Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,502)

Search Parameters:
Keywords = pressure-sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2889 KiB  
Proceeding Paper
An Electrochemical Sensing Platform Based on a Carbon Paste Electrode Modified with a Graphene Oxide/TiO2 Nanocomposite for Atenolol Determination
by Ergi Hoxha, Nevila Broli, Majlinda Vasjari and Sadik Cenolli
Eng. Proc. 2024, 73(1), 1; https://doi.org/10.3390/engproc2024073001 - 19 Aug 2024
Viewed by 32
Abstract
Atenolol is a medication belonging to the class of drugs known as beta-blockers, used to treat high blood pressure (hypertension) and irregular heartbeats (arrhythmia). Their presence in the environment has serious impacts on humans, animals, and the water ecosystem. In this context, the [...] Read more.
Atenolol is a medication belonging to the class of drugs known as beta-blockers, used to treat high blood pressure (hypertension) and irregular heartbeats (arrhythmia). Their presence in the environment has serious impacts on humans, animals, and the water ecosystem. In this context, the aim of this study was to develop a simple voltammetric method for the determination of atenolol (ATN) using carbon paste electrodes modified with the nanomaterials TiO2 and rGO/TiO2. The analytical performance of the modified sensor was evaluated using square wave voltammetry and cyclic voltammetry in 0.1 mol L−1 acid sulfuric solution (H2SO4), pH 2. The nanocomposite electrode CPE/rGO/TiO2 exhibited excellent electrocatalytic activity towards ATN oxidations at 0.1 mol L−1 H2SO4 compared with unmodified carbon paste electrodes CPEs and those modified with titanium oxide, CPE/TiO2. Different experimental and conditional parameters were optimized, such as supporting electrolytes, pH, amplitude, frequency, etc. Under optimal conditions, linear calibration curves were obtained, ranging from 1.7 to 23.2 µmol L−1 for ATN with detection limits of 0.05 μmol L−1. The modified nanocomposite CPE/rGO/TiO2 sensor showed good sensitivity and good repeatability (RSD ≤ 0.61%) for ATN determination. The proposed sensor is mechanically robust and presented reproducible results and a long useful life. In order to verify the usefulness of the developed methods, the nanocomposite sensor CPE/rGO/TiO2 was applied for the detection of atenolol in real samples (pharmaceutical tablets without any pre-treatment). The excipients present in the tablets did not interfere in the assay. Recoveries ranging from 97.7% to 106% were obtained. The results showed that the CPE/rGO/TiO2 voltammetric sensor could be successfully applied in the routine quality control of ATN in complex matrices. Full article
Show Figures

Figure 1

20 pages, 9914 KiB  
Article
A Comparative Study of Machine Learning Models for Predicting Meteorological Data in Agricultural Applications
by Jelena Šuljug, Josip Spišić, Krešimir Grgić and Drago Žagar
Electronics 2024, 13(16), 3284; https://doi.org/10.3390/electronics13163284 - 19 Aug 2024
Viewed by 291
Abstract
This study aims to address the challenges of climate change, which has led to extreme temperature events and reduced rainfall, using Internet of Things (IoT) technologies. Specifically, we monitored the effects of drought on maize crops in the Republic of Croatia. Our research [...] Read more.
This study aims to address the challenges of climate change, which has led to extreme temperature events and reduced rainfall, using Internet of Things (IoT) technologies. Specifically, we monitored the effects of drought on maize crops in the Republic of Croatia. Our research involved analyzing an extensive dataset of 139,965 points of weather data collected during the summer of 2022 in different areas with 18 commercial sensor nodes using the Long-Range Wide Area Network (LoRaWAN) protocol. The measured parameters include temperature, humidity, solar irradiation, and air pressure. Newly developed maize-specific predictive models were created, taking into account the impact of urbanization on the agrometeorological parameters. We also categorized the data into urban, suburban, and rural segments to fill gaps in the existing literature. Our approach involved using 19 different regression models to analyze the data, resulting in four regional models per parameter and four general models that apply to all areas. This comprehensive analysis allowed us to select the most effective models for each area, improving the accuracy of our predictions of agrometeorological parameters and helping to optimize maize yields as weather patterns change. Our research contributes to the integration of machine learning and AI into the Internet of Things for agriculture and provides innovative solutions for predictive analytics in crop production. By focusing on solar irradiation in addition to traditional weather parameters and accounting for geographical differences, our models provide a tool to address the pressing issue of agricultural sustainability in the face of impending climate change. In addition, our results have practical implications for resource management and efficiency improvement in the agricultural sector. Full article
(This article belongs to the Special Issue Artificial Intelligence Empowered Internet of Things)
Show Figures

Figure 1

23 pages, 2549 KiB  
Article
A Machine Learning-Driven Approach to Uncover the Influencing Factors Resulting in Soil Mass Displacement
by Apostolos Parasyris, Lina Stankovic and Vladimir Stankovic
Geosciences 2024, 14(8), 220; https://doi.org/10.3390/geosciences14080220 - 18 Aug 2024
Viewed by 259
Abstract
For most landslides, several destabilising processes act simultaneously, leading to relative sliding along the soil or rock mass surface over time. A number of machine learning approaches have been proposed recently for accurate relative and cumulative landside displacement prediction, but researchers have limited [...] Read more.
For most landslides, several destabilising processes act simultaneously, leading to relative sliding along the soil or rock mass surface over time. A number of machine learning approaches have been proposed recently for accurate relative and cumulative landside displacement prediction, but researchers have limited their studies to only a few indicators of displacement. Determining which influencing factors are the most important in predicting different stages of failure is an ongoing challenge due to the many influencing factors and their inter-relationships. In this study, we take a data-driven approach to explore correlations between various influencing factors triggering slope movement to perform dimensionality reduction, then feature selection and extraction to identify which measured factors have the strongest influence in predicting slope movements via a supervised regression approach. Further, through hierarchical clustering of the aforementioned selected features, we identify distinct types of displacement. By selecting only the most effective measurands, this in turn informs the subset of sensors needed for deployment on slopes prone to failure to predict imminent failures. Visualisation of the important features garnered from correlation analysis and feature selection in relation to displacement show that no one feature can be effectively used in isolation to predict and characterise types of displacement. In particular, analysis of 18 different sensors on the active and heavily instrumented Hollin Hill Landslide Observatory in the north west UK, which is several hundred metres wide and extends two hundred metres downslope, indicates that precipitation, atmospheric pressure and soil moisture should be considered jointly to provide accurate landslide prediction. Additionally, we show that the above features from Random Forest-embedded feature selection and Variational Inflation Factor features (Soil heat flux, Net radiation, Wind Speed and Precipitation) are effective in characterising intermittent and explosive displacement. Full article
Show Figures

Figure 1

14 pages, 14437 KiB  
Article
Aeroacoustic Coupling in Rectangular Deep Cavities: Passive Control and Flow Dynamics
by Abdul Hamid Jabado, Mouhammad El Hassan, Ali Hammoud, Anas Sakout and Hassan H. Assoum
Fluids 2024, 9(8), 187; https://doi.org/10.3390/fluids9080187 - 17 Aug 2024
Viewed by 271
Abstract
Deep cavity configurations are common in various industrial applications, including automotive windows, sunroofs, and many other applications in aerospace engineering. Flows over such a geometry can result in aeroacoustic coupling between the cavity shear layer oscillations and the surrounding acoustic modes. This phenomenon [...] Read more.
Deep cavity configurations are common in various industrial applications, including automotive windows, sunroofs, and many other applications in aerospace engineering. Flows over such a geometry can result in aeroacoustic coupling between the cavity shear layer oscillations and the surrounding acoustic modes. This phenomenon can result in a resonance that can lead to significant noise and may cause damage to mechanical structures. Flow control methods are usually used to reduce or eliminate the aeroacoustic resonance. An experimental set up was developed to study the effectiveness of both a cylinder and a profiled cylinder positioned upstream from the cavity in reducing the flow resonance. The cavity flow and the acoustic signals were obtained using particle image velocimetry (PIV) and unsteady pressure sensors, respectively. A decrease of up to 36 dB was obtained in the sound pressure levels (SPL) using the passive control methods. The profiled cylinder showed a similar efficacy in reducing the resonance despite the absence of a high-frequency forcing. Time-space cross-correlation maps along the cavity shear layer showed the suppression of the feedback mechanism for both control methods. A snapshot proper orthogonal decomposition (POD) showed interesting differences between the cylinder and profiled cylinder control methods in terms of kinetic energy content and the vortex dynamics behavior. Furthermore, the interaction of the wake of the control device with the cavity shear layer and its impact on the aeroacoustic coupling was investigated using the POD analysis. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques)
Show Figures

Figure 1

9 pages, 956 KiB  
Article
Exploratory Study of Biomechanical Properties and Pain Sensitivity at Back-Shu Points
by Heeyoung Moon, Seoyoung Lee, Da-Eun Yoon, In-Seon Lee and Younbyoung Chae
Brain Sci. 2024, 14(8), 823; https://doi.org/10.3390/brainsci14080823 - 16 Aug 2024
Viewed by 305
Abstract
Objectives: Hypersensitive acupoints in specific body areas are associated with corresponding internal or visceral disorders. Back-shu points are clinically significant for the diagnosis of visceral organ disease, according to the biomechanical characteristics of the acupoints. In this study, we assessed the biomechanical characteristics [...] Read more.
Objectives: Hypersensitive acupoints in specific body areas are associated with corresponding internal or visceral disorders. Back-shu points are clinically significant for the diagnosis of visceral organ disease, according to the biomechanical characteristics of the acupoints. In this study, we assessed the biomechanical characteristics and pain sensitivities of five back-shu points linked to five visceral organs in healthy participants. Methods: The study included 48 volunteer participants. A myotonometry was used to assess muscle tone and muscle stiffness at five back-shu points associated with visceral organs. Pressure was monitored using a microcontroller and a force sensor. Pain sensitivity was assessed in response to deep pressure pain produced by a constant force. Results: Substantial differences in muscle tone and stiffness were observed at the five back-shu points; muscle tone was highest at BL15, whereas muscle tone and muscle stiffness were lowest at BL23. Moreover, pain sensitivity was significantly different among the acupoints; pain sensitivity was highest at BL23. There was a significant negative correlation between muscle tone and pain sensitivity. Conclusions: We found significant differences in muscle tone, muscle stiffness, and pain sensitivity among five back-shu points associated with visceral organs, which may be attributable to anatomical variations at each point. Our findings suggest that differences at back-shu points should be considered to ensure the accurate diagnosis of visceral disease. Full article
Show Figures

Figure 1

20 pages, 4950 KiB  
Article
Comparison of the Accuracy of Ground Reaction Force Component Estimation between Supervised Machine Learning and Deep Learning Methods Using Pressure Insoles
by Amal Kammoun, Philippe Ravier and Olivier Buttelli
Sensors 2024, 24(16), 5318; https://doi.org/10.3390/s24165318 - 16 Aug 2024
Viewed by 396
Abstract
The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: three Deep Learning (DL) methods (Artificial Neural Network, Long Short-Term Memory, and [...] Read more.
The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: three Deep Learning (DL) methods (Artificial Neural Network, Long Short-Term Memory, and Convolutional Neural Network) and three Supervised Machine Learning (SML) methods (Least Squares, Support Vector Regression, and Random Forest (RF)). Data were collected from nine subjects across six activities: normal and slow walking, static with and without carrying a load, and two Manual Material Handling activities. This study has two main contributions: first, the estimation of GRF components (Fx, Fy, and Fz) during the six activities, two of which have never been studied; second, the comparison of the accuracy of GRF component estimation between the six methods for each activity. RF provided the most accurate estimation for static situations, with mean RMSE values of RMSE_Fx = 1.65 N, RMSE_Fy = 1.35 N, and RMSE_Fz = 7.97 N for the mean absolute values measured by the force plate (reference) RMSE_Fx = 14.10 N, RMSE_Fy = 3.83 N, and RMSE_Fz = 397.45 N. In our study, we found that RF, an SML method, surpassed the experimented DL methods. Full article
(This article belongs to the Special Issue Biometrics Recognition Systems)
Show Figures

Figure 1

30 pages, 2918 KiB  
Article
A Theoretical Study on Static Gas Pressure Measurement via Circular Non-Touch Mode Capacitive Pressure Sensor
by Ji Wu, Xiao-Ting He and Jun-Yi Sun
Sensors 2024, 24(16), 5314; https://doi.org/10.3390/s24165314 - 16 Aug 2024
Viewed by 328
Abstract
A circular non-touch mode capacitive pressure sensor can operate in both transverse and normal uniform loading modes, but the elastic behavior of its movable electrode plate is different under the two different loading modes, making its input–output analytical relationships between pressure and capacitance [...] Read more.
A circular non-touch mode capacitive pressure sensor can operate in both transverse and normal uniform loading modes, but the elastic behavior of its movable electrode plate is different under the two different loading modes, making its input–output analytical relationships between pressure and capacitance different. This suggests that when such a sensor operates, respectively, in transverse and normal uniform loading modes, the theory of its numerical design and calibration is different, in other words, the theory for the transverse uniform loading mode (available in the literature) cannot be used as the theory for the normal uniform loading mode (not yet available in the literature). In this paper, a circular non-touch mode capacitive pressure sensor operating in normal uniform loading mode is considered. The elastic behavior of the movable electrode plate of the sensor under normal uniform loading is analytically solved with the improved governing equations, and the improved analytical solution obtained can be used to mathematically describe the movable electrode plate with larger elastic deflections, in comparison with the existing two analytical solutions in the literature. This provides a larger technical space for developing the circular non-touch mode capacitive pressure sensors used for measuring the static gas pressure (belonging to normal uniform loading). Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

13 pages, 3373 KiB  
Article
Performance Study of F-P Pressure Sensor Based on Three-Wavelength Demodulation: High-Temperature, High-Pressure, and High-Dynamic Measurements
by Maocheng Guo, Qi Zhang, Hongtian Zhu, Rui Liang, Yongqiu Zheng, Xiang Zhu, Enbo Wang, Zhaoyi Li, Chenyang Xue and Zhenyin Hai
Sensors 2024, 24(16), 5313; https://doi.org/10.3390/s24165313 - 16 Aug 2024
Viewed by 210
Abstract
F-P (Fabry–Perot) pressure sensors have a wide range of potential applications in high-temperature, high-pressure, and high-dynamic environments. However, existing demodulation methods commonly rely on spectrometers, which limits their application to high-frequency pressure signal acquisition. To solve this problem, this study developed a self-compensated, [...] Read more.
F-P (Fabry–Perot) pressure sensors have a wide range of potential applications in high-temperature, high-pressure, and high-dynamic environments. However, existing demodulation methods commonly rely on spectrometers, which limits their application to high-frequency pressure signal acquisition. To solve this problem, this study developed a self-compensated, three-wavelength demodulation system composite with an F-P pressure sensor and a thermocouple to construct a comprehensive sensing system. The system produces accurate pressure measurements in high-temperature, high-pressure, and high-dynamic environments. In static testing at room temperature, the sensing system shows excellent linearity, and the pressure sensitivity is 158.48 nm/MPa. In high-temperature testing, the sensing system maintains high linearity in the range of 100 °C to 700 °C, with a maximum pressure-indication error of about 0.13 MPa (0~5 MPa). In dynamic testing, the sensor exhibits good response characteristics at 1000 Hz and 5000 Hz sinusoidal pressure frequencies, with a signal-to-noise ratio (SNR) greater than 37 dB and 45 dB, respectively. These results indicate that the sensing system proposed in this study has significant competitive advantages in the field of high-temperature, high-speed, and high-precision pressure measurements and provides an important experimental basis and theoretical support for technological progress in related fields. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 11565 KiB  
Article
A Dataset and a Comparison of Classification Methods for Valve Plate Fault Prediction of Piston Pump
by Marcin Rojek and Marcin Blachnik
Appl. Sci. 2024, 14(16), 7183; https://doi.org/10.3390/app14167183 - 15 Aug 2024
Viewed by 315
Abstract
The article introduces datasets representing piston pump failures along with the experimental evaluation of various machine learning classification models. It starts with a detailed description of three classification datasets consisting of three different levels of valve plate damages and signals recorded from sensors [...] Read more.
The article introduces datasets representing piston pump failures along with the experimental evaluation of various machine learning classification models. It starts with a detailed description of three classification datasets consisting of three different levels of valve plate damages and signals recorded from sensors used in classical hydraulic systems (pressure, temperature, flow). The obtained datasets consist of 100k (Failure 1), 30k (Failure 2) and 30k (Failure 3) samples and eight attributes. Then a broad range of classifiers are evaluated including three ensemble models based on decision trees: Random Forest, Gradient-Boosted Trees, and Rotation Forest, as well as the kNN algorithm and a neural network. The analysis showed that neural networks achieved the highest prediction accuracy, enabling a prediction accuracy level of 89%. The kNN algorithm ranked second, and tree-based algorithms performed 4% worse than the neural network. Next, the attribute importance analysis revealed that leak flow, pressure output, pressure of the leak line, and oil temperature are the most important parameters for accurate predictions. Additionally, the research includes a sensitivity analysis of the best classifier to verify the impact of sensor measurements or other noise indicators on the prediction model performance. The analysis indicates a 5% margin of measurement quality. Full article
Show Figures

Figure 1

22 pages, 2632 KiB  
Article
Design of Anti-Eccentric Load Sensor for Engineering Operation Early Warning Based on Particle Swarm Optimization
by Kaile Yu, Weizheng Ren, Yiran Zhang, Yutong Ge and Yuxiao Li
Sensors 2024, 24(16), 5293; https://doi.org/10.3390/s24165293 - 15 Aug 2024
Viewed by 240
Abstract
The accuracy of aerial work platform weighing is essential for safety. However, in practice, the same weight placed at different locations on the platform can yield varying readings, which is a phenomenon known as eccentric load. Measurement errors caused by eccentric loads can [...] Read more.
The accuracy of aerial work platform weighing is essential for safety. However, in practice, the same weight placed at different locations on the platform can yield varying readings, which is a phenomenon known as eccentric load. Measurement errors caused by eccentric loads can lead to missed detections and false alarms in the vehicle safety system, seriously affecting the safety of aerial work. To overcome the influence of eccentric load, the current engineering practice relies on multiple measurements at multiple points and averaging the results to eliminate the eccentric load, which greatly increases the work intensity of workers. To address the aforementioned issues, this paper proposes a three-dimensional force/torque shear force compensation scheme based on bending torque and torsional torque for pressure. The goal is to ensure that the sensor on the aerial work vehicle platform can accurately measure the anti-eccentric load under single-point measurement conditions. A three-box structure anti-eccentric load-weighing sensor for the aerial work platform was designed. Its structure has the advantages of high mechanical strength and no radial effect, ensuring the safety of aerial work, improvement of measurement sensitivity, and enabling of real-time and accurate acquisition of force/torque in three directions. In order to further improve the measurement accuracy of 3D force/torque compensation, a particle swarm optimization algorithm was adopted to optimize the 3D force/torque shear force compensation, thereby improving the safety of engineering operations. Through the verification of a self-made testing platform, the anti-eccentric load sensor designed in this study can ensure that the measurement error of objects at any position on the platform is less than 1.5%, effectively improving the safety of high-altitude platform engineering operations. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

16 pages, 9540 KiB  
Article
Influence of Lubrication Cycle Parameters on Hydrodynamic Linear Guides through Simultaneous Monitoring of Oil Film Pressure and Floating Heights
by Burhan Ibrar, Volker Wittstock, Joachim Regel and Martin Dix
Lubricants 2024, 12(8), 287; https://doi.org/10.3390/lubricants12080287 - 14 Aug 2024
Viewed by 236
Abstract
Hydrodynamic linear guides in machine tools offer a high load capacity and excellent damping characteristics, improving stability, precision, and vibration reduction. This study builds on previous research where floating heights were verified with a simulation model limited to measured floating heights. Advancements include [...] Read more.
Hydrodynamic linear guides in machine tools offer a high load capacity and excellent damping characteristics, improving stability, precision, and vibration reduction. This study builds on previous research where floating heights were verified with a simulation model limited to measured floating heights. Advancements include incorporating pressure sensors into a fixed steel rail, enabling simultaneous measurement of oil film pressure and floating heights for a comprehensive understanding of lubrication conditions within the lubrication gap. The experimental results explore the effects of different lubrication methods, providing valuable insights into cavitation and lubrication adequacy. The results demonstrate the feasibility of utilizing pressure sensors to measure oil film pressure within the lubrication gap, providing a nuanced understanding of lubrication dynamics. By measuring both floating heights and pressure measurement, distinctions between hydrodynamic lubrication, mixed friction regions, and instances of lubricant deficiency become readily discernible. The variations in real-time oil film pressure and floating heights help to optimize the lubrication cycle for hydrodynamic linear guides, enhancing system performance and longevity. Full article
(This article belongs to the Special Issue Tribology in Germany: Latest Research and Development)
Show Figures

Graphical abstract

20 pages, 1237 KiB  
Article
Recursive Engine In-Cylinder Pressure Reconstruction Using Sensor-Fused Engine Speed
by Runzhe Han, Christian Bohn and Georg Bauer
Sensors 2024, 24(16), 5237; https://doi.org/10.3390/s24165237 (registering DOI) - 13 Aug 2024
Viewed by 437
Abstract
The engine in-cylinder pressure is a very important parameter for the optimization of internal combustion engines. This paper proposes an alternative recursive Kalman filter-based engine cylinder pressure reconstruction approach using sensor-fused engine speed. In the proposed approach, the fused engine speed is first [...] Read more.
The engine in-cylinder pressure is a very important parameter for the optimization of internal combustion engines. This paper proposes an alternative recursive Kalman filter-based engine cylinder pressure reconstruction approach using sensor-fused engine speed. In the proposed approach, the fused engine speed is first obtained using the centralized sensor fusion technique, which synthesizes the information from the engine vibration sensor and engine flywheel angular speed sensor. Afterwards, with the fused speed, the engine cylinder pressure signal can be reconstructed by inverse filtering of the engine structural vibration signal. The cylinder pressure reconstruction results of the proposed approach are validated by two combustion indicators, which are pressure peak Pmax and peak location Ploc. Meanwhile, the reconstruction results are compared with the results obtained by the cylinder pressure reconstruction approach using the calculated engine speed. The results of sensor fusion can indicate that the fused speed is smoother when the vibration signal is trusted more. Furthermore, the cylinder pressure reconstruction results can display the relationship between the sensor-fused speed and the cylinder pressure reconstruction accuracy, and with more belief in the vibration signal, the reconstructed results will become better. Full article
Show Figures

Figure 1

10 pages, 14447 KiB  
Article
Revealing a Correlation between Physical Parameters and Differential Voltage Analysis of a Commercial Li-Ion Battery Based on Fiber Optic Sensors
by Lucca Matuck, Marta S. Ferreira and Micael Nascimento
Batteries 2024, 10(8), 289; https://doi.org/10.3390/batteries10080289 - 13 Aug 2024
Viewed by 404
Abstract
This work describes a specialized optical fiber hybrid sensing configuration conceived to monitor internal physical parameters (temperature and pressure) within Li-ion batteries (LiBs) and correlate them with electrochemical performance in operando. The batteries underwent thorough cycling tests under C/3 and C/5 operating rate [...] Read more.
This work describes a specialized optical fiber hybrid sensing configuration conceived to monitor internal physical parameters (temperature and pressure) within Li-ion batteries (LiBs) and correlate them with electrochemical performance in operando. The batteries underwent thorough cycling tests under C/3 and C/5 operating rate conditions. Throughout the cycling tests, the optical fiber sensors revealed a compelling correlation between internal and external temperature behavior. Additionally, the application of differential voltage analysis derivative curves during battery operation unveiled insights into the relationship between pressure and temperature changes and the batteries’ electrochemical performance. This optical sensing approach contributes to an understanding of internal LiB dynamics, offering implications for optimizing their performance and safety across diverse applications. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System)
Show Figures

Figure 1

16 pages, 9706 KiB  
Article
Using Flexible-Printed Piezoelectric Sensor Arrays to Measure Plantar Pressure during Walking for Sarcopenia Screening
by Shulang Han, Qing Xiao, Ying Liang, Yu Chen, Fei Yan, Hui Chen, Jirong Yue, Xiaobao Tian and Yan Xiong
Sensors 2024, 24(16), 5189; https://doi.org/10.3390/s24165189 - 11 Aug 2024
Viewed by 450
Abstract
Sarcopenia is an age-related syndrome characterized by the loss of skeletal muscle mass and function. Community screening, commonly used in early diagnosis, usually lacks features such as real-time monitoring, low cost, and convenience. This study introduces a promising approach to sarcopenia screening by [...] Read more.
Sarcopenia is an age-related syndrome characterized by the loss of skeletal muscle mass and function. Community screening, commonly used in early diagnosis, usually lacks features such as real-time monitoring, low cost, and convenience. This study introduces a promising approach to sarcopenia screening by dynamic plantar pressure monitoring. We propose a wearable flexible-printed piezoelectric sensing array incorporating barium titanate thin films. Utilizing a flexible printer, we fabricate the array with enhanced compressive strength and measurement range. Signal conversion circuits convert charge signals of the sensors into voltage signals, which are transmitted to a mobile phone via Bluetooth after processing. Through cyclic loading, we obtain the average voltage sensitivity (4.844 mV/kPa) of the sensing array. During a 6 m walk, the dynamic plantar pressure features of 51 recruited participants are extracted, including peak pressures for both sarcopenic and control participants before and after weight calibration. Statistical analysis discerns feature significance between groups, and five machine learning models are employed to screen for sarcopenia with the collected features. The results show that the features of dynamic plantar pressure have great potential in early screening of sarcopenia, and the Support Vector Machine model after feature selection achieves a high accuracy of 93.65%. By combining wearable sensors with machine learning techniques, this study aims to provide more convenient and effective sarcopenia screening methods for the elderly. Full article
(This article belongs to the Special Issue Advanced Sensors in Biomechanics and Rehabilitation Applications)
Show Figures

Figure 1

14 pages, 4196 KiB  
Article
Edge Computing and Fault Diagnosis of Rotating Machinery Based on MobileNet in Wireless Sensor Networks for Mechanical Vibration
by Yi Huang, Shuang Liang, Tingqiong Cui, Xiaojing Mu, Tianhong Luo, Shengxue Wang and Guangyong Wu
Sensors 2024, 24(16), 5156; https://doi.org/10.3390/s24165156 - 9 Aug 2024
Viewed by 396
Abstract
With the rapid development of the Industrial Internet of Things in rotating machinery, the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for rotating machinery have escalated, necessitating enhanced real-time [...] Read more.
With the rapid development of the Industrial Internet of Things in rotating machinery, the amount of data sampled by mechanical vibration wireless sensor networks (MvWSNs) has increased significantly, straining bandwidth capacity. Concurrently, the safety requirements for rotating machinery have escalated, necessitating enhanced real-time data processing capabilities. Conventional methods, reliant on experiential approaches, have proven inefficient in meeting these evolving challenges. To this end, a fault detection method for rotating machinery based on mobileNet in MvWSNs is proposed to address these intractable issues. The small and light deep learning model is helpful to realize nearly real-time sensing and fault detection, lightening the communication pressure of MvWSNs. The well-trained deep learning is implanted on the MvWSNs sensor node, an edge computing platform developed via embedded STM32 microcontrollers (STMicroelectronics International NV, Geneva, Switzerland). Data acquisition, data processing, and data classification are all executed on the computing- and energy-constrained sensor node. The experimental results demonstrate that the proposed fault detection method can achieve about 0.99 for the DDS dataset and an accuracy of 0.98 in the MvWSNs sensor node. Furthermore, the final transmission data size is only 0.1% compared to the original data size. It is also a time-saving method that can be accomplished within 135 ms while the raw data will take about 1000 ms to transmit to the monitoring center when there are four sensor nodes in the network. Thus, the proposed edge computing method shows good application prospects in fault detection and control of rotating machinery with high time sensitivity. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Condition Monitoring)
Show Figures

Figure 1

Back to TopTop