounds in red, rosé, and white wines with great selectivity due to sub-ppm mass accuracy. Moreover, accessing the full-scan spectrum enabled us to monitor all the other compounds detected in the sample, facilitating the adaptability of this method to new phenolic compounds if needed. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
23 pages, 1297 KiB  
Review
Dietary Polyphenols, Food Processing and Gut Microbiome: Recent Findings on Bioavailability, Bioactivity, and Gut Microbiome Interplay
by Monika Sejbuk, Iwona Mirończuk-Chodakowska, Sercan Karav and Anna Maria Witkowska
Antioxidants 2024, 13(10), 1220; https://doi.org/10.3390/antiox13101220 - 10 Oct 2024
Abstract
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can [...] Read more.
Polyphenols are organic chemical compounds naturally present in plants, renowned for their anti-inflammatory, antioxidant, immunomodulatory, anticancer, and cardiovascular protective properties. Their bioactivity and bioavailability can vary widely depending on the methods of food processing and interactions with the gut microbiome. These factors can induce changes in polyphenols, affecting their ability to achieve their intended health benefits. Thus, it is essential to develop and apply food processing methods that optimize polyphenol content while maintaining their bioactivity and bioavailability. This review aims to explore how various food processing techniques affect the quantity, bioactivity, and bioavailability of polyphenols, as well as their interactions with the gut microbiome, which may ultimately determine their health effects. Full article
Show Figures

Figure 1

50 pages, 8706 KiB  
Review
Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols
by Raissa Bulaty Tauil, Paula Takano Golono, Enzo Pereira de Lima, Ricardo de Alvares Goulart, Elen Landgraf Guiguer, Marcelo Dib Bechara, Claudia C. T. Nicolau, José Luiz Yanaguizawa Junior, Adriana M. R. Fiorini, Nahum Méndez-Sánchez, Ludovico Abenavoli, Rosa Direito, Vitor Engrácia Valente, Lucas Fornari Laurindo and Sandra Maria Barbalho
Pharmaceuticals 2024, 17(10), 1354; https://doi.org/10.3390/ph17101354 (registering DOI) - 10 Oct 2024
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical–pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of [...] Read more.
Metabolic-Associated Fatty Liver Disease (MAFLD) is a clinical–pathological scenario that occurs due to the accumulation of triglycerides in hepatocytes which is considered a significant cause of liver conditions and contributes to an increased risk of death worldwide. Even though the possible causes of MAFLD can involve the interaction of genetics, hormones, and nutrition, lifestyle (diet and sedentary lifestyle) is the most influential factor in developing this condition. Polyphenols comprise many natural chemical compounds that can be helpful in managing metabolic diseases. Therefore, the aim of this review was to investigate the impact of oxidative stress, inflammation, mitochondrial dysfunction, and the role of polyphenols in managing MAFLD. Some polyphenols can reverse part of the liver damage related to inflammation, oxidative stress, or mitochondrial dysfunction, and among them are anthocyanin, baicalin, catechin, curcumin, chlorogenic acid, didymin, epigallocatechin-3-gallate, luteolin, mangiferin, puerarin, punicalagin, resveratrol, and silymarin. These compounds have actions in reducing plasma liver enzymes, body mass index, waist circumference, adipose visceral indices, lipids, glycated hemoglobin, insulin resistance, and the HOMA index. They also reduce nuclear factor-KB (NF-KB), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), blood pressure, liver fat content, steatosis index, and fibrosis. On the other hand, they can improve HDL-c, adiponectin levels, and fibrogenesis markers. These results show that polyphenols are promising in the prevention and treatment of MAFLD. Full article
Show Figures

Figure 1

20 pages, 1190 KiB  
Review
Endowed Polyphenols in Advanced Delivery Systems for Vaginal Infections
by Eduardo Apolinário, Maria Leonor Castro, Manuela Pintado, João Paulo Ferreira, Sara Baptista-Silva and Sandra Borges
Appl. Sci. 2024, 14(20), 9203; https://doi.org/10.3390/app14209203 - 10 Oct 2024
Abstract
Vaginal infections (VIs) are the result of the nefarious vaginal polymicrobial universe (i.e., Gardnerella vaginalis, Prevotella spp., Staphylococcus spp., Candida albicans, etc.), the inhabitants of which multiply and infect the surface of the vaginal epithelium, which serves as a scaffold for [...] Read more.
Vaginal infections (VIs) are the result of the nefarious vaginal polymicrobial universe (i.e., Gardnerella vaginalis, Prevotella spp., Staphylococcus spp., Candida albicans, etc.), the inhabitants of which multiply and infect the surface of the vaginal epithelium, which serves as a scaffold for the adhesion of pathogenic poly-complexes with interactive abilities. VIs affect over 1 billion women per year and have a stunning annual relapse rate of 30%. These conditions impact women’s quality of life and fertility and cause oncogenic Human Papillomavirus (HPV) persistence. VIs are typically treated with oral (i.e., Flagyl®) and localized drug tablets and creams/gels (i.e., Clindesse®), with potential leakage from the vaginal tract upon administration leading to the failure of the treatment. This study intends to highlight polyphenols as potential therapeutic agents in terms of their benefits and limitations and suggest strategies to increase their effectiveness. Polyphenols are natural compounds rich in phenolic structures which have an impact on this type of pathology and deserve the utmost attention from researchers. Natural polyphenols have several advantages: renewability, biodegradability, low environmental impact, biocompatibility, application versatility, bioactive properties, and the potential for sustainable applications. These compounds, formulated in advanced delivery systems, may natively exhibit antioxidant, anti-inflammatory, and antimicrobial activities. The main objective of this review is to highlight the importance of researching new and effective formulations to prevent and treat VIs based on natural, controlled, and sustainable systems. Full article
Show Figures

Figure 1

31 pages, 4974 KiB  
Article
The Protective Effect of the Supplementation with an Extract from Aronia melanocarpa L. Berries against Cadmium-Induced Changes of Chosen Biomarkers of Neurotoxicity in the Brain—A Study in a Rat Model of Current Lifetime Human Exposure to This Toxic Heavy Metal
by Agnieszka Ruczaj, Joanna Rogalska, Małgorzata Gałażyn-Sidorczuk and Małgorzata M. Brzóska
Int. J. Mol. Sci. 2024, 25(20), 10887; https://doi.org/10.3390/ijms252010887 - 10 Oct 2024
Abstract
Since even low-level environmental exposure to cadmium (Cd) can lead to numerous unfavourable health outcomes, including damage to the nervous system, it is important to recognize the risk of health damage by this xenobiotic, the mechanisms of its toxic influence, and to find [...] Read more.
Since even low-level environmental exposure to cadmium (Cd) can lead to numerous unfavourable health outcomes, including damage to the nervous system, it is important to recognize the risk of health damage by this xenobiotic, the mechanisms of its toxic influence, and to find an effective protective strategy. This study aimed to evaluate, in a female Wistar rat model of current human environmental exposure to Cd (1 and 5 mg/kg of diet for 3–24 months), if the low-to-moderate treatment with this element can harm the brain and whether the supplementation with a 0.1% Aronia melanocarpa L. (Michx.) Elliott berries (chokeberries) extract (AE) can protect against this effect. The exposure to Cd modified the values of various biomarkers of neurotoxicity, including enzymes (acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), phospholipase A2 (PLA2), and nitric oxide synthase 1 (NOS1)) and non-enzymatic proteins (calmodulin (CAM), nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (KEAP1)) crucial for the functioning of the nervous system, as well as the concentrations of calcium (Ca) and magnesium (Mg) and some metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in the brain tissue. The co-administration of AE, partially or entirely, protected from most of the Cd-induced changes alleviating its neurotoxic influence. In conclusion, even low-level chronic exposure to Cd may adversely affect the nervous system, whereas the supplementation with A. melanocarpa berries products during the treatment seems a protective strategy. Full article
Show Figures

Graphical abstract

26 pages, 10057 KiB  
Article
EF24, a Curcumin Analog, Reverses Interleukin-18-Induced miR-30a or miR-342-Dependent TRAF3IP2 Expression, RECK Suppression, and the Proinflammatory Phenotype of Human Aortic Smooth Muscle Cells
by Yusuke Higashi, Ryan Dashek, Patrice Delafontaine, Randy Scott Rector and Bysani Chandrasekar
Cells 2024, 13(20), 1673; https://doi.org/10.3390/cells13201673 - 10 Oct 2024
Abstract
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule [...] Read more.
Curcumin, a polyphenolic compound derived from the widely used spice Curcuma longa, has shown anti-atherosclerotic effects in animal models and cultured vascular cells. Inflammation is a major contributor to atherosclerosis development and progression. We previously reported that the induction of the proinflammatory molecule TRAF3IP2 (TRAF3 Interacting Protein 2) or inhibition of the matrix metallopeptidase (MMP) regulator RECK (REversion Inducing Cysteine Rich Protein with Kazal Motifs) contributes to pro-oxidant, proinflammatory, pro-mitogenic and pro-migratory effects in response to external stimuli in vascular smooth muscle cells. Here we hypothesized that EF24, a curcumin analog with a better bioavailability and bioactivity profile, reverses interleukin (IL)-18-induced TRAF3IP2 induction, RECK suppression and the proinflammatory phenotype of primary human aortic smooth muscle cells (ASMC). The exposure of ASMC to functionally active recombinant human IL-18 (10 ng/mL) upregulated TRAF3IP2 mRNA and protein expression, but markedly suppressed RECK in a time-dependent manner. Further investigations revealed that IL-18 inhibited both miR-30a and miR-342 in a p38 MAPK- and JNK-dependent manner, and while miR-30a mimic blunted IL-18-induced TRAF3IP2 expression, miR-342 mimic restored RECK expression. Further, IL-18 induced ASMC migration, proliferation and proinflammatory phenotype switching, and these effects were attenuated by TRAF3IP2 silencing, and the forced expression of RECK or EF24. Together, these results suggest that the curcumin analog EF24, either alone or as an adjunctive therapy, has the potential to delay the development and progression of atherosclerosis and other vascular inflammatory and proliferative diseases by differentially regulating TRAF3IP2 and RECK expression in ASMC. Full article
Show Figures

Figure 1

18 pages, 3047 KiB  
Article
Morphological Characterization, Polyphenolic Profile, and Bioactive Properties of Limoncella, an Ancient Mediterranean Variety of Sweet Citrus
by Lucia Potenza, Roberta Saltarelli, Francesco Palma, Laura Di Patria, Giosuè Annibalini, Sabrina Burattini, Pietro Gobbi, Laura Valentini, Giovanni Caprioli, Agnese Santanatoglia, Sauro Vittori and Elena Barbieri
Biomolecules 2024, 14(10), 1275; https://doi.org/10.3390/biom14101275 - 10 Oct 2024
Abstract
Limoncella of Mattinata, a rare and ancient Mediterranean citrus fruit, was investigated by sequence analysis of the ribosomal internal transcribed spacer regions, which assigns it as a variety of Citrus medica L. Morphological, chemical, and biomolecular approaches, including light and electron microscopy, HPLC-ESI-MS/MS, [...] Read more.
Limoncella of Mattinata, a rare and ancient Mediterranean citrus fruit, was investigated by sequence analysis of the ribosomal internal transcribed spacer regions, which assigns it as a variety of Citrus medica L. Morphological, chemical, and biomolecular approaches, including light and electron microscopy, HPLC-ESI-MS/MS, and antioxidant and anti-inflammatory assays, were used to characterize the flavedo and albedo parts, usually rich in bioactive compounds. The morphological findings showed albedo and flavedo cellular structures as “reservoirs” of nutritional components. Both albedo and flavedo hydroalcoholic extracts were rich in polyphenols, but they were different in compounds and quantity. The flavedo is rich in p-coumaric acid and rutin, whereas the albedo contains high levels of hesperidin and quercitrin. Antioxidant, anti-inflammatory, and genoprotective effects for albedo and flavedo were found. The results confirmed the health properties of flavedo and highlighted that albedo is also a rich source of antioxidants. Moreover, this study valorizes Limoncella of Mattinata’s nutritional properties, cueing its crops’ repopulation. Full article
Show Figures

Graphical abstract

17 pages, 1237 KiB  
Article
Physicochemical Properties and Nutritional Relevance of Rice Beverages Available on the Market
by Katarzyna Najman, Paulina Ponikowska, Anna Sadowska, Ewelina Hallmann, Grażyna Wasiak-Zys, Franciszek Świderski and Krzysztof Buczak
Appl. Sci. 2024, 14(19), 9150; https://doi.org/10.3390/app14199150 - 9 Oct 2024
Abstract
Recently, more consumers have reached for plant-based milk substitutes, mainly for health, dietary, and flavour reasons. This study aimed to evaluate the physicochemical and bioactive properties and sensory profile of 10 selected rice drinks available on the EU market. Assessment of the physicochemical [...] Read more.
Recently, more consumers have reached for plant-based milk substitutes, mainly for health, dietary, and flavour reasons. This study aimed to evaluate the physicochemical and bioactive properties and sensory profile of 10 selected rice drinks available on the EU market. Assessment of the physicochemical characteristics included measurement of soluble solids, pH, osmolality, foaming properties and colour parameters. Analysis of bioactive compounds involved the determination of polyphenolic compounds and antioxidant activity. Based on the manufacturer’s data, the composition and nutritional value of the above-mentioned beverages were also analysed in this study. The tested beverages were characterised by a low fat content of 0.6–1.3 g/100 mL, derived mainly from added sunflower oil, but are a good source of energy (energy value of 37–55 kcal/100 mL), derived mainly from naturally occurring carbohydrates whose content ranged from 8.0–11.0 g/100 mL. The protein content of all rice drinks was shallow, not exceeding 0.5 g/100 mL. Of the ten rice drinks analysed, in only two were vitamins B12 and D added (0.38 μg/100 mL and 0.75 μg/100 mL, respectively) and in only three was calcium (120 mg/100 mL) added. In evaluating the physicochemical characteristics, the drinks showed a pH close to neutral (mean 6.85 ± 0.01). The average soluble solids content was about 11%, which was determined by the carbohydrate content. The osmolality of the beverages averaged 324.73 ± 70.17 mOsm/kg H2O, with four beverages classifiable as hypertonic ones (osmolality > 330 mOsm/kg H2O), three as isotonic ones (with osmolality between 270–330 mOsm/kg H2O), and three as hypotonic beverages (osmolality < 270 mOsm/kg H2O). Only two rice drinks evaluated in this study showed foaming properties. The high whiteness index (81.79 ± 2.55) indicated high white colour saturation of the tested beverages. The rice drinks were characterised by a relatively diverse sensory quality regarding aroma and flavour notes. The overall sensory quality was rated highest for the beverages with the highest sugar content. The tested beverages were characterised by a low content of total polyphenols (average 1.40 ± 0.62 mg GAE/100 mL) and relatively high antioxidant activity (average 418.33 ± 59.65 µM TEAC/100 mL). Based on the research conducted and the analysis of the manufacturer’s data, it can be concluded that the rice drinks studied in this paper can be included in the daily diet, providing a rehydrating beverage that shows free radical-neutralizing properties and provides carbohydrates. At the same time, it should be highlighted that the studied drinks have a low nutritional value and cannot be recommended as milk substitutes due to low protein levels and lack of milk-specific vitamins and minerals. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

12 pages, 1189 KiB  
Article
Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries
by Anna Wojtaszek, Anna Marietta Salejda, Agnieszka Nawirska-Olszańska, Aleksandra Zambrowicz, Aleksandra Szmaja and Jagoda Ambrozik-Haba
Foods 2024, 13(19), 3209; https://doi.org/10.3390/foods13193209 - 9 Oct 2024
Abstract
Background: The aim of this study was to evaluate the selected quality parameters of innovative beef burgers produced with the addition of açaí and/or sea buckthorn berry juices. Methods: Five variants of innovative burgers were obtained, differing in the proportion of juices in [...] Read more.
Background: The aim of this study was to evaluate the selected quality parameters of innovative beef burgers produced with the addition of açaí and/or sea buckthorn berry juices. Methods: Five variants of innovative burgers were obtained, differing in the proportion of juices in the recipe. The pH of meat stuffing, thermal losses, production yield, color (CIE L*a*b*), content of polyphenolic compounds, degree of oxidation of the lipid fraction (TBARS), and antioxidant activity against ABTS radicals were determined. Anti-diabetic activity was measured as the ability to inhibit α-glucosidase and dipeptidyl peptidase−4 activity. A sensory evaluation was also performed. Results: Beef burgers formulated with açaí and sea buckthorn juices had up to five times higher total polyphenol content than burgers without added juices. The addition of the juices increased antioxidant activity against ABTS radicals (from 42 to 440 µmol/L/100 g) and effectively inhibited oxidation of the lipid fraction of the beef burgers. Recipe modifications resulted in changes in the color parameters of the beef burgers and had a positive effect on the sensory quality attributes evaluated. Beef burgers containing 0.5 g of açaí juice and 1.0 g of sea buckthorn juice were rated the best in terms of acceptability of appearance, aroma, color, juiciness, and tenderness. The addition of açaí and sea buckthorn juice did not increase the inhibitory activity against α-glucosidase and dipeptidyl peptidase-IV of the innovative beef burgers. Conclusions: The proposed recipe modification may be an effective way to fortify beef burgers with phytochemicals with antioxidant properties while maintaining their sensory properties. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 9362 KiB  
Article
Potential Anti-Obesity Effect of Hazel Leaf Extract in Mice and Network Pharmacology of Selected Polyphenols
by Jiarui Zhao, Aikebaier Alimu, Yvmo Li, Zhi Lin, Jun Li, Xinhe Wang, Yuchen Wang, Guangfu Lv, He Lin and Zhe Lin
Pharmaceuticals 2024, 17(10), 1349; https://doi.org/10.3390/ph17101349 - 9 Oct 2024
Abstract
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around [...] Read more.
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around the world. Aim of this study: Based on previous studies, the effects of the regulation of lipid metabolism and the mechanism of hazel leaf polyphenol extraction obesity were investigated. Methods: In this study, a high-fat diet-fed mouse model of obesity and 3T3-L1 preadipocytes were established. The ameliorative effects of the hazel leaf polyphenol extract on obesity and the regulating lipid metabolisms were explored based on network pharmacology, gut microbiota, and molecular docking. Results: Network pharmacology showed that hazel leaf polyphenols may play a role by targeting key targets, including PPARγ, and regulating the PPAR signaling pathway. They significantly improved body weight gain, the liver index, and adiposity and lipid levels; regulated the gut microbiota and short-chain fatty acid contents; down-regulated the expression of lipid synthesis proteins SREBP1c, PPARγ, and C/EBP-α; and up-regulated the expression of p-AMPK in obese mice. They inhibited the differentiation of 3T3-L1 cells, and the expression of related proteins is consistent with the results in vivo. The molecular docking results indicated that gallic acid, quercetin-3-O-beta-D-glucopyranoside, quercetin, myricetin, and luteolin-7-O-glucoside in the hazel leaf polyphenol extract had strong binding activities with PPARγ, C/EBP-α, and AMPK. Conclusions: The results demonstrate that the hazel leaf polyphenol extract can improve obesity by regulating lipid metabolism, which provides a valuable basis for developing health products made from hazel leaf polyphenols in the future. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products)
Show Figures

Graphical abstract

25 pages, 6166 KiB  
Review
Evaluating the Anti-Osteoporotic Potential of Mediterranean Medicinal Plants: A Review of Current Evidence
by Alhareth Abdulraheem Al-Ajalein, Nurul ‘Izzah Ibrahim, Mh Busra Fauzi, Sabarul Afian Mokhtar, Isa Naina Mohamed, Ahmad Nazrun Shuid and Norazlina Mohamed
Pharmaceuticals 2024, 17(10), 1341; https://doi.org/10.3390/ph17101341 - 8 Oct 2024
Abstract
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people’s quality of life. Treatments utilizing natural products and medicinal [...] Read more.
Background: Bones are biological reservoirs for minerals and cells, offering protection to the other organs and contributing to the structural form of the body. Osteoporosis is a prevalent bone condition that significantly impacts people’s quality of life. Treatments utilizing natural products and medicinal plants have gained important attention in the management of osteoporosis and its associated implications, such as osteoporotic fractures. Even though thousands of plants grow in the Mediterranean region, the use of medicinal plants as an alternative therapy for osteoporosis is still limited. Methods: This article provides a comprehensive overview of seven Mediterranean medicinal plants that are used in osteoporosis and osteoporotic fractures in in vitro, in vivo, and clinical trials. The mechanism of action of the medicinal plants and their bioactive compounds against diseases are also briefly discussed. Results: The findings clearly indicate the ability of the seven medicinal plants (Ammi majus, Brassica oleracea, Ceratonia siliqua L., Foeniculum vulgare, Glycyrrhiza glabra, Salvia officinalis, and Silybum marianum) as anti-osteoporosis agents. Xanthotoxin, polyphenols, liquiritin, formononetin, silymarin, and silibinin/silybin were the main bioactive compounds that contributed to the action against osteoporosis and osteoporotic fractures. Conclusions: In this review, the Mediterranean medicinal plants prove their ability as an alternative agent for osteoporosis and osteoporotic fractures instead of conventional synthetic therapies. Thus, this can encourage researchers to delve deeper into this field and develop medicinal-plant-based drugs. Full article
Show Figures

Graphical abstract

21 pages, 16339 KiB  
Article
Optimization of Liquid Fermentation of Acanthopanax senticosus Leaves and Its Non-Targeted Metabolomics Analysis
by Rui Zhang, Xueyan Wang, Jiaojiao Xue, Xiaoli Li, Ying Li, Yi Ding, Yichao Feng, Xueping Zhang, Jianqing Su and Xiuling Chu
Molecules 2024, 29(19), 4749; https://doi.org/10.3390/molecules29194749 - 8 Oct 2024
Abstract
To enhance the nutritional value of Acanthopanax senticosus leaves (AL), a fermentation process was conducted using a probiotic Bacillus mixture, and the changes in chemical constituents and biological activities before and after fermentation were compared. A response surface methodology was employed to optimize [...] Read more.
To enhance the nutritional value of Acanthopanax senticosus leaves (AL), a fermentation process was conducted using a probiotic Bacillus mixture, and the changes in chemical constituents and biological activities before and after fermentation were compared. A response surface methodology was employed to optimize the liquid fermentation conditions of AL based on their influence on polyphenol content. Non-targeted metabolomics analysis was performed using LC-MS/MS to reveal the differing profiles of compounds before and after fermentation. The results indicated that Bacillus subtilis LK and Bacillus amyloliquefaciens M2 significantly influenced polyphenol content during fermentation. The optimal fermentation conditions were determined to be a fermentation time of 54 h, a temperature of 39.6 °C, and an inoculum size of 2.5% (v/v). In comparison to unfermented AL, the total polyphenol and flavonoid contents, as well as the free radical scavenging capacities measured by DPPH and ABTS assays, and the activities of β-glucosidase and endo-glucanase, were significantly increased. The non-targeted metabolomics analysis identified 1348 metabolites, of which 829 were classified as differential metabolites. A correlation analysis between the differential metabolites of polyphenols, flavonoids, and antioxidant activity revealed that 13 differential metabolites were positively correlated with antioxidant activity. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the differential metabolites identified 82 pathways, with two of the top 25 metabolic pathways related to flavonoids. This study explores the potential for enhancing the active ingredients and biological effects of AL through probiotic fermentation using Bacillus strains. Full article
Show Figures

Figure 1

12 pages, 1018 KiB  
Article
Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season
by Agnieszka Kicel, Anna Magiera and Monika Anna Olszewska
Molecules 2024, 29(19), 4745; https://doi.org/10.3390/molecules29194745 - 8 Oct 2024
Abstract
Cotoneaster zabelii is a medicinal plant that is beneficial due to its polyphenol-rich leaves. In the course of optimizing the harvest time for C. zabelii cultivated in Poland, the leaf samples were collected monthly during the annual plant vegetation season, and the hydromethanolic [...] Read more.
Cotoneaster zabelii is a medicinal plant that is beneficial due to its polyphenol-rich leaves. In the course of optimizing the harvest time for C. zabelii cultivated in Poland, the leaf samples were collected monthly during the annual plant vegetation season, and the hydromethanolic leaf extracts were evaluated for their phenolic composition and model biological activities, including antioxidant, antihyperglycemic, and anti-inflammatory effects in vitro. The phenolic profiles were analyzed using UHPLC-PDA-ESI-MS3, HPLC-PDA, and spectrophotometric methods (total phenolic content, TPC) to understand their seasonal variability and its correlation with bioactive properties. The identified phenolic compounds included caffeic acid derivatives, flavan-3-ols (especially (−)-epicatechin and procyanidins B-type), and flavonoids like quercetin mono- and diglycosides. Leaves harvested in July and October contained the highest polyphenolic levels and demonstrated significant antioxidant activity in most tests. The leaves harvested in July, September, and October showed optimal anti-inflammatory effects, whereas the highest antihyperglycemic activity was observed in the leaves collected from June to July. Regarding polyphenolic levels and bioactivity, the summer and autumn months appear to be the most advantageous for harvesting leaf material of optimal quality for phytotherapy. Full article
Show Figures

Figure 1

41 pages, 11222 KiB  
Review
Plants’ Impact on the Human Brain—Exploring the Neuroprotective and Neurotoxic Potential of Plants
by Georgiana Moise, Alex-Robert Jîjie, Elena-Alina Moacă, Iasmina-Alexandra Predescu, Cristina Adriana Dehelean, Alina Hegheș, Daliborca Cristina Vlad, Roxana Popescu and Cristian Sebastian Vlad
Pharmaceuticals 2024, 17(10), 1339; https://doi.org/10.3390/ph17101339 - 7 Oct 2024
Abstract
Background: Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. Discussion: Numerous studies have highlighted the neuroprotective effects [...] Read more.
Background: Plants have long been recognized for their potential to influence neurological health, with both neuroprotective and neurotoxic properties. This review explores the dual nature of plant-derived compounds and their impact on the human brain. Discussion: Numerous studies have highlighted the neuroprotective effects of various phytoconstituents, such as those found in Ginkgo biloba, Centella asiatica, Panax ginseng, Withania somnifera, and Curcuma longa. The neuroprotective compounds have demonstrated antioxidant, anti-inflammatory, and cognitive-enhancing properties, making them promising candidates for combating neurodegenerative diseases and improving brain function. Polyphenolic compounds, triterpenic acids, and specific phytocompounds like the ones from EGb 761 extract have shown interactions with key enzymes and receptors in the brain, leading to neuroprotective outcomes. However, this review also acknowledges the neurotoxic potential of certain plants, such as the Veratrum species, which contains steroidal alkaloids that can cause DNA damage and disrupt neurological function, or Atropa belladonna, which interfere with the normal functioning of the cholinergic system in the body, leading to a range of symptoms associated with anticholinergic toxicity. Conslusions: This review also emphasizes the need for further research to elucidate the complex mechanisms underlying the neuroprotective and neurotoxic effects of plant-derived compounds, as well as to identify novel phytoconstituents with therapeutic potential. Understanding the complex relationship between plants and the human brain is crucial for harnessing the benefits of neuroprotective compounds while mitigating the risks associated with neurotoxic substances. This review provides a comprehensive overview of the knowledge on the neurological properties of plants and highlights the importance of continued research in this field for the development of novel therapeutic strategies targeting brain health and neurological disorders. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop